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Abstract

Gravitational search algorithm (GSA) has been successfully applied to many scientific and engineering applications in the

past few years. In the original GSA and most of its variants, every agent learns from all the agents stored in the same

elite group, namely Kbest. This type of learning strategy is in nature a fully-informed learning strategy, in which every

agent has exactly the same global neighborhood topology structure. Obviously, the learning strategy overlooks the impact

of environmental heterogeneity on individual behavior, which easily resulting in premature convergence and high runtime

consuming. To tackle these problems, we take individual heterogeneity into account and propose a locally informed GSA

(LIGSA) in this paper. To be specific, in LIGSA, each agent learns from its unique neighborhood formed by k local

neighbors and the historically global best agent rather than from just the single Kbest elite group. Learning from the

k local neighbors promotes LIGSA fully and quickly explores the search space as well as effectively prevents premature

convergence while the guidance of global best agent can accelerate the convergence speed of LIGSA. The proposed LIGSA

has been extensively evaluated on 30 CEC2014 benchmark functions with different dimensions. Experimental results

reveal that LIGSA remarkably outperforms the compared algorithms in solution quality and convergence speed in general.

Keywords: Gravitational Search Algorithm (GSA), Environmental Heterogeneity, k-neighborhood Local Search, Locally

Informed Learning

1. Introduction1

Evolutionary algorithms and population-based optimization algorithms have been widely used for solving various2

optimization problems in the past decades [4, 5, 7–9, 11, 14, 20, 34]. Gravitational search algorithm (GSA) is one of the3

latest population-based optimization algorithms, which is inspired from the Newton’s law of gravity and motion[29]. In4

GSA, the performance of an agent is measured by its mass. The heavy masses correspond to good solutions. As Newtonian5

gravity states that “Every agent in the universe attracts every other agent with a force that is directly proportional to the6

product of their masses and inversely proportional to the square of the distance between them”, the relevant force will7

cause a global movement of each agent towards those agents with heavier masses [25, 41]. Hence, an agent can search for8

the global optimum iteratively by learning from all of the rest agents. In essential, it is a type of fully-informed learning9

strategy in nature, which makes GSA has an outstanding property: diverse search directions.10

Although the fully-informed learning strategy is simple in theory and easy to use, it easily causes two problems: 1)11

suffering from high runtime consuming [2] and 2) performing a poor tradeoff between exploration and exploitation [29]. On12

one hand, for a population with N agents, to obtain the force of an agent exerted by the rest agents, N -1 times distance13

should be calculated. Consequently, performing one iteration in the population, N(N − 1) times distances between agents14

need to be computed, which results in high runtime consuming [2]. On the other hand, the fully-informed learning15

strategy makes each agent learns from the rest agents in all the time, which means every agent exactly has the same16

global neighborhood topology structure [40]. This type of global structure overly emphasis on exploitation and offends17

against the basic rules of population-based optimization algorithm: to achieve well balance, exploration must fade out18

and exploitation must fade in by the lapse of time [29, 31].19
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To obtain compromise between exploration and exploitation, a Kbest model is employed in original GSA. The Kbest20

model stores those superior agents after fitness sorting in each iteration. The size of Kbest is a function of time, which is21

set to N at the beginning and linearly decreases with time down to one. In such a way, each agent is guided by the rest22

agents at the beginning while only by one agent at the end [29].23

Although the Kbest model plays a certain effect, some problems still remain. On one hand, the overall computational24

time of GSA is still high as the size of Kbest decreasing slowly. On the other hand, in the later stages, each agent can25

only learn from few elite agents, which easily causes quick loss of search diversity and false convergence. In this case, once26

the prematurity occurs, the population will trap into local optima because there are no remedies. Moreover, this model27

weakens the role of the global best agent due to the fact that all the elite agents have the equal status in Kbest. Especially,28

the historically global best agent is discarded once the population is updated. GSA therefore ignores the importance of29

the global best agent in guaranteeing the convergence speed and accuracy [27]. The biggest problem lies in the topology30

structure of Kbest model that is still a global neighborhood topology structure, in which every agent learns form the31

same group of elite. Due to the single topology structure, GSA overlooks the influence of environmental heterogeneity on32

individual behavior.33

In the past few years, many researches have focused on improving GSA. One active research trend is to introduce some34

new operators into the original GSA. In [32], a disruption operator was employed to further explore and exploit the search35

space. Then, Shaw et al. [33] used opposition-based learning to perform population initialization and generation jumping,36

and improved the exploitation ability of GSA in the last iterations. In [10], the Black Hole theory was utilized to prevent37

premature convergence and to improve the exploration and exploitation abilities of GSA. Another active research trend is38

to combine some state-of-art heuristic optimization algorithms with GSA. For example, Li et al. [22] integrated Differential39

Evolution (DE) into GSA to overcome the premature convergence existing in unconstrained optimization. Sun et al. [35]40

presented a hybrid GA and GSA (GAGSA) to overcome the premature convergence problem. In addition, the memory of41

particle swarm optimization (PSO) has been introduced to GSA for constructing some more promising variants of GSA.42

In the PSOGSA [25, 26] and GGSA [27], social thinking was introduced to GSA to accelerate convergence speed in the43

last iterations. In gravitational particle swarm [37] and modified GSA [13], the movement of each agent is determined by44

velocity of PSO and acceleration of GSA. In improved GSA [16, 17], both the chaotic perturbation operator and memory45

of the position of each agent were utilized. The chaotic operator can enhance its global convergence to escape from local46

optima, and the memory strategy provides a faster convergence and shares individual best fitness history to improve the47

search ability.48

Essentially, most of the GSA variants mentioned above are presented to enhance the search performance of GSA by49

designing new learning strategies or promoting the population diversity. However, most of them treat every agent equally,50

i.e., every agent learns from the same elite group stored in the Kbest. In other words, the sight range of each agent is51

exactly the same, which disregarding the local environment of agents and easily resulting in premature convergence and52

high runtime consuming.53

The aforementioned issues prompt us to explore the effect of environmental heterogeneity on individual behavior and54

proposed a GSA variant called locally informed GSA (LIGSA). The novelties of LIGSA are in two areas as follows.55

(1) A locally informed learning strategy is proposed. The environmental heterogeneity is taken into account by56

constructing unique local neighborhood for each agent. Learning from the k local neighbors promotes LIGSA fully explore57

the regions around each agent with low computational complexity as well as effectively prevent premature convergence.58

(2) Historical experience of the population is introduced to GSA. Each agent can learn from the historically global best59

agent directly. This makes the historically global best agent play a remarkable role for guiding the convergence process.60

Thereby the convergence speed of LIGSA is accelerated.61

The remainder of this paper is organized as follows. Section 2 briefly describes the framework of GSA as well as62

discusses the fully-informed learning mechanism of GSA. In Section 3, a detail introduction of the proposed LIGSA is63

given. The comparison experimental results and discussion are presented in Section 4. Finally, a conclusion is given in64

Section 5.65
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2. Overview of GSA66

2.1. GSA Framework67

In GSA, every agent xi = [xi1, xi2, ..., xiD] (i = 1, 2, ..., N) attracts each other by gravitational force in a D-dimensional68

search space according to the law of gravity [29]. The corresponding velocity of agent i is vi = [vi1, vi2, ..., viD]. Due to69

the force between two agents is directly proportional to their masses and inversely proportional to their distance, all the70

agents move towards those agents that have heavier masses [29, 30]. The mass of each agent in generation t, denoted by71

M t
i , is simply calculated by Eqs. (1) and (2) as follows:72

massti =
fitti − worstt
bestt − worstt , (1)

M t
i =

massti∑N
j=1mass

t
j

, (2)

where fitti represents the fitness value of the agent i in generation t. For a minimization problem, worstt and bestt are73

defined in Eqs. (3) and (4) as follows:74

bestt = min
j∈[j=1,2,...,N ]

fittj , (3)

worstt = max
j∈[j=1,2,...,N ]

fittj . (4)

In an optimization problem, the force acting on the agent i from agent j at a specific time t is shown in Eq. (5) as75

follows:76

F dij(t) = G (t)
M t
i (t)M t

j (t)

Rtij (t) + ε

(
xtjd (t)− xtid (t)

)
, (5)

where G(t) is the gravitational constant in generation t, M t
i and M t

j are the gravitational mass of the agents i and j, xtjd77

is the position of the agent j and xtid represent the position of the agent i in the d-th dimension, respectively. Rtij is the78

distance between the agents i and j, and ε is a small constant bigger than 0.79

To give a stochastic characteristic to GSA, the total force that acts on the agent i in the d-th dimension is set to be a80

randomly weighted sum of d-th components of the forces exerted from other agents as shown in Eq. (6) as follows:81

F di (t) =
N∑

j=1,j 6=i
randjF

d
ij(t), (6)

where randj is a uniform random variable in the interval [0, 1].82

Hence, by the law of motion, the acceleration of the agent i in generation t, and in the d-th dimension, atid, is given in83

Eq. (7) as follows:84

atid =
F tid
M t
i

. (7)

The gravitational constant, G, is initialized to G0 at the beginning and decreases with time to control the search85

accuracy. It is defined in Eq. (8) as follows:86

G(t) = G0 · e−β
t

Tmax , (8)

where β is the coefficient of decrease and Tmax is the maximum number of iterations. In the original GSA, G0 is set to87

100 and β is set to 20. This setting is adopted by all the GSA variants of this paper.88

In generation t, the velocity and the position of the agent i are updated according to Eqs. (9) and (10) as follows:89

vt+1
id = randi × vtid + atid, (9)

xt+1
id = xtid + vt+1

id , (10)

where vtid is the velocity of the agent i in the d-th dimension, randi is a uniform random variable in the interval [0, 1].90

3
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2.2. Fully-informed Learning Mechanism in GSA91

Following the Newton’s law of gravity and motion, each agent in GSA is attracted by every each other as illustrated92

in Eqs. (5)-(10). Due to force between two agents is directly proportional to their masses and inversely proportional to93

the square of the distance between them, the relevant force on a target agent will be guided move towards the heaviest94

mass [29] as shown in Fig. 1. In nature, this kind of learning strategy that all agents involved are often referred to as95

fully-informed learning strategy. This learning strategy equips GSA with diverse search directions.96
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Figure 1: Schematic diagram of agent’s movement in GSA.

However, the global neighborhood topology structure of the fully-informed learning strategy causes quick loss of the97

population diversity and high runtime consuming [2, 18]. As a result, the exploration ability of GSA decreases rapidly98

by the lapse of iterations and hence GSA is easily falling into local optima. One way to perform a good balance between99

exploration and exploitation is to reduce the number of agents with lapse of time in Eq. (6). Therefore, a Kbest model is100

introduced and Eq. (6) was modified to Eq. (11) as follows:101

F di (t) =

N∑

j∈Kbest,j 6=i
randjF

d
ij(t), (11)

where Kbest is the set of first K agents with better fitness value and bigger mass and the size of Kbest is gradually decreased102

with the lapse of iterations.103

As the size of Kbest decreased slowly, the overall computational time of GSA is still high. Moreover, in the final104

iterations, the algorithm convergence to the current optimum too fast and performs poor local search ability. In addition,105

the guidance of the current global best agent is unremarkable because the current agent is attracted by all its neighbors.106

If one agent is significantly nearer to the local optimum agent than global optimum agent as shown in Fig. 2, the force107

exerted by the global optimum agent will be extremely small while the force exerted by the local optimum is considerably108

large. In this case, the search direction of M1 will tend to the local optimum M2, and premature convergence is easy to109

happen.110
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Figure 2: Schematic diagram of falling into a local optimum.

Most importantly, the Kbest model is still a type of global topology based fully-informed method. In this model, all111

the agents exactly have the same global neighborhood topology structure and learn from the same group of neighbors112

4
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(elite) stored in Kbest. Therefore, the impact of environmental heterogeneity on individual behavior is overlooked and113

thus resulting in premature convergence and high runtime consuming. To improve the efficiency of GSA, we take the114

environmental heterogeneity of each individual into consideration and propose a new local search based GSA variant,115

namely LIGSA.116

3. Proposed LIGSA117

This section describes the locally informed gravitational search algorithm (LIGSA) which is designed based on the118

environmental heterogeneity of agents. First of all, the k-neighborhood topology and social thinking of population are119

integrated to build a locally informed learning strategy as described in Section 3.1. Then, the technical process of LIGSA120

is given point-by-point in Section 3.2. The LIGSA first creates the population (candidate solutions) with in preassigned121

search space using a random initialization strategy. Then the fitness value of each agent is evaluated. Based on the fitness122

values, the global best agent can be determined. Afterward, the mass of each agent and gravitational constant is updated123

according to the current iteration and fitness values. And then, we utilized the proposed locally informed learning strategy124

to update the velocity and position of each agent. Subsequently, three schemes are employed to eliminate duplicate agents125

and guarantee the boundary constraints. Finally, the best solution will be outputted when the optimization phrase126

encounter the termination conditions.127

3.1. Locally Informed Learning Strategy128

In this section, the locally informed learning strategy is introduced. In the new learning strategy, each agent is guided129

by 1) the resultant force exerted by all the agents in its local neighborhood and 2) the historically global best agent,130

denoted by gbest = [g1, g2, ..., gD]. The velocity updating rule is thus very different from the Eq. (9) of GSA, as shown131

in Eq. (12):132

vt+1
id = randi × vtid +

∑

j∈Ki
local

randjG(t)
M t
j

Rtij + ε
(xtjd − xtid) + (gtd − xtid), (12)

where Ki
local is a new presented k-neighborhood (wheel topology), called locally informed k-neighborhood as shown in133

Fig. 3. In contrast with traditional k-neighborhood topology in which only the best agent is chosen to perform guidance134

[24], in Ki
local, all the agents are associate with the current agent i. Thus, the agent i can fully learn from its k neighbors135

through the gravitational force, which preserving the diverse search directions.136

Nx 1x 2x
2−ix

1−ix

ix

1+ix

2+ix

ix

1−ix

2−ix

1+ix
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Figure 3: The locally informed k-neighborhood (k=4).

Obviously, in LIGSA, each agent has a unique neighborhood Ki
local and thus the environmental heterogeneity of each137

individual is considered. By contrast, in original GSA, all the agents learn from the same elite group, Kbest, which138

overlook the impact of environmental heterogeneity on individual behavior. Moreover, the Kbest model is a type of global139

neighborhood topology while the Ki
local is a local neighborhood topology. The local neighborhood topology has been140

proven more skilled in complicated problems than the global topology [6]. Benefit from these properties, LIGSA can141

perform preeminent local search ability as well as effectively reduce the computational complexity.142

5
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In the locally informed k-neighborhood, the size of neighborhood may influence the exploration and exploitation143

abilities of LIGSA. The existing researches also indicate that a smaller neighborhood may be more suitable for complex144

problems while a larger may perform better on simple problems [38]. However, too small neighborhood will leads to145

poor diversity of search direction. This may weaken the exploration ability of GSA. On the other hand, if the number146

of neighbors is too large, the computational complexity will be high. An appropriate size of neighborhood is about147

15 percent of the population size as suggested in many applications [12]. Hence, to make the search ability of GSA148

more flexible, especially for solving complex problems, as well as to reduce the computational complexity, k = 2 ∗149

b15% ∗ N/2c is chosen in this paper. It is worth noting that the k-neighborhood, Ki
local of the agent i is defined as150

Ki
local = {xi−k/2,xi−k/2+1, ...,xi−1,xi+1, ...,xi+k/2−1,xi+k/2} according to its index. Fig. 3 is a 4-neighborhood example151

in which Ki
local = {xi−2,xi−1,xi+1,xi+2}.152

The third component (gtd − xtid) of Eq. (12) shows the role of the historically global best agent. With this mechanism,153

the previous search information of the population can be utilized. In other words, the role of the historically global best154

agent is remarkable. Different from the local neighborhood topology of the second component, the guidance of gbest is155

exhibited as a global neighborhood topology. According to [2, 3], the global neighborhood topology based algorithms show156

a better performance than local search based algorithms in unimodal problems while the local search based algorithms157

provide good results in multimodal. Hence, both local and global topologies are incorporated in LIGSA to achieve158

preeminent optimization. Moreover, the historically global best agent guides the agent i based on their position difference,159

in which the step length is changed automatically associated with the convergence stages. This will effectively accelerate160

the convergence speed of LIGSA.161

In addition, population-based algorithms require the emphasis of exploration in the first iterations and exploitation in162

the final iterations. Since there is no clear border between the exploration and exploitation phases, the adaptive method is163

the best option for allowing a gradual transition between these two phases [27]. Therefore, two time-varying acceleration164

coefficients are introduced to Eq. (12) in this paper. The velocity and position update equations in LIGSA are thus165

designed by Eqs. (13) and (14) as follows:166

vt+1
id = randi × vtid + c1 ·

∑

j∈Ki
local

randjG(t)
M t
j

Rtij + ε
(xtjd − xtid) + c2 · (gtd − xtid), (13)

xt+1
id = xtid + vt+1

id , (14)

where c1 and c2 are adaptively adjusted according to the iteration. In order to fully explore the search space and accelerate167

convergence in the last iterations, c1 and c2 are defined in Eqs. (15) and (16) as follows:168

c1 = 1− t3/T 3
max, (15)

c2 = t3/T 3
max, (16)

where t is the current iteration time and Tmax is the maximum iterations. A diagrammatic sketch of the time-varying169

acceleration coefficients scheme is shown in Fig. 4.170
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Figure 4: Curves of the two time-varying acceleration coefficients.
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Apparently, these acceleration coefficients are changed automatically with the convergence stage. In the early stages,171

the agents explore the search space more globally for c1 is greater than c2. While in the later stages, agents tend to172

convergence toward the global best agent quickly for c2 is greater than c1.173

3.2. Technical Process of LIGSA174

The detailed steps of LIGSA are described in the following subsections.175

3.2.1. Population initialization176

Population initialization, including position and velocity initialization of each agent, is the first and the primary task177

in any evolutionary algorithm [36]. In LIGSA, to spread the agents as extensive as possible in the search space, the initial178

positions are set randomly in the range of the search space as shown in Eq. (17):179

xid = rand ∗ (ubd − lbd), d ∈ [1, 2, ..., D], i ∈ [1, 2, ..., N ], (17)

where N is the size of the population, D is the dimension of the search space, ubd is the upper bound and lbd is the lower180

bound of the search space in the d-th dimension. The corresponding initial velocity of each agent vi = [vi1, vi2, ..., viD] is181

set to zero in this study.182

3.2.2. Evaluate each agent in the population183

For a single objective optimization problem, the fitness value of each agent is calculated on the basis of its function184

equation. Simultaneously, the function values of all the constraints for each agent are calculated if the user aimed to185

solving constraint problems.186

3.2.3. Update global best agent187

For a minimum problem, the global best agent gbest is updated according to its fitness values. That is, if fitness value188

of the best agent in the current population is not bigger than gbest, then its position is replaced; otherwise, the gbest189

in memory is kept. Apparently, this kind of elite lets LIGSA has the global thinking characteristic. Thus, the previous190

experience of the population is kept and utilized to guide the search of population agents.191

3.2.4. Update agents’ velocities and positions192

In this phase, we need to calculate the gravitational constant and masses of agents first. The update of gravitational193

constant follows the Eq. (8) and G0 is set to 100 in the beginning. The calculation of agent mass follows the methods194

used in GSA as shown in Eqs. (1)-(4). Moreover, according to the description in Section 3.1, the velocity and position195

update in LIGSA is carried on by Eqs. (13) and (14).196

3.2.5. Duplicates removal and boundary constraint operators197

After the population update is completed, the positions of some agents may be exactly the same as some other agents.198

Consequently, the diversity of the population will decrease. This yields some negative effects to the convergence accuracy.199

To eliminate the duplicate agents, the randomly initialization method shown in Eq. (17) is used to update their positions.200

If the agents i and j are duplicates, either of them is selected, and then modify its position follows Eq. (17) while its201

velocity is kept.202

In addition, for all of the population-based optimization algorithms, some agents may fly out of the search space and203

make the population misses the optimal solution in the search space [12, 15]. To restrict agents in the search space, we204

randomly relocate those fly-out agents within the search space like many researches [12, 28].205

The velocity is an important factor causing agents to fly out of the search spacey. In LIGSA, we introduce an operator206

to control the velocity bounds of the agents by Eq. (18) [19, 28] as follows:207

vmaxd = (ubd − lbd)/Nlimit, vmind = vmaxd, (18)

where Nlimit can be any positive integer.208

7
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In LIGSA, after the position update if the velocity of an agent exceeds the boundary constraints, its velocity must be209

set to the corresponding critical values. If we take a high value of Nlimit, the velocity bounds will be small. Consequently,210

for any high velocity the agents will be randomly relocated and lose its normal momentum and path [28]. So we have211

taken a small value of Nlimit, here Nlimit=2 to have safe limits.212

3.2.6. Termination conditions213

The optimization process stops when the termination conditions are met. The conditions usually set by user according214

to demands. Normally, maximum number of iterations or maximum number of fitness evaluations (FESmax) can be used215

as the termination criterion. In this study, FESmax is used as the termination condition for the proposed LIGSA and216

the other 6 comparison algorithms. If the algorithm reaches the termination condition, the optimization process stops,217

and the final best solution is obtained. Otherwise, the optimization process goes to agent evaluation in Section 3.2.2 and218

executes iteration along with Section 3.2.3 to Section 3.2.5.219

The overall flowchart of the proposed LIGSA is shown in Fig. 5.220

Figure 5: Flowchart of LIGSA.

4. Experimental and Discussion221

4.1. Experimental Setup and Results222

For the evaluation of LIGSA, a comprehensive experimental evaluation and comparison with the original GSA [29],223

four competitive variants of GSA (GGSA [27], PSOGSA [25], GAGSA [35], MGSA [13]), and a local PSO (LPSO) is224
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provided based on 30 benchmark functions of the CEC 2014. The detailed description of these functions can be found in225

[23]. Among the compared algorithms, GAGSA is a recently published GSA variant, GGSA and PSOGSA integrated the226

global best agent in updating velocity while MGSA used both the personal best and global best in the iteration process.227

During the experiments, to perform fair comparisons, for all of the 7 algorithms, the N and FESmax were set to 60228

and 60 000, respectively. Meanwhile, the G0, β, and k in all the 5 compared GSA variants were set to 100, 20 and [N to 1],229

respectively. For the four GSA variants, all the other parameters have been set as suggested by authors. For LIGSA, the230

acceleration coefficients were set to c1 = 1− t2/T 3
max and c2 = t3/T 3

max the number of neighbors was set to 2∗ b15%∗N/2c231

as discussed in Section 3.1. For LPSO, the size of local neighborhood was set to 4, ω was decreased linearly from 0.9 to232

0.4, and c1 & c2 were defined as FL-GSA. The parameter settings of the 7 algorithms are provided in Table 1.233

Table 1: Parameter settings in this paper.

LIGSA GSA GAGSA PSOGSA GGSA MGSA LPSO
FESmax 60 000 60 000 60 000 60 000 60 000 60 000 60 000
N 60 60 60 60 60 60 60
G0 100 100 100 100 100 100 100
β 20 20 20 20 20 20 20
ω – – – – – – [0.9 to 0.4]
c1 1− t3/T 3

max – – 0.5 2− 2t3/T 3
max 0.5 1− t3/T 3

max

c2 t3/T 3
max – – 1.5 2t3/T 3

max 0.5 t3/T 3
max

k 2 ∗ b15% ∗N/2c [Nto 2] [N to 2] [N to 2] [N to 2] [N to 2] 2 ∗ b15% ∗N/2c

234

To fully evaluate the LIGSA, comparison between LIGSA and the other 6 algorithms is performed based on 30 and 50235

dimensional versions of the CEC2014 benchmark functions (D=30 and D=50). The average (Mean), standard deviation236

(Dev), and best (Best) of the optimization error (best-optimum) of 30 independent runs of each algorithm were presented237

in Tables 2-6. For each performance metric, the best obtained results were shown in boldface.238

In addition, to further compare and statistically analyze the obtained optimization results, two-sample t-tests were also239

conducted in this section. Two-sample t-test is a hypothesis testing method for determining the statistical significance240

of the difference between two independent samples of an equal sample size [39]. In this paper, the significance level is241

α=0.05 and the free degree is 29. Therefore, if in any test a t-value that is smaller than or equal to critical value ‘-2.045’ is242

produced, the alternative hypothesis is considers a significant difference of both approaches. Meanwhile, the corresponding243

t-value was depicted in boldface. For an easy observation, the summary of the t-test are reported in Table 7. In Table 7,244

“better” indicates LIGSA outperforms the compared algorithm significantly while “same” suggests that the superiority245

of LIGSA is not significantly. The word “worse” implies that LIGSA produced significantly worse results on the tested246

functions.247

As illustrated in Table 2, for the unimodal functions (F1-F3), LIGSA outperformed all the 6 compared algorithms248

on all the three performance metrics when the dimension is high D=50. For low dimension (D=30) unimodal problems,249

although the average performance of LIGSA is in the second place and poor than GGSA on F2, it yielded the best250

optimization error. Moreover, the superiority of LIGSA is significantly on almost all the cases as stated by the t-test value251

in Table 7.252

The next 13 function are multimodal functions (F4-F16). They are shifted and rotated functions with numbers of local253

optima, in which the global optimum is more difficult to locate. Form the results presented in Tables 2-4 we can conclude254

that although the mean and best errors of LIGSA are worse than GSA and GGSA on F5, LIGSA achieved superior results255

on most other functions. To be specific, for the low dimension (D=30), LIGSA produced the highest mean accuracy on256

9 out of the 13 multimodal functions, including F4, F6, F8-F10, F12-F14, and F16. Similarly, for the high dimension257

(D=50), LIGSA also performed best optimization results on 9 out of the 13 multimodal functions, including F6-F9, F11-258

F12, F14-F16. Furthermore, in terms of t-test, LIGSA significantly outperformed the other comparison algorithms in all259

dimensions on F5-F6, F8-F9, F12, F14 and F16.260
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TTable 2: Optimization errors of the CEC2014 benchmark functions (F1-F6) with D=30 & D=50.

Algorithm
function F1 F2 F3 F4 F5 F6

D 30 50 30 50 30 50 30 50 30 50 30 50

LIGSA

Mean 4.49E+05 4.66E+06 1.15E+06 1.72E+04 1.42E-01 7.09E+03 6.09E+01 9.82E+01 2.08E+01 2.10E+01 3.59E+00 1.33E+01

Best 2.13E+05 3.10E+06 1.26E+02 8.53E+03 5.45E-02 2.82E+03 3.49E+00 9.36E+01 2.07E+01 2.10E+01 1.00E+00 1.05E+01

Dev 1.97E+05 1.64E+06 2.52E+06 8.18E+03 1.36E-01 4.73E+03 3.25E+01 3.11E+00 6.02E-02 4.14E-02 1.91E+00 2.74E+00

t-test – – – – – – – – – – –

GSA

Mean 1.13E+08 3.42E+08 9.81E+08 3.01E+10 7.57E+04 1.42E+05 2.89E+02 4.02E+03 2.00E+01 2.00E+01 2.75E+01 5.58E+01

Best 8.94E+07 2.52E+08 6.65E+08 2.49E+10 7.17E+04 1.24E+05 2.57E+02 3.48E+03 2.00E+01 2.00E+01 2.36E+01 5.13E+01

Dev 2.12E+07 8.42E+07 3.07E+08 3.82E+09 3.57E+03 1.41E+04 2.81E+01 4.57E+02 1.45E-04 1.73E-04 2.86E+00 3.09E+00

t-test -11.939 -8.95914 -7.136 -17.6147 -47.438 -20.243 -11.856 -19.205 29.366 53.981 -15.565 -22.979

GAGSA

Mean 1.78E+09 7.12E+09 8.07E+10 1.65E+11 8.51E+04 4.62E+05 1.60E+04 5.40E+04 2.11E+01 2.12E+01 4.52E+01 7.91E+01

Best 1.41E+09 5.23E+09 6.48E+10 1.42E+11 8.39E+04 1.86E+05 1.43E+04 4.69E+04 2.10E+01 2.12E+01 4.39E+01 7.49E+01

Dev 2.41E+08 1.69E+09 1.03E+10 1.31E+10 9.37E+02 3.29E+05 1.01E+03 4.81E+03 4.88E-02 3.40E-02 1.06E+00 2.68E+00

t-test -16.571 -9.4228 -17.509 -28.102 -203.168 -3.090 -35.146 -25.032 -8.688 -9.427 -42.577 -38.345

PSOGSA

Mean 2.16E+08 3.96E+08 1.41E+10 5.05E+10 1.03E+05 2.52E+05 9.44E+02 8.41E+03 2.01E+01 2.04E+01 2.28E+01 5.31E+01

Best 5.11E+07 1.18E+08 1.45E+09 2.49E+10 3.96E+04 1.36E+05 2.46E+02 4.48E+03 2.00E+01 2.00E+01 1.96E+01 4.86E+01

Dev 1.59E+08 2.23E+08 1.76E+10 1.81E+10 7.00E+04 8.50E+04 8.52E+02 5.18E+03 1.42E-01 2.32E-01 2.03E+00 4.30E+00

t-test -3.0419 -3.93596 -1.787 -6.22694 -3.281 -6.429 -2.317 -3.583 10.276 6.095 -15.388 -17.431

GGSA

Mean 5.09E+07 4.94E+07 4.46E+03 6.95E+08 6.39E+04 1.25E+05 1.34E+02 4.32E+02 2.00E+01 2.00E+01 1.45E+01 4.15E+01

Best 4.28E+07 3.37E+07 1.90E+03 1.88E+08 5.24E+04 1.07E+05 9.04E+01 3.86E+02 2.00E+01 2.00E+01 1.23E+01 3.67E+01

Dev 7.40E+06 1.07E+07 2.38E+03 7.59E+08 7.72E+03 1.24E+04 3.26E+01 4.23E+01 2.06E-04 1.20E-04 2.10E+00 3.19E+00

t-test -15.246 -9.229 1.016 -2.04793 -18.490 -19.931 -3.536 -17.638 29.371 53.981 -8.611 -15.001

MGSA

Mean 1.55E+07 2.45E+07 6.71E+03 2.42E+05 9.15E+04 1.54E+05 1.04E+02 3.18E+02 2.05E+01 2.10E+01 2.05E+01 4.00E+01

Best 8.48E+06 9.80E+06 6.90E+02 1.10E+05 3.33E+04 9.93E+04 7.02E+01 2.28E+02 2.00E+01 2.09E+01 1.74E+01 3.49E+01

Dev 8.17E+06 1.07E+07 6.15E+03 1.29E+05 4.56E+04 5.19E+04 3.19E+01 8.26E+01 4.39E-01 6.71E-02 2.27E+00 3.16E+00

t-test -4.131 -4.104 1.014 -3.8775 -10.273 -6.297 -2.095 -5.938 1.316 -0.173 -12.748 -14.252

LPSO

Mean 1.61E+08 6.85E+08 4.00E+10 9.23E+10 9.15E+04 2.36E+05 2.07E+03 9.63E+03 2.09E+01 2.10E+01 3.62E+01 6.62E+01

Best 2.63E+07 2.68E+08 2.42E+10 7.14E+10 3.33E+04 1.51E+05 1.70E+03 3.83E+03 2.07E+01 2.09E+01 2.62E+01 5.62E+01

Dev 1.36E+08 2.44E+08 1.41E+10 1.28E+10 4.56E+04 9.24E+04 4.46E+02 4.21E+03 9.01E-02 6.80E-02 5.76E+00 6.05E+00

t-test -2.642 -6.240 -6.355 -16.1576 -4.486 -5.532 -10.064 -5.063 -1.315 0.306 -12.004 -17.787
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Table 3: Optimization errors of the CEC2014 benchmark functions (F7-F12) with D=30 & D=50.

Algorithm
function F7 F8 F9 F10 F11 F12

D 30 50 30 50 30 50 30 50 30 50 30 50

LIGSA

Mean 1.25E+00 3.56E-01 4.56E+01 1.73E+02 5.61E+01 2.83E+02 1.80E+03 6.70E+03 5.75E+03 6.55E+03 7.63E-03 6.07E-03

Best 3.07E-07 1.98E-01 4.05E+01 1.62E+02 3.01E+01 2.55E+02 1.48E+03 6.57E+03 5.54E+03 5.96E+03 4.63E-03 2.57E-03

Dev 2.17E+00 1.12E-01 3.18E+00 9.18E+00 2.76E+01 2.15E+01 2.57E+02 1.04E+02 2.02E+02 5.96E+02 3.00E-03 2.59E-03

t-test – – – – – – – – – – – –
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TGSA

Mean 1.00E+01 3.20E+02 1.44E+02 2.68E+02 1.64E+02 3.50E+02 3.73E+03 7.71E+03 4.68E+03 8.12E+03 1.47E+00 2.21E+00

Best 2.46E+00 2.83E+02 1.37E+02 2.60E+02 1.53E+02 3.11E+02 3.22E+03 7.43E+03 3.94E+03 6.84E+03 1.32E+00 1.84E+00

Dev 7.64E+00 3.44E+01 6.87E+00 8.06E+00 1.25E+01 3.53E+01 3.57E+02 1.73E+02 5.56E+02 7.48E+02 1.66E-01 2.62E-01

t-test -2.463 -20.793 -29.194 -17.374 -7.968 -3.634 -9.818 -11.135 4.069 -3.679 -19.700 -18.739

GAGSA

Mean 7.60E+02 1.58E+03 3.70E+02 7.28E+02 3.46E+02 7.86E+02 8.29E+03 1.49E+04 8.73E+03 1.54E+04 3.43E+00 4.08E+00

Best 6.39E+02 1.56E+03 3.62E+02 7.21E+02 3.30E+02 7.57E+02 7.96E+03 1.40E+04 8.24E+03 1.49E+04 2.71E+00 3.43E+00

Dev 8.10E+01 1.18E+01 5.26E+00 8.23E+00 1.45E+01 2.49E+01 2.50E+02 6.60E+02 3.37E+02 2.91E+02 5.51E-01 3.83E-01

t-test -20.937 -300.263 -117.899 -100.780 -20.816 -34.216 -40.473 -27.563 -16.953 -3.283 -13.890 -23.752

PSOGSA

Mean 9.09E+01 2.76E+02 1.14E+02 3.36E+02 2.55E+02 5.32E+02 4.33E+03 8.09E+03 4.56E+03 8.00E+03 1.43E-01 3.08E-01

Best 3.54E+01 1.40E+02 1.00E+02 2.43E+02 2.18E+02 4.47E+02 3.33E+03 7.32E+03 3.78E+03 7.12E+03 7.45E-02 2.15E-01

Dev 5.43E+01 7.68E+01 1.40E+01 6.01E+01 2.93E+01 8.78E+01 5.97E+02 8.59E+02 6.61E+02 7.90E+02 6.37E-02 1.15E-01

t-test -3.689 -8.035 -8.693 -6.003 -11.070 -6.164 -8.686 -3.573 3.842 -29.713 -4.742 -5.684

GGSA

Mean 1.59E-13 5.69E+00 1.21E+02 2.52E+02 1.28E+02 2.91E+02 3.26E+03 6.72E+03 3.95E+03 7.43E+03 8.10E-03 1.37E-02

Best 1.14E-13 2.35E+00 1.14E+02 2.36E+02 1.09E+02 2.45E+02 3.01E+03 5.59E+03 3.55E+03 6.23E+03 1.01E-03 4.36E-03

Dev 6.23E-14 3.47E+00 5.39E+00 1.49E+01 1.32E+01 3.42E+01 2.35E+02 6.55E+02 3.79E+02 7.13E+02 5.19E-03 6.52E-03

t-test 1.287 -3.435 -26.878 -10.052 -5.270 -0.434 -9.358 -0.057 9.372 -2.131 -0.175 -2.421

MGSA

Mean 2.46E-03 9.22E-01 1.14E+02 2.67E+02 1.29E+02 2.98E+02 4.13E+03 6.59E+03 4.06E+03 1.19E+04 7.71E-01 1.45E+00

Best 0.00E+00 1.28E-02 1.00E+02 2.27E+02 9.35E+01 2.88E+02 2.84E+03 5.48E+03 3.39E+03 1.12E+04 6.21E-02 1.19E-01

Dev 5.51E-03 5.18E-01 1.40E+01 2.34E+01 2.32E+01 1.22E+01 1.04E+03 7.67E+02 5.17E+02 4.62E+02 1.27E+00 1.54E+00

t-test 1.284 -2.386 -10.679 -8.351 -4.504 -1.360 -4.875 0.320 6.834 -15.827 -1.341 -2.083

LPSO

Mean 1.91E+02 8.09E+02 1.98E+02 3.73E+02 1.84E+02 5.09E+02 4.71E+03 9.27E+03 6.53E+03 1.33E+04 2.06E+00 2.14E+00

Best 1.35E+02 6.52E+02 1.76E+02 3.19E+02 1.33E+02 4.68E+02 4.02E+03 8.01E+03 5.52E+03 1.03E+04 1.12E+00 1.10E+00

Dev 4.60E+01 1.45E+02 1.63E+01 3.74E+01 5.27E+01 4.62E+01 5.05E+02 7.88E+02 1.09E+03 1.94E+03 8.10E-01 6.37E-01

t-test -9.218 -12.4644 -20.461 -11.6315 -4.803 -9.926 -11.464 -7.212 -1.561 -7.405 -5.677 -7.471
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Table 4: Optimization errors of the CEC2014 benchmark functions (F13-F18) with D=30 & D=50.

Algorithm
function F13 F14 F15 F16 F17 F18

D 30 50 30 50 30 50 30 50 30 50 30 50

LIGSA

Mean 2.34E-01 4.73E-01 2.33E-01 2.67E-01 1.34E+01 3.57E+01 1.24E+01 2.23E+01 1.68E+03 1.34E+05 6.54E+01 1.91E+03

Best 1.75E-01 4.16E-01 1.86E-01 2.49E-01 9.74E+00 3.40E+01 1.09E+01 2.17E+01 1.47E+03 2.77E+04 5.85E+01 4.45E+02

Dev 3.53E-02 4.69E-02 3.60E-02 1.45E-02 2.19E+00 1.43E+00 9.54E-01 4.54E-01 1.93E+02 1.03E+05 4.97E+00 9.39E+02

t-test – – – – – – – – – – – –

GSA

Mean 3.66E-01 3.65E+00 1.58E+00 6.70E+01 6.05E+01 1.98E+04 1.35E+01 2.26E+01 4.96E+06 4.14E+07 6.21E+02 1.04E+07

Best 3.03E-01 3.48E+00 2.18E-01 5.71E+01 3.30E+01 1.46E+04 1.29E+01 2.23E+01 3.79E+06 7.78E+06 2.59E+02 3.85E+03

Dev 4.08E-02 1.17E-01 3.00E+00 1.02E+01 2.05E+01 4.20E+03 3.87E-01 3.29E-01 1.19E+06 2.41E+07 5.12E+02 2.33E+07

t-test -5.466 -56.369 -1.000 -14.632 -5.101 -10.544 -2.284 -1.104 -9.356 -3.834 -2.424 -1.000

GAGSA

Mean 9.16E+00 8.91E+00 3.25E+02 4.04E+02 4.45E+05 7.65E+06 1.39E+01 2.32E+01 1.77E+08 7.93E+08 6.50E+09 2.22E+10

Best 8.76E+00 8.58E+00 2.97E+02 3.80E+02 3.94E+05 6.35E+06 1.37E+01 2.31E+01 7.08E+07 6.14E+08 4.91E+09 2.00E+10

Dev 3.60E-01 1.84E-01 1.66E+01 1.54E+01 3.52E+04 8.19E+05 1.90E-01 7.31E-02 8.51E+07 1.69E+08 1.49E+09 3.31E+09
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Tt-test -55.230 -99.101 -43.627 -58.622 -28.321 -20.897 -3.441 -4.010 -4.653 -10.470 -9.781 -14.988

PSOGSA

Mean 2.37E+00 3.82E+00 6.34E+01 7.59E+01 1.14E+05 2.53E+06 1.31E+01 2.24E+01 6.40E+06 2.58E+07 8.80E+03 1.81E+09

Best 6.42E-01 2.16E+00 3.19E+00 3.73E+01 5.27E+01 1.15E+04 1.25E+01 2.22E+01 9.77E+04 4.86E+06 4.92E+02 4.42E+03

Dev 1.38E+00 1.03E+00 6.59E+01 3.26E+01 2.07E+05 4.41E+06 4.91E-01 1.42E-01 1.00E+07 4.23E+07 1.00E+04 2.93E+09

t-test -3.455 -7.263 -2.145 -5.187 -1.235 -1.281 -1.368 -0.102 -1.429 -1.357 -1.948 -1.380

GGSA

Mean 2.73E-01 4.48E-01 2.46E-01 2.76E-01 1.50E+01 9.40E+02 1.33E+01 2.27E+01 1.94E+06 4.44E+06 3.96E+02 2.75E+03

Best 2.36E-01 4.02E-01 2.27E-01 2.55E-01 1.05E+01 5.71E+02 1.29E+01 2.22E+01 1.52E+06 2.90E+06 1.59E+02 9.98E+02

Dev 2.96E-02 4.41E-02 1.77E-02 2.11E-02 5.57E+00 2.37E+02 2.21E-01 4.16E-01 4.83E+05 1.07E+06 1.89E+02 1.48E+03

t-test -1.888 0.870 -0.732 -0.758 -0.597 -8.549 -2.019 -1.383 -8.960 -8.949 -3.909 -0.799

MGSA

Mean 4.22E-01 5.35E-01 2.54E-01 2.18E+00 7.18E+00 1.13E+02 1.25E+01 2.28E+01 1.11E+06 2.05E+06 1.63E+03 1.95E+03

Best 3.13E-01 4.00E-01 2.24E-01 2.37E-01 4.47E+00 7.80E+01 1.23E+01 2.20E+01 4.47E+05 1.55E+06 3.45E+02 1.03E+03

Dev 9.66E-02 1.45E-01 4.09E-02 4.19E+00 1.92E+00 2.54E+01 1.90E-01 5.09E-01 8.88E+05 4.89E+05 1.43E+03 1.82E+03

t-test -4.079 -0.905 -0.870 -1.0219 4.753 -6.829 -2.284 -1.505 -2.794 -8.576 -2.444 -0.037

LPSO

Mean 4.66E+00 5.95E+00 7.84E+01 2.23E+02 2.93E+04 1.33E+06 1.33E+01 2.26E+01 1.25E+07 4.05E+07 1.26E+09 5.39E+09

Best 4.26E+00 5.54E+00 3.42E+01 1.79E+02 4.21E+03 6.00E+04 1.30E+01 2.21E+01 2.44E+05 1.99E+07 5.03E+08 3.01E+09

Dev 3.03E-01 4.13E-01 2.96E+01 4.37E+01 3.09E+04 1.94E+06 2.67E-01 4.74E-01 2.35E+07 2.28E+07 5.23E+08 1.84E+09

t-test -32.463 -29.434 -5.914 -11.394 -2.126 -1.542 -2.093 -1.029 -1.187 -3.960 -5.395 -6.565
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Table 5: Optimization errors of the CEC2014 benchmark functions (F19-F24) with D=30 & D=50.

Algorithm
function F19 F20 F21 F22 F23 F24
D 30 50 30 50 30 50 30 50 30 50 30 50

LIGSA

Mean 6.94E+00 2.15E+01 4.30E+01 1.21E+03 8.93E+02 1.44E+04 1.40E+02 1.32E+03 2.00E+02 2.00E+02 2.00E+02 2.00E+02
Best 5.76E+00 1.56E+01 3.92E+01 7.54E+02 5.54E+02 5.84E+03 4.67E+01 1.09E+03 2.00E+02 2.00E+02 2.00E+02 2.00E+02
Dev 1.19E+00 1.07E+01 3.05E+00 5.49E+02 1.93E+02 5.76E+03 1.15E+02 1.65E+02 7.99E-10 8.39E-10 8.70E-07 8.40E-07
t-test – – – – – – – – – – – –

GSA

Mean 6.78E+01 2.14E+02 1.58E+05 8.35E+04 1.63E+06 4.65E+06 1.06E+03 2.16E+03 2.25E+02 2.00E+02 2.00E+02 2.41E+02
Best 3.01E+01 1.38E+02 1.18E+05 6.31E+04 4.88E+05 3.21E+06 4.42E+02 1.80E+03 2.00E+02 2.00E+02 2.00E+02 2.31E+02
Dev 3.17E+01 7.29E+01 3.01E+04 1.90E+04 7.64E+05 1.88E+06 5.24E+02 2.39E+02 5.67E+01 1.28E-08 6.36E-01 6.26E+00
t-test -4.292 -5.837 -11.749 -9.687 -4.757 -5.501 -3.821 -6.466 -1.000 -30.382 -1.531 -14.467

GAGSA

Mean 6.19E+02 4.21E+03 7.76E+06 1.82E+05 1.36E+08 2.69E+08 5.62E+03 5.27E+05 5.93E+02 1.12E+03 2.39E+02 3.33E+02
Best 5.26E+02 3.12E+03 9.36E+05 1.70E+05 5.35E+07 1.05E+08 2.76E+03 1.95E+05 3.15E+02 1.07E+03 2.28E+02 3.20E+02
Dev 5.41E+01 7.37E+02 1.34E+07 8.51E+03 8.34E+07 1.10E+08 4.27E+03 4.14E+05 1.79E+02 4.86E+01 7.33E+00 1.27E+01
t-test -25.259 -12.696 -1.295 -47.409 -3.635 -5.475 -2.870 -2.841 -4.917 -42.126 -11.890 -23.480

PSOGSA

Mean 1.37E+02 2.26E+02 4.36E+04 1.04E+05 1.96E+06 2.80E+06 1.07E+03 1.93E+03 3.89E+02 7.29E+02 2.79E+02 3.95E+02
Best 9.69E+01 1.46E+02 8.08E+03 8.15E+04 5.68E+05 4.17E+05 6.78E+02 1.29E+03 3.42E+02 4.36E+02 2.51E+02 3.67E+02
Dev 5.39E+01 7.64E+01 5.03E+04 1.82E+04 2.04E+06 2.34E+06 3.13E+02 7.04E+02 3.58E+01 2.77E+02 2.86E+01 2.20E+01
t-test -5.382 -5.943 -1.934 -12.571 -2.146 -2.666 -6.218 -1.880 -11.804 -4.263 -6.186 -19.863

GGSA

Mean 3.97E+01 5.34E+01 3.84E+04 4.59E+04 2.40E+05 2.92E+06 9.89E+02 2.12E+03 3.21E+02 3.30E+02 2.00E+02 2.45E+02
Best 1.71E+01 3.68E+01 3.29E+04 3.94E+04 1.78E+05 1.59E+06 8.11E+02 1.62E+03 3.19E+02 2.00E+02 2.00E+02 2.25E+02
Dev 2.70E+01 1.99E+01 5.50E+03 5.57E+03 5.43E+04 1.02E+06 1.95E+02 5.03E+02 1.04E+00 1.80E+02 8.70E-07 1.29E+01
t-test -2.712 -3.157 -15.581 -17.861 -9.841 -6.342 -8.379 -3.376 -258.577 -1.617 -1.602 -7.845

MGSA

Mean 2.55E+01 6.26E+01 3.63E+04 4.86E+04 3.72E+05 2.45E+06 7.31E+02 1.70E+03 3.16E+02 3.68E+02 2.45E+02 3.00E+02
Best 1.25E+01 2.23E+01 1.61E+04 2.36E+04 2.40E+05 7.67E+05 2.94E+02 1.41E+03 3.15E+02 3.57E+02 2.33E+02 2.87E+02
Dev 2.46E+01 3.60E+01 1.69E+04 2.22E+04 1.16E+05 1.10E+06 3.42E+02 1.82E+02 4.86E-01 1.42E+01 6.76E+00 8.21E+00
t-test -1.681 -2.447 -4.795 -4.776 -7.155 -4.980 -3.663 -3.433 -532.918 -26.428 -14.792 -27.346

LPSO

Mean 1.64E+02 7.68E+02 4.72E+04 1.60E+05 2.98E+05 1.13E+07 1.05E+03 2.09E+03 5.31E+02 7.90E+02 2.94E+02 4.69E+02
Best 8.78E+01 4.53E+02 1.37E+04 7.22E+04 2.21E+04 4.74E+06 5.73E+02 1.72E+03 3.36E+02 6.62E+02 2.66E+02 4.36E+02
Dev 6.26E+01 2.89E+02 3.27E+04 6.53E+04 1.87E+05 7.62E+06 3.53E+02 3.37E+02 1.48E+02 1.86E+02 2.52E+01 1.97E+01
t-test -5.606 -5.766 -3.218 -5.422 -3.558 -3.325 -5.472 -4.573 -4.986 -7.101 -8.313 -30.470
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Algorithm
function F25 F26 F27 F28 F29 F30

D 30 50 30 50 30 50 30 50 30 50 30 50

LIGSA

Mean 2.00E+02 2.27E+02 1.40E+02 1.62E+02 3.96E+02 8.33E+02 2.00E+02 2.00E+02 9.38E+02 2.00E+02 2.00E+02 2.00E+02

Best 2.00E+02 2.20E+02 1.00E+02 1.00E+02 3.75E+02 6.90E+02 2.00E+02 2.00E+02 7.50E+02 2.00E+02 2.00E+02 2.00E+02

Dev 3.39E-11 6.43E+00 5.50E+01 5.65E+01 1.66E+01 1.64E+02 2.20E-10 5.70E-09 1.57E+02 4.09E-03 8.36E-05 5.60E-04

t-test – – – – – – – – – – – –

GSA

Mean 2.01E+02 2.03E+02 2.00E+02 2.00E+02 1.61E+03 2.96E+03 1.77E+03 5.87E+03 2.00E+02 2.00E+02 3.15E+05 4.78E+06

Best 2.00E+02 2.00E+02 2.00E+02 2.00E+02 1.47E+03 2.53E+03 4.39E+02 5.13E+03 2.00E+02 2.00E+02 2.00E+02 2.00E+02

Dev 2.30E+00 4.62E+00 1.54E-02 9.76E-02 2.08E+02 4.13E+02 9.23E+02 4.36E+02 2.62E-02 2.14E-02 1.83E+05 5.50E+06

t-test -1.284 -6.616 -2.431 -1.506 -12.988 -10.700 -3.792 -29.088 10.523 -35.392 -3.846 -1.942

GAGSA

Mean 2.09E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 1.77E+03 1.40E+03 2.00E+02 7.23E+06 1.93E+03 9.75E+03

Best 2.07E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 4.39E+02 1.23E+03 2.00E+02 4.97E+03 1.16E+03 9.17E+03

Dev 2.59E+00 6.70E-11 0.00E+00 4.55E-13 2.16E-10 3.43E-10 9.23E+02 1.06E+02 2.52E-03 1.62E+07 6.87E+02 5.74E+02

t-test -8.053 1.676 -2.429 -1.498 26.391 8.640 -46.101 -25.385 10.525 -1.001 -5.617 -37.210

PSOGSA

Mean 2.29E+02 2.71E+02 1.65E+02 1.55E+02 1.06E+03 1.80E+03 1.90E+03 4.60E+03 6.01E+06 7.03E+07 6.30E+04 5.03E+05

Best 2.09E+02 2.28E+02 1.01E+02 1.08E+02 1.01E+03 1.70E+03 1.33E+03 3.37E+03 1.06E+05 1.63E+07 7.16E+03 9.73E+04

Dev 3.10E+01 6.24E+01 5.57E+01 6.21E+01 5.56E+01 8.73E+01 3.86E+02 1.29E+03 7.65E+06 4.86E+07 1.08E+05 3.84E+05

t-test -2.058 -2.395 -0.697 0.192 -25.750 -11.696 -9.823 -7.619 -1.756 -3.234 -1.296 -2.927

GGSA

Mean 2.00E+02 2.00E+02 2.00E+02 2.00E+02 1.68E+03 3.22E+03 2.93E+03 5.41E+03 1.30E+03 8.25E+07 7.32E+04 2.62E+05

Best 2.00E+02 2.00E+02 2.00E+02 2.00E+02 8.77E+02 3.02E+03 2.48E+03 3.69E+03 2.00E+02 2.01E+02 2.96E+04 2.00E+02

Dev 3.71E-10 2.23E-01 1.19E-02 6.44E-02 4.84E+02 2.55E+02 5.32E+02 1.25E+03 1.21E+03 1.85E+08 3.55E+04 1.56E+05

t-test -9.211 1.625 -2.431 -1.505 -5.918 -17.565 -11.484 -9.310 -0.675 -1.000 -4.593 -3.758

MGSA

Mean 2.20E+02 2.51E+02 1.20E+02 2.01E+02 9.88E+02 1.65E+03 3.61E+03 7.10E+03 3.81E+06 1.23E+05 1.52E+04 1.75E+05

Best 2.15E+02 2.44E+02 1.00E+02 2.01E+02 4.11E+02 1.57E+03 2.83E+03 6.03E+03 2.47E+03 3.64E+03 5.70E+03 8.81E+04

Dev 2.91E+00 9.09E+00 4.47E+01 2.50E-01 3.38E+02 8.40E+01 7.49E+02 9.90E+02 5.22E+06 2.35E+05 8.08E+03 1.42E+05

t-test -15.438 -10.376 0.631 -1.536 -3.915 -9.956 -10.174 -15.598 -1.635 -1.169 -4.159 -2.758

LPSO

Mean 2.35E+02 2.92E+02 1.07E+02 1.42E+02 1.15E+03 2.08E+03 1.55E+03 3.23E+03 2.38E+07 1.94E+08 1.66E+05 2.44E+06

Best 2.18E+02 2.65E+02 1.04E+02 1.09E+02 5.50E+02 1.83E+03 1.44E+03 1.95E+03 1.44E+07 1.24E+08 7.06E+04 3.41E+05

Dev 1.36E+01 3.01E+01 2.48E+00 6.59E+01 3.36E+02 1.55E+02 7.02E+01 1.12E+03 1.01E+07 5.04E+07 1.70E+05 2.86E+06

t-test -5.686 -6.497 1.359 0.517 -5.014 -12.327 -43.166 -6.042 -5.296 -8.621 -2.178 -1.903

267

Table 7: Summary of t-test at 5% significant level.

LIGSA VS. GSA GAGSA PSOGSA GGSA MGSA LPSO

D=30
better 23 27 19 19 20 26

same 3 1 9 9 8 4

worse 4 2 2 2 2 0

D=50
better 25 26 21 19 21 25

same 4 3 8 10 8 4

worse 1 1 1 1 1 1
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As to the hybrid function 1 (F17-F22), the superiority of LIGSA is more notable. As displayed in Tables 4-5, on both269

low and high dimensions, LIGSA yield the best results on all the functions in respect of all the three performance metrics.270

Moreover, the t-test value revealed that the superiority of LIGSA is significant in most cases.271

For the last 8 composition benchmark functions, F23-F30, due to their complexity in finding the global optima, the272

preponderance of LIGSA is not as obvious as it done on the other functions. Even though, LIGSA produced best results273

on 5 out of the 8 functions when D=30 and 6 out of the 8 functions when D=50. The statistically results also confirmed274

the preponderance of LIGSA. In addition, it is notable that GAGSA performed certain advantages on several composition275

benchmark functions, such as F25, F27, and F29. This may be due to its fitness-free mutation operator can preserve the276

diversity of population effectively though it improves the computational complexity.277

Besides, the summary of t-test at 5% significant level shown in Table 7 reveals the superiority of LIGSA more intuitively.278

For example, LIGSA outperforms MGSA in optimization of 93.3% (28/30) of the 30-D problems and 96.7% (29/30) of279

the 50-D problems, where the proportions of significant superiority are 71.4% (20/28) and 72.4 (21/29), respectively.280

4.2. Convergence comparison281

To test the convergence speed of the proposed LIGSA, the average numbers of fitness evaluation (FESmean) and the282

execution time (in second) that the algorithms need to obtain acceptable solutions should be reported. In this paper, the283

trial is considered to be acceptable if and only if the error satisfies error ≤ εopt where εopt was set to 0.01. Moreover,284

an effective algorithm should perform good search reliability, i.e., obtain acceptable successful rate “suc%”. The “suc%”285

stands for the percentage of the successful runs that acceptable solutions are found [6]. Due to the CEC2014 benchmark286

functions are quite complexity, only functions F7 and F12 can be solved by several of the 7 algorithms. The corresponding287

results are reported in Table 8.288

Table 8: Convergence speed and reliability comparisons on F7 and F12.

Algorithm LIGSA GSA GAGSA PSOGSA GGSA MGSA LPSO

D 30 50 30 50 30 50 30 50 30 50 30 50 30 50

F7

FESmean 57600 N/A N/A N/A N/A N/A N/A N/A 83220 N/A 61440 N/A N/A N/A

time 6.962 N/A N/A N/A N/A N/A N/A N/A 15.930 N/A 12.051 N/A N/A N/A

suc% 40 N/A N/A N/A N/A N/A N/A N/A 100 N/A 80 N/A N/A N/A

rank 1 1 4 1 4 1 4 1 3 1 2 1 4 1

F12

FESmean 31440 36240 N/A N/A N/A N/A N/A N/A 71400 89820 N/A N/A N/A N/A

time 6.046 7.929 N/A N/A N/A N/A N/A N/A 14.408 20.446 N/A N/A N/A N/A

suc% 80 100 N/A N/A N/A N/A N/A N/A 40 100 N/A N/A N/A N/A

rank 1 1 3 3 3 3 3 3 2 2 3 3 3 3

289

In Table 8, the ranks are evaluated based on the ascending order of FESmean. According to Table 8, for F7, when290

D=30, LIGSA, GGSA and MGSA can obtain acceptable solutions. Among the three algorithms, GGSA performs the best291

reliability while LIGSA shows the fast convergence speed as its takes the smallest FESmean and shortest consuming time.292

With respect to high dimension (D=50), none of the algorithms can yield acceptable solutions. For F12, on the 30-D and293

50-D problems, LIGSA and GGSA are the only two effective algorithms. The metrics FESmean, time, and suc% verify294

the better convergence performance of LIGSA on the function.295

For the other 28 CEC2014 functions, although none of the tested algorithms can obtain acceptable solutions, the296

superior convergence behavior of LIGSA can also be illustrated by their convergence curve. Due to the large number of297

functions in the CEC2014 problem set, we selected one function from each category to illustrate the convergence of the298

compared algorithms. The selected functions are F3, F16, F21 and F28. Their convergence curves are presented in Figs.299

6-9, respectively. As shown in Fig. 7 and Fig. 9, LIGSA achieved the fastest convergence speed on F16 and F28. For300

functions F3 and F21 as shown in Fig. 6 and Fig. 8 respectively, although the fall-off rate LIGSA is not the biggest in301

the early iterations, it keeps searching for a better solution for longest time and produced the best optimization results.302

4.3. Discussion303

Achieving a fine balance of exploration and exploitation is challenging for all meta-heuristic algorithms [39]. In basic304

GSA, a neighborhood topology denoted by Kbest is employed to get the balance. However, the diminishing number305

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

  0 10000 20000 30000 40000 50000 60000
10

2

10
3

10
4

10
5

10
6

10
7

10
8

 FEs

 E
rr

o
r

 

 
LIGSA
GSA
GAGSA
PSOGSA
GGSA
MGSA
LPSO

(a) D=30

  0 10000 20000 30000 40000 50000 60000
10

3

10
4

10
5

10
6

10
7

 FEs

 E
rr

o
r

 

 
LIGSA
GSA
GAGSA
PSOGSA
GGSA
MGSA
LPSO

(b) D=50

Figure 6: Convergence performance comparison for minimizing of F3.
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Figure 7: Convergence performance comparison for minimizing of F16.
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Figure 8: Convergence performance comparison for minimizing of F21.
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Figure 9: Convergence performance comparison for minimizing of F28.

of Kbest leads to premature convergence over quickly. Moreover, Kbest is a global neighborhood topology in essence.306

This type of topology lacks of local search ability and is time consuming [21]. More importantly, the Kbest model is a307

kind of fully-informed method. All agents choose the same neighbors stored in Kbest, which overlooking the impact of308

environmental heterogeneity on individual behavior. As a result, GSA is easily to suffer from premature convergence. As309

illustrated in Figs. 6-9 and Tables 2-7 of Section 4.2, the convergence curve and accuracy confirmed the insufficient local310

search problem of GSA.311

By analysis the convergence curves of the LIGSA on D=30 and D=50 problems in Figs. 6-9 and Table 8, one312

may conclude that the LIGSA performed faster convergence speed (with smallest FESmean) on the tested functions. This313

suggests that the LIGSA has outstanding global search ability. It is due to the introduction of the social thinking improves314

the global search ability of LIGSA and accelerate its convergence speed.315

In addition, once LIGSA successfully obtained acceptable solution on a function, it achieved the best convergence316

accuracy with lowest runtime consuming as illustrated in Table 8. This property is due to the proposed locally informed317

learning strategy completely changed the global neighborhood topology structure in fully-informed learning strategy and318

preserved the diverse search directions of GSA. In other words, the individual heterogeneity is taken into consideration in319

LIGSA. Therefore, LIGSA improves the local search ability and reduces the computational complexity.320

Although there are many important discoveries revealed by these studies, there are also limitations. That is, all these321

tested algorithms are hard to achieve the precision requirement in preset evaluation times. Although LIGSA produced322

a better optimization results, the search ability still required great improvement. One possible reason is that GSA does323

not have invariance in shift, rotation, and scale for gravitational force between agents is highly influenced by the distance324

between them.325

In future work, we intend to analysis the invariance of other physics-inspired meta-heuristic optimization algorithms,326

such as electromagnetic field optimization (EFO) [1], in shift, rotation, and scale to improve the search ability of LIGSA327

and solve more shifted and rotated functions.328

5. Conclusion329

In this paper, taking into account the heterogeneity of individuals behaviors we proposed a locally informed GSA330

(LIGSA) to enhance the search ability of the original GSA. The LIGSA was characterized by designing a locally informed331

learning strategy. In this learning strategy, a locally informed k-neighborhood was developed for constructing unique local332

neighborhood for every agent, thus promoting LIGSA fully explore the search space with low computational complexity as333

well as effectively prevent premature convergence; the social thinking of population was employed to guide all the agents334

and accelerate the convergence speed; the time-varying acceleration coefficients scheme was proposed to balance the two335

components and promote robustness of GSA. Therefore, LIGSA could significantly improve the performance of GSA.336
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To investigate the validity of LIGSA, all the 30 CEC2014 benchmark functions with both low and high dimensions were337

tested in this paper. The graphical and statistical results were compared with the original GSA, four variants of GSA, and338

LPSO. The compared experimental results demonstrated the significant superiority of LIGSA in most cases. Moreover,339

although the search availability of LIGSA requires further promote, LIGSA generally showed more rapidly convergence340

ability, lower computational complexity, and higher convergence accuracy.341
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