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Highlights 8 

 A simple method has been suggested for the estimation of the occupied and unoccupied 9 

distributions for different sensors installed in a residential home. 10 

 A critical feature of the method is that it does not require extensive recording of ground 11 

truth. 12 

 Practical occupancy inference through combining Dempster- Shafer’s theory of evidence 13 

with Hidden Markov Models has been demonstrated on some preliminary data and appears 14 

to be a very reasonable approach. 15 

 A methodology has been developed that uses this practical occupancy inference for 16 

assessing the possibility of demand response for a particular household at different times of 17 

day. 18 

 The benefits of occupancy to different demand response initiatives have been qualitatively 19 

assessed. 20 

 21 

  22 



Abstract 23 

This article introduces a methodological approach for analysing time series data from multiple sensors in order 24 

to estimate home occupancy. The approach combines the Dempster-Shafer theory, which allows the fusion of 25 

‘evidence’ from multiple sensors, with the Hidden Markov Model. The procedure addresses some of the 26 

practicalities of occupancy estimation including the blind estimation of sensor distributions during unoccupied 27 

and occupied states, and issues of occupancy inference when some sensors have missing data. The approach is 28 

applied to preliminary data from a residential family home on the North Coast of Scotland. Features derived 29 

from sensors that monitored electrical power, dew point temperature and indoor CO2 concentration were 30 

fused and the Hidden Markov Model applied to predict the occupancy profile. The approach shown is able to 31 

predict daytime occupancy, while effectively handling periods of missing sensor data, according to cross-32 

validation with available ground truth information. Knowledge of occupancy is then fused with consumption 33 

behaviour and a simple metric developed to allow the assessment of how likely it is that a household can 34 

participate in demand response at different periods during the day. The benefits of demand response 35 

initiatives are qualitatively discussed. The approach could be used to assist in the transition towards more 36 

active energy citizens, as envisaged by the smart grid. 37 

 38 
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 42 

1. Introduction 43 

One of the primary motivations of occupancy detection in buildings has been reduction of energy use whilst 44 

maintaining occupant comfort through the control of heating, cooling and ventilation systems (Bing Dong et al 45 

2010). However, with the increase of intermittent distributed renewables on the power grid, occupancy 46 

sensing provides further opportunities to assist in the flexible management of consumer demand to better 47 

match supply (Palensky and Dietrich 2011). Periods of active occupancy (when people are at home and awake) 48 

have a high correlation with user demand profiles (Capasso et al n.d., Abu-Sharkh et al 2005), because it is 49 

during times of active occupancy that consumers are most likely to be carrying out activities that require the 50 

consumption of energy, such as utilising appliances, heating, lighting etc. Torriti (Torriti 2012) considers 51 

variation in occupancy and suggests that the extent to which peak loads can be shifted is not only a function of 52 

incentive or price, but is largely dependent upon patterns of occupancy, especially for incentivised-based 53 

forms of Demand Response (DR). Indeed, for this type of DR, it is only during occupied periods that people 54 

have the capacity to modify their energy consumption behaviour. Furthermore, even ‘smart’ actuated DR 55 

strategies will benefit from knowledge of occupancy patterns for effective appliance scheduling  (Yuce et al 56 

2016). At the same time it is also important to take into account user comfort (Saele and Grande 2011, Yuce et 57 

al, 2014), which is of course only important during occupied periods (both active and non-active), and is closely 58 

linked with energy consumption and peak demand (Strengers 2008, Yuce, 2016). For these reasons the 59 

determination of occupancy profiles is important when accessing the potential opportunities for both 60 

incentivised and actuated DR. 61 

 62 

One of the main challenges is reliable non-intrusive approaches to determine when occupants leave and arrive 63 

in the home and to map the associated patterns of occupancy. Most approaches to occupancy estimation 64 

sensing require ground truth training data (e.g. (Lam et al 2009, Han et al 2013)), but this requirement places a 65 

barrier to the rapid uptake of DR. To take full advantage of the potential benefits of occupancy sensing there is 66 

a need for blind occupancy estimation strategies through inference (Ebadat et al 2015). 67 

 68 

1.1 Occupancy Inference 69 

There have been various attempts at inferring occupancy using ubiquitous sensors. One very promising 70 

approach is use of electricity data from smart meters or electricity clamps. Statistical approaches classifying 71 

this data have been suggested that are able to provide estimates of occupancy with accuracies of more than 72 

80% (D Chen et al 2013, Kleiminger et al 2013). Smart meter data could be used to provide this functionality 73 

meaning it could be delivered with no extra hardware expense. 74 

 75 

Occupants generate heat, moisture and water vapour and therefore environmental sensors provide a potential 76 

approach to inferring occupancy (B Dong and Andrews 2009). One of the most common approaches is to use a 77 

CO2 sensor combined with a detection algorithm (e.g. (Han et al 2013, Wang and Jin 1998, Lam et al 2009). Jin 78 

et al. investigate the use of indoor CO2 concentration to infer occupancy, by modelling the dynamics of human 79 



generated CO2 concentration in a room, demonstrating a strong link between the behaviour of CO2 levels in 80 

the room and occupancy. However, changes in ventilation rates caused by opening doors and windows affects 81 

the reliability of approaches relying solely on CO2 measurements (Naghiyev et al 2014). 82 

 83 

Various studies include relative humidity in occupancy estimation (e.g. (Khan et al 2014, Lam et al 2009, Bing 84 

Dong et al 2010). The problem with using relative humidity is that it is a function of the air temperature, where 85 

a temperature decrease in a building due to thermostat setbacks for example, will result in an increase in the 86 

relative humidity because colder air is able to hold less moisture (Lawrence 2010); therefore without 87 

considering the effect of temperature, the cause of a change in relative humidity will not be clear. 88 

 89 

Additional sensors that have been used to determine occupancy, often in combination with other sensors 90 

include: door sensors (Agarwal et al 2011), acoustic sensors (Bian et al 2005, Scott et al 2005, Jianfeng Chen et 91 

al 2005, Hailemariam et al 2011), cameras (Benezeth et al 2011), PIR sensors (Dodier et al 2006, Naghiyev et al 92 

2014, Scott et al 2011) and ultrasound (Guo et al 2010). Alternative approaches include the use IT 93 

infrastructure: using GPS information from smartphones (Koehler et al 2013), although this requires active 94 

participation of the occupants, and a phone (with sufficient battery), which must be carried at all times; and by 95 

monitoring MAC and IP addresses (Melfi et al 2011). 96 

 97 

1.2 Processing Sensor Data  98 

The output from different sensors captures different possible interactions between an occupant and the 99 

environment in which they are in (Lam et al 2009). Therefore, by combining multiple sources of data from 100 

different sensors, it is possible to exploit information from a range of interactions, and thus to increase 101 

occupancy state classification accuracy. For instance, Lam et al. (Lam et al 2009) looked at combining various 102 

sensors, including CO2, relative humidity (RH), PIR and sound. These capture information on the following 103 

interactions, respectively: exhalation of CO2 as the occupant breaths within the space; the occupant respiring 104 

and giving off moisture; the occupant moving in the environment; and the occupant making noise while in the 105 

space.  106 

 107 

One of the key factors in achieving greater accuracy in occupancy prediction is processing the data in an 108 

appropriate way to generate distinguishing features. The following features have been successfully used in 109 

occupancy sensing classification problems: moving average (Lam et al 2009, Hailemariam et al 2011), range, 110 

standard deviation (D Chen et al 2013), 1
st

 order difference, 2
nd

 order difference (e.g. see (Bing Dong et al 111 

2010, Ekwevugbe 2013)). Different features will have stronger and weaker correlations with occupancy, for 112 

example, in the study of Lam et al. (2009), which focused on an office space, CO2 and acoustic parameters 113 

were shown to have the strongest correlation out of all the studied variables. Once the best features are 114 

established, classification of the feature set can then be carried out.  115 

 116 

1.3 Classification to determine Occupancy 117 



How sensor information is processed and combined is critically important for the success of the method. For 118 

instance, the work by Hailemariam et al. (Hailemariam et al 2011) on combining multiple sensor data using 119 

decision trees to predict occupancy, showed that over fitting can occur when combining a large number of 120 

sensors, even reducing overall accuracy. Careful selection of the classification technique for the occupancy 121 

inference problem is vital. 122 

 123 

The work by Lam et al. (Lam et al 2009) compares three classification methods for multi-sensor data: Support 124 

Vector Machine, Neural Networks and Hidden Markov Model (HMM). The HMM classifier was found to be the 125 

method that produced a profile that best described occupancy presence. The effectiveness of the HMM for 126 

classifying occupancy profiles was confirmed by Kleiminger et al.’s (Kleiminger et al 2013) who compared K-127 

Nearest Neighbour (KNN), Support Vector Machines (SVM), Thresholding (THR) and Hidden Markov Model 128 

(HMM) classifiers for predicting occupancy from electricity consumption profiles. The HMM showed the best 129 

overall and consistent performance, even without taking into account prior probabilities. This was further 130 

demonstrated by Chen et al. (Dong Chen et al 2015). The HMM is a tool for representing probability 131 

distributions over a sequence of observations in time series data and they are well known for their applications 132 

in pattern recognitions systems (e.g. (Gales and Young 2007, Avilés-Arriaga and Sucar-Succar 2011, Hu et al 133 

1996, Deng and Byrne 2008)), such as in handwriting and speech. One of the major advantages of the HMM 134 

compared with other methods, is that it has a time dimension, which takes into account the transition 135 

probability between occupied and unoccupied states as a function of the sequence of observed features. 136 

 137 

One of the challenges of using the HMM with a large feature vector is the number of training examples 138 

required: the number of parameters needed to describe the model grows exponentially with the number of 139 

observation variables or states (Rabiner 1988). Indeed this could become an issue with a large distributed 140 

network of sensors to predict occupancy. In order to address this shortcoming, Aviles-Arrianga et al. (Aviles-141 

Arriaga et al 2003) considered the combination of Naïve Bayes classifiers with HMMs. Different evaluations 142 

have shown the Naïve Bayes classifier, though simple, to perform well across a variety of domains, even 143 

compared to more sophisticated probabilistic classifiers (Langley et al 1992, Michie et al 1994). In this 144 

approach, the distribution of observations at a given time, are combined by finding, according to the Naïve 145 

Bayes assumption, the product of the likelihoods, giving a joint probability distribution of the given 146 

observables being detected (Aviles-Arriaga et al 2003). In a similar way to the HMM, the states classes with the 147 

highest probability, best describing the observations can then be found. Aviles-Arriaga et al. have shown the 148 

approach to have better performance than the HMM when the number of training examples is small (Ibid) 149 

 150 

A disadvantage of using Naïve Bayes theory for occupancy classification is that it requires the specification of 151 

prior class probabilities, which are often unknown. Another disadvantage is its inability to deal with ignorance, 152 

i.e. a lack of knowledge regarding sensor data. This might occur, for example, when there is missing data over 153 

a given time period (e.g. due to a malfunctioning sensor); the output of this sensor is unknown and therefore 154 

there is ignorance around what state this sensor would infer the system is in. A simple method which deals 155 



with these shortcomings is the Dempster-Shafer method, often described as a generalisation of Naïve Bayes 156 

theory. It is a robust method and has been shown in different instances to perform as well as, or better than 157 

the Bayes approach (Challa and Koks 2004). 158 

 159 

This paper is concerned with a study that focuses on the combination of CO2, electricity and internal dew point 160 

temperature data to infer occupancy, two attributes which have independently been shown in other studies to 161 

have a strong correlation with occupancy. Occupancy patterns are considered in conjunction with 162 

consumption behaviour to provide insights, to enable more effective participation of households in demand 163 

response. In the first part, the estimation of observation probability density distributions of sensor values 164 

during occupied and unoccupied household states, while lacking concrete ground truth, is addressed. 165 

Classification of data is then carried out in an iterative process using HMMs in combination with Dempster-166 

Shafer fusion. Finally, methods of interpreting data are presented and the interplay between occupancy and 167 

participation in both behaviour driven and actuated demand response is discussed.  168 

 169 

2. Methodology 170 

2.1 Case study building 171 

In order to illustrate the approach of determining the occupancy and considering the interplay between 172 

occupancy and demand response, a case study approach was adopted. A well-insulated terrace house in 173 

Northern Scotland was used for collecting preliminary data for the study. The property had two storeys, with 174 

an overall floor area of 62m
2
. The occupants were a young couple with a child aged two years old.  175 

 176 

2.2 Data collection 177 

The building was instrumented with voltage clamps on each individual circuit in the house, which included 178 

lighting, sockets, fridge-freezer and a washing machine. A CO2, humidity and temperature sensor was installed 179 

upstairs in the open plan kitchen-lounge area. A heat meter was installed to record when domestic hot water 180 

was used. Data was recorded at intervals of five minutes. The monitoring period was one month starting on 181 

the 1
st

 of May 2015. 182 

  183 

2.3 Determination of Occupancy 184 

Each of the sensors can be thought of as supplying evidence for and against a space being occupied at any 185 

given time interval,   . All of the evidence from a chosen cluster of sensors used (in this instance: CO2, electrical 186 

power and dew point temperature) in the time interval can be combined and to determine a probability of 187 

occupancy. By considering the probability over a sequence of observations, using an HMM, the hidden 188 

occupancy state (occupied or unoccupied) is inferred. 189 

 190 

2.3.1 Hidden Markov Model 191 

The problem that now needs to be solved is: given a series of sensor values, over time period T, where    is a 192 

given time interval, determine the most likely series of hidden states (occupied or unoccupied) that caused 193 



these sensor outputs. The solution to this is one of the key problems addressed by the HMM. In this work the 194 

observations are the continuous values recorded by the sensors, and the hidden states, causing the recorded 195 

sensor outputs, are the possible occupancy states of the building (occupied or unoccupied). 196 

 197 

Let the state,   , be the occupancy state of the system at time,   , with a likelihood of an observation,  (    ), 198 

where  , is a is feature vector of continuous values derived from the sensors and i is the number of the time 199 

interval. If            , a sequence of observation vectors, at each time interval,   , a new state is 200 

entered. The objective is to determine the hidden state sequence (the occupancy pattern) that caused this 201 

observed sequence of sensor values for time intervals over a time period,  , where       and    is the time 202 

interval between observation outputs. It is assumed that sensor emissions (observations) of the system are 203 

independent of one another, and depend only on the state of the system at time step   . Furthermore, it is 204 

assumed that the state of the system,   , at time,   , is dependant only on the previous state of the system 205 

     , which is known as the Markov assumption and can be written as: 206 

 (                   )   (        ) 

The intuition behind this assumption is that the state at time    captures enough of history of the process in 207 

order to reasonably predict the future output. 208 

 209 

The likelihood of a given series of emissions given a series of system states is then given by: 210 

 (         )   (  ) (     )∏ (        ) (     )

 

   

 

Where  (        ) is the transition model (between different states of the system) and  (     ) is the 211 

observation emission model. The objective is to determine the hidden states given the data, i.e. to compute 212 

 (       ). Implicit in this model is the conditional independence among the attributes (emissions), given the 213 

class (state).  214 

 215 

The elements in the transition matrix assume classical statistical probabilities. However, the emissions model, 216 

 (     ), is assumed to be described by a model based on the Dempster-Shafer theory of belief (Ramasso and 217 

Denoeux 2014). This is a formal framework for reasoning that is able to take into account uncertain 218 

information (Shafer 1976). The model is described in the next section (2.3.2). 219 

 220 

2.3.2 A Dempster-Shafer Based Emission Model 221 

The Dempster-Shafer theory is a mathematical theory (Shafer 1976) which enables the combination of 222 

multiple pieces of evidence to calculate the belief in support of an event. It offers an alternative to traditional 223 

probabilistic theory for a mathematical representation of uncertainty. In Bayesian theory any evidence not 224 

assigned to a hypothesis is assigned to its negation. However, this might not be true in reality. For instance, if a 225 

particular sensor value has not been seen before it does not necessarily mean in a two state system (occupied 226 

and unoccupied) that one state is totally improbable and the other state is 100% probable, but there remains a 227 

degree of uncertainty associated with which class it belongs to (what state of the system caused it). Another 228 



frequently occurring issue in data collection is missing data from a particular sensor. In sensor fusion problems 229 

it is critical that such types of situations are taken into consideration. An important aspect of Dempster-Shafer 230 

theory is the combination of evidence from multiple sources and modelling the conflict between them, with a 231 

way to represent ignorance. In the case of missing sensor data, complete ignorance can be assigned for this 232 

sensor during the affected time periods. Sensor fusion produces two parameters for each hypothesis: the 233 

degree of belief in the hypothesis and the degree of plausibility. The approach has been applied effectively to 234 

sensor fusion (e.g. (Wu et al 2002)). One of the major advantages of this method is that the truth of the 235 

hypothesis is assessed based on the evidence from available working sensors, i.e. evidence is based on current 236 

knowledge. Each sensor will contribute its observation by assigning its belief that the system is in a particular 237 

state. Furthermore, the approach does not assume knowledge of prior probabilities, which is the case with 238 

occupancy in this study. 239 

 240 

 241 

Basic concepts 242 

In the Dempster-Shafer theory, the frame of discernment, denoted by  , is a set of all possible mutually 243 

exhaustive events. This represents the set of all choices available to the reasoning scheme, where sources (in 244 

this case sensors) assign evidence (belief) across the frame of discernment. 245 

  246 

Let    represent the set of all subsets of   to which a source of evidence can apply its belief. In this problem   247 

can be defined as: 248 

          

Then                      , the set of all subsets of  . Meaning the state can be either occupied (  ), 249 

unoccupied (  ) or unknown (       ).   is the null set. 250 

 251 

Each sensor, will contributed its observation by assigning what is known as a mass function, m, over  . A 252 

probability mass function is defined, also called Basic Belief Assignment (BBA) and it maps how belief is 253 

distributed across the frame,   . It is defined such that it satisfies the following conditions: 254 

 255 

∑  ( )        and    ( )    256 

 257 

This means that belief from an evidence source cannot be assigned to a null hypothesis, and belief from all of 258 

the evidences sources, including any combinations of hypothesis must sum to one. Assigning evidence to 259 

       , which in this case contains all the possible hypothesis (occupied or unoccupied) is an assignment of 260 

ignorance. The subset     is called a focal set where its mass is non-zero, where A is a given hypothesis. The 261 

mass,  ( ), expresses the proportion of all relevant and available evidence in support of the proposition that 262 

A is true, i.e. it represents the ‘degree of belief’ that there is in A. From mass assignments, the theory allows 263 

the upper and lower bounds of the probability interval to be defined, this interval contains the probability in 264 

the classical sense ( ( )), bounded by two non-additive measures called belief,    ( ), and plausibility, 265 



  ( ): 266 

   ( )   ( )    ( ) 

Where the belief,    ( ), for a set A, is defined as the sum of all masses of the subset of interest: 267 

   ( )  ∑  ( )

   

 

Indeed the nature of this system means that    (       )   , meaning that the system must be in either 268 

state    or    and therefore, in this case for occupied and unoccupied states,  ( )     ( ). It can take a 269 

value ranging from 0 (no evidence) to 1 (certainty). Plausibility can be understood as the weight of evidence 270 

that doesn’t contradict hypothesis A. It is a measure of the extent to which the evidence in favour of other 271 

states (not  ) leaves room for belief in state  . Belief and plausibility are related such that: 272 

  ( )       ( ̅) 

Where  ̅ is the hypothesis ‘not A’, e.g. if   is the hypothesis that the home is occupied,  ̅ is the hypothesis that 273 

it is unoccupied.    ( ̅), is therefore the belief that the home is not occupied. The plausibility, pl(A), also 274 

ranges from 0 to 1. 275 

 276 

Dempster’s Rule of Combination is a way to combine evidence from independent sources. If     ( ) and 277 

   ( ) are two belief functions (for two different sensors) over the same frame of discernment, , with 278 

probability masses    and   , respectively, the joint mass is defined as: 279 

    ( )        
∑   ( )  ( )       

  ∑   ( )  ( )     

 

The use of Dempster-Shafer theory allows uncertainty to be incorporated into the final decision and allows for 280 

missing sensor data, or when the distribution of the feature data is not fully know. Furthermore, unlike 281 

Bayesian inference no a priori knowledge is required to make an inference (Hoffman and Murphy 1993). It 282 

therefore provides a practical method for the fusion of sensor data. 283 

 284 

Application to fusion of sensor data 285 

The normalised probability density of a feature given the system is in a particular state,  (  
    ), gives 286 

evidence for and against a particular state (occupied or unoccupied), where    is the value of the feature,   287 

indicates the current time step of the system and   indicates the state of the system is in.  (  
    

 ) is the 288 

degree of evidence allocated to state 0 (unoccupied) for a particular feature x, and  (  
    

 ) is the degree of 289 

evidence allocated to state 1 (occupied). It has been proposed that representing the uncertainty in the current 290 

state of class membership (occupancy level) can be achieved by estimating the distance between the most 291 

plausible class and all others (Zahzah and Serge 1992).This function is designed such that the greater the 292 

difference between the evidence supplied by the two classes, the greater the degree of confidence in the class 293 

membership, and the smaller the difference the greater the degree of confusion as to which state the system is 294 

in. In this analysis there are only two classes and therefore the degree of uncertainty was assumed to take the 295 

following simple form: 296 

    | (  
    

 )   (  
    

 )|  where    (  
  |  

 )                                         (1) 297 



For example, if there was absolute certainty in one of the parameters, such that, for example  (  
    

 )     298 

and  (  
    

 )   , then    ; in this case the system is deterministic. The masses of evidence were assigned 299 

as follows: 300 

  
 (  )  

 (  
 |  

 )

(∑  (  
 |  

 ) +  ) 

 

 301 

  
 (𝜃)  

 

(∑  (  
 |  

 ) +  ) 

 

 302 

so that ∑   
 (  ) =1 (the sum over all possible states) and  (𝜃) is the mass assigned to ignorance. It can be 303 

seen that when there is a high degree of confusion between the two states, a large part of the mass of 304 

evidence will be assigned to  (𝜃). This would be the case, for example, if there was a high, yet similar degree 305 

of evidence for both hypotheses, or if there was little evidence for either. The definition of   in this way means 306 

(see Equation 1) that the resulting belief function behaves as a kind of likelihood function taking into account 307 

conflict: the more evidence there is for a particular hypothesis (unoccupied or occupied) and the less evidence 308 

there is against, the greater the belief in the hypothesis, that is the greater the evidential ‘likelihood’ that the 309 

given hypothesis is true. In essence it gives an indication of the lower limit of the statistical probability that the 310 

hypothesis is true. 311 

 312 

The combined belief mass is taken to be the lower limit of the combined likelihood, describing the emissions 313 

likelihoods,  (     ), where x is the feature vector (        ). Although the combination is in effect an 314 

artificial probabilistic model, the result is equivalent to the classical approach Bayesian approach of combining 315 

likelihoods (Ramasso and Denoeux 2014). The HMM  was implemented in Python using the approach 316 

described in (Mann et al 1999). Figure 2 illustrates graphically how the training process operates: at each time 317 

step  (     ) is estimated. The Bauch-Welch algorithm used to update parameters and finally the Viterbi 318 

algorithm is applied in order to find the most likely state sequence that caused the observations. This gives the 319 

predicted occupancy profile. 320 

 321 

2.3.3. Parameter Learning 322 

As is usual in HMM application, full knowledge of  (        ), the transition probabilities and  (     ), the 323 

emission distributions are not known and need to be determined. In order to maximise the chance of 324 

convergence, initial estimates for the probability density functions of the parameters needs to be made. This 325 

can then be refined with the Baum-Welch algorithm (Rabiner 1988., Baum et al 1970), a particular instance of 326 

the Expectation-Maximum (EM) algorithm.  327 

 328 

2.3.3 Initial Estimation of Observation Probability Density Distributions 329 

The first thing to note is that the form of the probability density distributions associated with the different 330 

sensors is often unknown and  cannot assumed to follow typical distribution forms, e.g.Gaussian.. The 331 



approach taken here is to estimate the probability density distributions using evidence from events to which 332 

we have as a high degree of confidence that they are indicative of human interaction. These are referred to as 333 

switch events. A high degree of confidence can be assigned to the hypothesis that an occupant is present. 334 

Switch events are clearly defined. For example, a switch event might be when a light switch is turned on or off, 335 

or it might be when a hot water tap is turned on or off. If necessary, identification of the best switch events for 336 

households could be inferred through a simple survey. By assuming that for a small period around the switch 337 

event that a person is present, and by considering a large number of switch events over a period of several 338 

weeks, it is possible to build up a picture of the distribution of sensor values for occupied periods. The 339 

distribution of values can then be found for all states (occupied and un-occupied periods), by finding 340 

probability density distribution over all time (taking into account all the available data),  (    ). Finally, using 341 

Bayes theorem, it is possible to estimate the distribution associated with unoccupied periods: 342 

 343 

Bayes theorem states that: 344 

 (    )  
 (  

 ) (    
 )

 (    )
         (2) 345 

 346 

Where, in terms of this problem:  (  
 | ) is the conditional probability of the system being in occupancy 347 

state,  , given sensor values  .  (    
 ) is the conditional probability of observing sensor data values,  , 348 

given the occupancy state is   
 . It is also known as the likelihood function and expresses how probable the 349 

observed sensor values ( ) are, given the particular state the system is in. This is what will be determined for a 350 

set of time periods when the home is occupied.  (  
 ) is the prior probability of the system being in the 351 

occupancy state   
 . 352 

The denominator in Equation 2 is the normalisation constant, which ensures the posterior distribution is a 353 

valid probability density and integrates to one. It can be expressed with respect to the prior and likelihood 354 

functions: 355 

 (    )  ∫  (  ) ( |  
 ) 

 

  
  

For a given observation time window,   , with observed data values, D, and when   
  is discrete it can be 356 

simplified to: 357 

 (    )  ∑  (  
 ) ( |  

 )
 

 
 

Where   is the number of states the system can be in, which in this analysis is two. In other words  (  ) is the 358 

sum of the                  for occupied and unoccupied states of the system. If it is assumed that the 359 

      probability of the system being an given state is uniform and the probability of the system being in 360 

either state is equal, then the       probability can be assumed to take a constant value of 0.5. The probability 361 

density distribution of the system being in either state,  (    ), is for each time window,   , the sum of 362 

occupied and unoccupied likelihoods, which is known. We therefore have: 363 

           (  
   )  

    (    
 )

 (    )
       364 



           (  
   )  

    (    
 )

 (    )
       (3) 365 

Because the state of the system is jointly exhaustive: 366 

 (  
   ) +  (  

   )    

The likelihood of being unoccupied,  (    
 ), can therefore be estimated from the known likelihood 367 

distributions as follows: 368 

 (    
 )    (    )   (    

 )                                            (4) 369 

 370 

Application of the method 371 

Switch events used for this preliminary study were: (1) lights being turned on and off. This was determined by 372 

monitoring the lighting circuits in the home, but could equally well be determined using low cost light sensors; 373 

(2) the hot water tap being turned on and off. This was determined using heat meter data, but could equally 374 

be determined using low cost thermistors on the hot water supply pipes; (3) electrical appliances being turned 375 

on and off. This was determined by monitoring the socket circuits in the home. The switch events were 376 

determined by 1) finding the rolling mean (with a 15 minute rolling window), finding the first difference and in 377 

the case of sockets, filtering out the differences according to a threshold, in order to remove the changes 378 

caused by small, non-descript power loads. The switch events were joined together. Figure 3 shows the count 379 

of switch events for each week in the month. 380 

 381 

It was assumed that for a window of 10 minutes either side of the switch event the occupant was present in 382 

the home. The occupied distribution for given sensors,  (    ), was found by finding the probability density 383 

distribution of values occurring across all these windows.  (    )  was then calculated by considering all the 384 

data, inside and outside of the switch event time windows. Finally,  (    ) was estimated using Equation 4.  385 

 386 

The distributions during occupied and unoccupied periods were then found using the described procedure. A 387 

useful measure of the how the two distributions differ can be given by: 388 

  
∫   ( )   ( )   

 

  

∫ ( ( ) +  ( ))
 

  
  

 

Where  ( ) and  ( ) are the two probability density distributions. When  ( ) and  ( ) do not overlap and 389 

are totally distinct,   would tend to one, whereas two identical distributions would result in an   of zero. 390 

Figure 4(a) illustrates how   varies with the change in window size of the time window for CO2 level, with an 391 

expected decrease in the distinctiveness between occupied and unoccupied distributions. The assumption of a 392 

window of 10 minutes either side of a switch event can be seen to be reasonable. 393 

 394 

In order to select the most distinctive features,   was found. Table 1 summaries a range of features explored. 395 

The five highest scoring features were selected and used for classification of occupancy in the study. These 396 

were, in order of distinctiveness: instantaneous mains feed electrical power, rolling window standard deviation 397 

of CO2, rolling window standard deviation of mains feed, indoor dew point temperature and CO2 398 



concentration.  399 

 400 

Figure 4 (b) to (e) shows the methodology applied to four of the different selected features: (b) instantaneous 401 

mains feed electrical power, (c) CO2 concentration in the home; (d) the rolling window standard deviation of 402 

CO2, (e) internal dew point temperature. The probability density distributions can be used to find an estimate 403 

for the likelihood of the system being in either an occupied or an unoccupied state given an observed sensor 404 

feature value. The mains feed electrical power use data shows a distinctive difference in distribution between 405 

occupied and unoccupied states. However there is still a degree of overlap, implying that it is possible to have 406 

low power consumption during occupied times. This is due to the fact that the occupant may be at home but 407 

not using electrical devices. The CO2 sensor used in this study has not been calibrated, resulting in CO2 408 

concentrations being recorded that are outside a realistic range. However, because we are only interested in 409 

the relative difference between occupied and unoccupied periods this will not affect the algorithm 410 

performance. In fact it illustrates one of the advantages of an approach where distributions are estimated for 411 

the installed sensors in a specific household, i.e. the estimation of a realistic and representative probability 412 

density distribution for a given attribute as a function of system state. The probability density distributions for 413 

CO2 clearly shows that higher ppm tends to occur during occupied periods, as would be expected. However, 414 

the closeness of the curve in parts may be the result of the lag between the room CO2 concentration and 415 

changes in occupancy, such that  (  | ) will contain within the distribution data, unoccupied periods, and 416 

vice versa. 417 

 418 

The estimated distributions were used within the HMM to find estimates for the combined probability density 419 

distributions. 420 

 421 

 422 

3. Results and Discussion 423 

The described methodology was used to determine the occupancy profile for the trial period, with equal weight 424 

given to all the feature vectors in the Dempster-Shafer fusion. The simulation was run to determine occupancy 425 

during intervals between the hours of 8am and 11pm, when the occupant was likely to be awake and active. 426 

Environmental sensors were not installed in the bedroom and electricity usage is generally low during the night, 427 

making night-time occupancy difficult to determine. The detection of sleep patterns could be attempted in 428 

further work. Figure 5 gives an example of a predicted occupancy profile for a day during week 1, and Figure 6 429 

gives empirically based profiles for two days during the fourth week in May. These are for days for which we 430 

have specific knowledge of occupancy that was provided by the household members.  This provided some 431 

validation of the method. During the first week of May the usual occupants of the property were away and the 432 

house was being used by a guest, of which we have little information. In the second week of May the house was 433 

empty for most of the week, with someone occasionally coming in for very brief periods.  This can be seen in 434 

the data, but because of the lack of occupancy presence for the majority of the week, it has not been included in 435 

the analysis and discussion. In the third and fourth weeks the family returned. The following discussion is 436 

focused mainly around the second half of the month.  437 



 438 

3.1 Validation of Method 439 

3.1.1 Sense checking the occupancy profiles 440 

As can be seen from the example profile given in Figure 5, the predicted unoccupied period behaves as one 441 

would expect, indicated by the reduction in CO2 concentration where the mains feed power use falls to a 442 

minimum. Notice also that the dew point temperature begins to gradually decrease during the unoccupied 443 

period. Notice also that all of the switch events for all three profiles (Figure 5, Figure 6 (a) and (b)), when we 444 

have a high degree of confidence that the occupant is in the home, occur within the predicted occupied periods. 445 

In addition in the profile in Figure 6(a) there is a considerable amount of missing power data. At this point the 446 

calculation of the value of   (see Equation 1) will go to one, indicating total ignorance of the occupancy state 447 

since no information is provided by this sensor. At these times the prediction is based on the evidence provided 448 

by the other sensors, illustrating the power of the Dempster-Shafer method. 449 

 450 

3.1.2 Confirmation against known occupancy behaviour 451 

The occupant was asked to recall patterns of occupancy during the last two weeks in May (Table 2). Although 452 

only a limited amount of information has been provided, periods of known unoccupancy were identified during 453 

two particular days in the fourth week of May. The predicted profiles for these two days are given in Figure 6. 454 

Figure 6(a) shows that the house was predicted to be empty during the late afternoon of the 26
th

 May and Figure 455 

6(b) shows the prediction that it was empty for a period during the morning on the 29
th

 of May, which is 456 

confirmed by the information provided by the occupants. Encouragingly the time of leaving on the 29
th

 of May 457 

is also predicted correctly. This provides some confidence that the predictions of the model do fit with real 458 

patterns of occupancy. 459 

 460 

3.2.3 Comparison with the Harmonised European Time of Use Survey Dataset 461 

The Harmonised European Time of Use Survey (HETUS, 2013), provides 10 minutely data categorised by 462 

different activities, location and by a large number of other variables. Aerts et al. (Aerts et al 2014) used 463 

hierarchical clustering of occupancy patterns of the 2005 Belgian HETUS time survey and identified seven 464 

typical occupancy patterns of residential buildings (which can be summarised as: mostly at home;  mostly 465 

absent; very short daytime absence; night-time absence; daytime absence; afternoon absence; and short daytime 466 

absence). Laarhoven (Laarhoven 2014) explored three examples of the average occupancy patterns discovered 467 

by Aerts and assigned plausible, indicative demographic conditions. These were: Couple without children 468 

(daytime absence)- occupied and active hours 6am-8am, 6pm-11pm. Retired couple (mostly at home): average 469 

active occupancy 8am to 11pm; couple with Children: High occupancy at 8am, decreasing to low occupancy at 470 

1pm and increasing to high occupancy by 10pm.  471 

 472 

The HETUS dataset was used to find the mean profile for a household which had a young child between the 473 

ages of 1-3, as described by Laarhoven, which is representative of the household that generated the data used in 474 

this analysis. The associated profile is given in Figure 7(a). Although this is extracted from Belgium data, the 475 

form and shape of the curve is representative of many other European Countries for this variable. Figure 7(b) 476 

shows the mean profile calculated on an hourly basis for the second two weeks of May, when the family were 477 



living in their home. Notice that the form of the predictive curve does in fact closely follow the shape of the 478 

curve extracted from the HETUS dataset. This gives some confidence that the predicted occupancy profile is 479 

plausible and in line with what might be expected for this type of household. 480 

 481 

 482 

3.2 Occupancy and Demand response 483 

Demand Response (DR) refers to a deliberate intervention, normally by the utility company, to cause a change 484 

in the magnitude and shape of user load profiles (Gellings 1993). This might be done through encouraging users 485 

through incentives or through direct actuation of energy. Occupancy provides a number of different benefits to 486 

the demand response paradigm.  Firstly, because occupancy is so closely tied with household energy 487 

consumption, understanding occupancy patterns across a large number of dwellings can potentially be used to 488 

improve demand forecasting through identifying the periods in different households when high demand is 489 

possible. Secondly, because it is necessary for an occupant to be present to take part in behavioural based DR, 490 

knowing the occupancy patterns, informs when it is physically possible for an end-user to shift their demand. 491 

Thirdly, combining typical occupancy patterns of individual households with their consumption data over a 492 

defined community, allows the identification of households that have the greatest potential to participate in, and 493 

make a significant contribution to overall community demand response. These households can then be targeted. 494 

Finally, by installing additional technology, it is also possible to remotely actuate loads and achieve load 495 

shifting without the need for the occupant to take action. This actuated demand response can be enhanced by 496 

knowledge of occupancy patterns, which provides constraints on periods when user comfort must be 497 

maintained. It also allows loads to be actuated to bring occupant benefits, e.g. switching selected loads off to 498 

avoid wasting energy and increasing end-users bills when the occupant is not at home. These benefits of 499 

occupancy to DR will now be further explored.  500 

 501 

3.3.1 Providing relevant, personalised and timely information to participants 502 

The monitoring of occupancy patterns in a home provides useful information on user behaviour and lifestyle. 503 

This will directly and indirectly affect the possibility and willingness of people to respond to information that 504 

encourages them to move load to a different time of day. On a basic level occupancy sensing provides 505 

information concerning the household routines of the occupant, allowing regular patterns of when they are in, 506 

leave, out and return to be identified. With enough data, patterns could be identified over different time scales 507 

from individual days of the week, through to monthly and even seasonal patterns of behaviour. Occupancy 508 

patterns could also be linked with other data, such as temperature and weather, to improve accuracy when using 509 

past patterns to anticipate future occupancy. Knowing patterns of when people are likely to be in and out of their 510 

home allows only relevant information, which occupants could conceivably respond to, to be communicated. As 511 

a concrete example, if a person normally arrived back from work at 6pm in the evening on a particular day, a 512 

mobile message could be sent to them a short while before this habitual event informing them of a DR 513 

opportunity, in anticipation of when they return home. On the other hand, if on another day they normally work 514 

away from home so that the house is unoccupied, it would allow the prevention of irrelevant communications 515 

that could annoy the user. Another way of seeing this is that, occupancy sensing could inform not only the time, 516 

but the way opportunities are communicated. For example, a graphical communication interface, while 517 



displaying other data, might highlight and give special emphasis to DR possibilities that the occupant is most 518 

likely be able to respond to, so that at a quick glance they are brought to their attention. Furthermore, the 519 

instantaneous feedback of whether a home is occupied or not, despite what the prediction was, is also very 520 

valuable and can be used to inform occupants of immediate opportunities that are now available, while they are 521 

at home (even if this is not their typical pattern of occupancy).  522 

 523 

Occupancy sensing data can be combined with other relevant information to provide a richer understanding of 524 

occupancy behaviour and allow the relevant tailoring of information. A simple example of this would be 525 

combining it with statistics concerning the occupants response to information sent at different times over an 526 

extended period, which would allow informed targeting of opportunities they are more likely to be responded to. 527 

For instance, this type of analysis might reveal that an occupant tends to respond to DR opportunities in the 528 

evenings between 6-8pm, but very rarely in the mornings. An understanding of behavioural response patterns is 529 

both beneficial to the occupant, who can take advantage of offered incentives, as well as to the party looking to 530 

reliably achieve a shift in peak demand at a specific time of day. 531 

 532 

Another example is combining occupancy behaviour with consumption behaviour at different times of day, in 533 

order to make a first assessment of how feasible it is for someone to participate in DR and shift loads, within 534 

their existing schedule. For effective DR, one important factor that should be considered is the degree to which 535 

both the occupancy and load are elastic with respect to one another. In other words, how easy it is to change 536 

occupancy in order to shift a load, or how flexible the loads are, such that when present in the building, the 537 

occupant can take advantage of DR opportunities to the greatest effect. In the following, an example of an 538 

approach combining occupancy with consumption behaviour to assess this elasticity is suggested, demonstrating 539 

the benefit of fusing occupancy information with other data. 540 

 541 

Figure 8 shows a bubble plot of the relationship between occupancy and power consumption at different times 542 

of day: on the abscissa is the mean occupancy over the specified time period and on the ordinate is the mean 543 

power consumption averaged over the same period. The occupancy prediction and power consumption for the 544 

candidate household in this study is averaged over an extended period, in this case the last two weeks of May. 545 

The size of the bubble indicates the standard deviation in each parameter. In this example the analysis has been 546 

done with a three hour time period; however this can be altered as required. The graph suggests the time of day 547 

during which a household would most likely be able to respond to a demand response event. In the case of this 548 

example, it can be seen that in the time period 6-9 am, although the likely occupancy is high, demand use is 549 

fairly low and the spread of demand is small. This might indicate a regular routine in the morning, perhaps using 550 

similar appliances on a daily basis. It is unlikely that this time of day would provide much opportunity for 551 

demand response. Compare this with the period 9-12am. The occupancy remains high, with little change in the 552 

spread, but the mean load is on average higher with a much more significant spread. This indicates that during 553 

this period of the day there is significant variation in the use of appliances and their timing. In this instance 554 

analysis of the disaggregated data from the different electrical circuits, indicated that this particular spread was 555 

caused by the occupant regularly doing the clothes washing over this time period. However, this is not done on 556 

an everyday basis, hence the spread. The high likelihood of occupancy, combined with a high spread in the load, 557 



suggests that, if informed in advance, this might be a time during which the household in this study might be 558 

able to contribute to load shifting without significantly altering their behaviour. In contrast, the time period 559 

15:00-18:00 shows a low mean and greater spread in the occupancy. This means there is much less certainty that 560 

the residents will be in the house at this time, and therefore there is a lower probability that they will be able to 561 

respond to a DR opportunity. Furthermore, it appears that when they are in the house at this time their power use 562 

is relatively low. This is unlikely to be the best time of day to request an occupant to shift a load. It is important 563 

to emphasis that this is not definitive, a large financial incentive might indeed cause an occupant to shift load 564 

into this time period, but, what is being argued is that a greater degree of demand response is most likely if it fits 565 

in with an occupants existing patterns of energy use and their daily routines. 566 

 567 

Following on from this, the possibility of demand response (PDR) could be defined as follows: 568 

                            
      ´       ́

(    )
      (5) 569 

 570 

Where    ´  is the mean power used by the occupant during a predefined period averaged over N days of data. 571 

     is the standard deviation in the power.  ́ is the mean occupancy during this period, averaged over a N 572 

days.    is the standard deviation in the occupancy.   is a social factor  that takes a value of between  0 to 1 and 573 

quantifies the willingness of a person to respond, which in this study is considered to take a value of unity, as we 574 

focus primarily on the possibility of someone participating in demand response. The intuition behind this 575 

definition is as follows: the greater the power use during a given period, the greater the potential shiftable load, 576 

and therefore the greater potential to gain from responding to a demand response signal. Furthermore, if an 577 

occupant’s everyday routine tends to have a large degree of variation in the load consumption during a specified 578 

period, this may be indicative of there being a high degree of load flexibility . On the other hand, if the same 579 

load is used regularly, at the same time, this will result in only a small standard deviation, implying that it will 580 

require a more dramatic change in occupant behaviour in order to participate. The mean occupancy gives an 581 

indication of whether the person is likely to be at home and so able to response. Somebody who is almost 582 

always at home during a given period will be more able to respond than someone who is rarely at home. Finally, 583 

the denominator takes into account that the greater the degree of variation in the occupancy, the greater the 584 

uncertainty there is at any given moment in this time period whether there will be an occupant at home and able 585 

to respond. It can be argued that this reduces the likelihood of demand response. PDR has been calculated for 586 

each of the time periods in the bubble plot (Figure 8) and the results are given in Table 3; the hypothesis is that 587 

the larger the PDR value the greater the practical possibility of DR. In this example it can be seen that the 588 

highest values occur between 9:00-12:00 in the morning and 18:00-21:00 in the evening. On the other hand 589 

between the hours of 15:00-18:00 is when a response would be least expected. These results correspond with the 590 

previous description of the bubble plot.  591 

 592 

Figure 9 illustrates how this system might work in practice. Power use is continually monitored and occupancy 593 

patterns are determined in real time. A decision is made as to whether there is likely to be a DR opportunity 594 

(PDR; see Equation 5) in the household based on historical patterns of occupancy and consumption. In this 595 

simplified flow chart a threshold is suggested as a means to make this decision, but other methods of 596 

classification should be explored. Further work also needs to be done to explore occupancy over different time 597 



domains. The PDR value suggested here also needs further validation of its usefulness in practice, which could 598 

be gauged by measuring household load response to communication of DR opportunities given for different 599 

time periods throughout the day over an extended period.  600 

 601 

 602 

3.3.2 Enhanced actuations 603 

Knowing both typical occupancy patterns and real time information on occupancy can greatly assist 604 

automatically actuated demand response by: (1) providing boundaries to the extent that actuations need to 605 

maintain users comfort (Lu et al 2010) ,when they are in the building, while allowing greater flexibility in what 606 

can be done when the user is away; (2) providing information to allow demand response to be executed 607 

strategically, preventing heat being wasted needlessly, which is important to users who are paying the energy 608 

bill; (3) providing windows of opportunities for load shifting in order to meet anticipated user demand (e.g. by 609 

ensuring that the home is warm enough when the occupant is at home, but taking advantage of knowledge of the 610 

availability of a DR opportunity to do this, or controlling when thermal storage loads are actuated); (4) allowing 611 

rapid adaption of actuations to fit with current real time occupancy (e.g. if user is not in, even if predicted to be, 612 

the current occupancy situation could be used to inform the decision of what to actuate and whether to actuate.   613 

 614 

An example of how knowledge of occupancy can be used to enhance actuated DR is in the control of a 615 

household’s central heating. Space heating  represents one of the largest loads during peak demand hours 616 

(during cold periods),  and electrically heated homes are therefore prime candidates for participation in demand 617 

response (Henze 2005). Marie-Andree et al. (2011), explored controlling the temperature in a well-insulated 618 

home (without heat storage), using the thermal envelope and mass of the building to store energy. The goal was 619 

the reduction of peak loads during winter periods by controlling a house with electrical space heating equipment 620 

without the installation of additional heat storage equipment. The study suggested a ‘pre-heat’ strategy was an 621 

effective approach; using ‘envelope thermal storage during off peak hours and setback during peak hours’. 622 

Although there is a small increase in overall energy consumption using the pre-heat approach, by reducing peak 623 

load and increasing the use of renewables, an overall reduction in GHG emissions is achievable.   624 

 625 

Occupancy sensing is essential for this type of demand response so that the home is not heated unnecessarily, 626 

which could be costly over a significant period of time, whilst making the most of available opportunities, and 627 

maintaining occupant comfort. Figure 10 gives a suggested strategy of how occupancy sensing could benefit 628 

the heating control of a home of this type and allow it to participate in demand response.  629 

 630 

The application of occupancy profiles will greatly enhance the applicability of DR initiatives. However, it does 631 

not obviate the need for detailed consideration of desired thermal comfort in determining the DR potential of 632 

space heating systems complex (Yuce et al 2014). Various studies have developed indices to quantify the level 633 

of thermal comfort (e.g. see (Hoppe 1999, Jendritzky et al. 2012)), which may be useful in development of DR 634 

control strategies. For instance, Yuce et al. (Yuce et al.. 2014) have proposed a dynamic neural-network based 635 

method to estimate the Predicted Mean Vote (PMV) from sensor data in real-time, one of the most popular 636 

thermal comfort indices, while simultaneously predicting  energy demand. Combining knowledge of thermal 637 



comfort, predicted user energy demand (to achieve a given level of thermal comfort) and occupancy, will 638 

facilitate more effective DR control decisions to be made (e.g. see decision box ‘Optimise cost versus comfort’ 639 

in Figure 10). 640 

 641 

 642 

4. Conclusions and Further work 643 

Households of different compositions, have different occupancy profiles determined by lifestyle, demographics 644 

and occupations that influence the energy demand in a building for both heating and electricity. In this study a 645 

methodology was developed that enables individual household occupancy patterns to be determined using 646 

ubiquitous household sensors. The method is an evidence based approach that is able to cope with missing data. 647 

The method makes it simple to add additional evidence from other sensors, which could provide richer 648 

information on occupant interactions within the home. Importantly, the method required only a minimum 649 

amount of prior information on the household since it is self-learning and does not require ground truth data to 650 

be collected for every house.  As a result the methodology can be more readily scaled. The analysis was applied 651 

to preliminary sensor data for a household comprising a child between  of two years old. Features were derived 652 

from sensors that monitored electrical power, dew point temperature and indoor CO2 concentration and fused 653 

using the Dempster-Shafer method of combining of evidence. A Hidden Markov method was then applied to 654 

predict time daytime occupancy profile. The predicted occupancy profile is cross-validated: (1) with ground 655 

truth information provided by the household and (2) using a comparison with a typical occupancy profile 656 

derived from the Harmonised European Time of Use Survey for a household of a similar democratic to this 657 

study. The approach, according to available knowledge of ground truth, is shown be effective, while effectively 658 

handling periods of missing sensor data. Further work is required, applying the method across a larger data set, 659 

with more ground truth data, to confirm its validity. 660 

 661 

Real time occupancy sensing in the context of DR has been discussed and its benefit both to for user-initiated 662 

and actuated load shifting has been suggested. A simple metric, the possibility of DR (PDR), was introduced as 663 

a means to assess how possible a behavioural response from a given household is. This needs to be applied 664 

across a larger dataset in order to assess its usefulness in predicting, across a community, which homes are most 665 

likely to be able to participate, and make a contribution to shifting loads to period of peak local renewable 666 

generation. This could potentially lead to a simple way through which data from smart meters could be used to 667 

assess which homes could most benefit from a dynamic tariff as an incentive to shift energy demand. Indeed, 668 

occupancy sensing has been shown to provide contextual information that potentially enables demand response 669 

programs to be more effective. The approach could be used to assist in the transition towards more active energy 670 

citizens, as envisaged by the smart grid. 671 
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Figure Captions 796 

 797 

Figure 2: The combined belief of a given set of features occurring is estimated using the Dempster-Shafer 798 

method. 799 
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 801 

Figure 3: A count of switch events occurring for each week in May. 802 

  803 



 804 

 

 
 

(a) (b) (c) 

 

 

 

(d)  (e)  

Figure 4: (a) As the size of the time window,  , increases, the distinctiveness of the resulting distributions 805 

decreases. (b-e) The probability density distributions for four different feature vectors for occupied [𝝯] 806 

versus unoccupied [𝝾] periods.  807 
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 809 

Figure 5: An example occupancy profile from the first week in May. The dotted line (- - -) gives the predicted 810 

occupancy profile. 811 
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(a) Occupancy Profile for Tuesday 26
th

 May 

2016 

(b) Occupancy Profile for Friday 29
th

 May 2015 

Figure 6: Occupancy profiles for 2 particular days in the third and fourth weeks of May. The dotted line (- - -) gives 814 

the predicted occupancy profile. 815 
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 (a) Average Occupancy 

profile from the HETUS time 

of use dataset for a household 

with a child between the ages 

of 1-3, for Belgium. 

 (b) Average occupancy profile for 

the third and fourth weeks in May 

(overall mean, calculated hourly) 

Figure 7: Average occupancy profiles for beginning and end of May 2015. 818 
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821 
Figure 8: The relationship between occupancy and power consumption throughout the day in three hour 822 

time blocks from 06:00 until midnight. The abscissa in each time block gives the mean occupancy and 823 

associated standard deviation found by averaging over the last two weeks in May. 824 
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 827 

Figure 9: The role of occupancy in encouraging users to shift loads and actively engage in demand 828 

response. 829 
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 831 

Figure 10: How occupancy sensing can contribute to actuated demand response. 832 
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Tables 835 
Table 1: The distinctiveness of different features between occupied and unoccupied states. 836 

Feature   

Dew point 0.31 

Rolling Standard deviation of dew point (over a 30 minute time window) 0.05 

First difference of dew point 0.2 

Instantaneous power lighting circuit at 5 min intervals [kW] 0.01 

Instantaneous power  socket circuit at 5 min intervals [kW] 0.12 

CO2 concentration in the home [ppm] 0.27 

Standard deviation of CO2 level (over a 30 minute time window) 0.39s 

Instantaneous mains feed electrical at 5 min intervals [kW] 0.74 

Rolling standard deviation of mains feed (over a 30 minute time window) 0.35 

First difference mains feed 0.18 

 837 
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Table 2: Information provided by the occupant on their occupancy patterns in the second two weeks of May. 839 
Information Known about Occupant Behaviour during May 

For the first week of May the House was sublet 

During the second week, the house was empty except someone occasionally coming in. 

All of the family were living in the house during the third and forth weeks in May 

The family consists of a young couple with a toddler. 

The house was empty for a period on the afternoon of Tuesday 26
th

 May. 

The house was empty for a period on the Morning of Friday 29
th

 May, leaving the house just before 9am. 

The washing machine is rarely put on timer 

 840 
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Table 3: The Possibility of Demand Response, as defined by Equation 5, for the time periods defined in 842 
the bubble plot (Figure 8). 843 
Time Period PDR 

6:00-9:00 0.02 

9:00-12:00 0.06 

12:00-15:00 0.03 

15:00-18:00 0.01 

18:00-21:00 0.05 

21:00-24:00 0.02 
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