
Secure On-Chip Communication Architecture for

Reconfigurable Multi-core Systems

Ahmed Saeed1, Ali Ahmadinia2∗, Mike Just3

1School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK

2Department of Computer Sciences, California State University San Marcos, USA

3School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK

Abstract

Security is becoming the primary concern in today’s embedded sys-
tems. Network-on-Chip (NoC) based communication architectures have
emerged as an alternative to shared bus mechanism in multi-core SoC de-
vices and the increasing number and functionality of processing cores has
made such systems vulnerable to security attacks. In this paper a secure
communication architecture has been presented by designing an identity
and address verification (IAV) security module, which is embedded in each
router at the communication level. IAV module verifies the identity and
address range to be accessed by incoming and outgoing data packets in
a NoC-based multi-core shared memory architecture. Our IAV module is
implemented on a FPGA device for functional verification and evaluated
in terms of its area and power consumption overhead. For FPGA-based
systems, the IAV module can be reconfigured at run-time through partial
reconfiguration. In addition, a cycle-accurate simulation is carried out
to analyse the performance and total network energy consumption over-
head for different network configurations. The proposed IAV module has
presented reduced area and power consumption overhead when compared
with similar existing solutions.

1 Introduction

Security attacks against embedded systems are becoming more serious and so-
phisticated. New solutions for embedded systems are required since current
techniques face several challenges with security requirements and performance
constraints of these systems. When the number of processing elements are large
and each core has high bandwidth demands, communication between the cores
over a single shared bus is impractical, and the use of direct connections (such
as grid or mesh communication) becomes necessary [5, 15]. The increase in
software content and network connectivity of multi-core System-on-Chip (SoC)

∗Corresponding Author: aahmadinia@csusm.edu

1

Ali Ahmadinia
Typewritten text
"Preprint of an article published in Journal of Circuits, Systems, and Computers, doi: 10.1142/S0218126616500894 ©2016 [copyright World Scientific Publishing Company] [http://www.worldscientific.com/worldscinet/jcsc]"

makes them vulnerable to fast spreading software-based attacks such as viruses
and worms, which were hitherto primarily the concern of personal computers,
servers and the internet[24]. The characteristics of FPGA-based reconfigurable
devices such as low power consumption and parallel architecture have enabled
detection and prevention of security attacks at system level while promising the
required energy and computation efficiency without compromising the perfor-
mance. Furthermore, advantages such as reduced time-to-market as compared
to Application Specific Integrated Circuits (ASICs), run-time reconfiguration of
the same hardware platform to adapt to different applications, partial reconfig-
uration support to modify certain part of the hardware, integration with other
hardware components such as memory modules and other peripherals have made
the use of FPGAs more interesting and favourable for developing new embedded
devices.

With the increasing number and functionality of processing cores in multi-
core SoC devices, Network-on-Chip (NoC) has emerged as an alternative to
shared bus mechanism. Although technology scaling has improved the chip
security by increasing the cost and technological requirements of an attacker,
however several components like the interconnection, be it a conventional bus-
based or a NoC, remain susceptible to attacks[25]. A typical NoC architecture
comprises of processing elements (or more commonly known as processing cores),
network interfaces, routers and links. A NoC-based system consisting of 16 pro-
cessing cores and configured in a mesh topology is shown in Fig. 1. Such system

Processing element
Network Interface

router

link

Figure 1: Typical architecture of 4x4 mesh NoC architecture

can be characterised by its topology (the organization of the processing cores
and routers) and the approaches used to implement the flow control mechanism,
routing algorithms, arbitration and buffering. The flow control deals with data
traffic on the channels (physical communication links between routers) and in-
side the routers. Routing algorithms define the path taken by a message from a
source to a destination. The arbitration establishes priority rules when two or
more messages request the same communication link. Buffering is used to store
messages when a requested output channel is not available. The message-based

2

(also known as packet-based) communication model is normally used in NoC-
based systems. Each processing core is attached to a network interface which is
responsible for sending and receiving messages to and from the corresponding
router. The packet transmitted by the source processing core is processed by the
attached network interface and communication path to the destination is deter-
mined based on the routing logic and availability of resources. Depending on the
network implementation and flow control mechanism, packet can be split into
smaller units named flits (flow control units). The length of a flit is defined at
the communication link level and in most cases it corresponds to the minimum
number of bits that can be transmitted over one physical channel. Packet-based
communication presents a better resource utilization and avoids congestion as
packets are short in length and reserve a smaller number of channels during
their transfer.

In this paper, a new hardware-assisted security solution has been presented
for reconfigurable multi-core SoCs that use NoC as a communication architec-
ture. The proposed solution exploits various NoC features in order to prevent
security attacks that target such systems to gain illegal access to trusted ar-
eas of the memory. The NoC communication architecture has introduced new
weaknesses and made such systems vulnerable to security attacks. NoC ar-
chitecture has been studied widely from different design perspectives such as
network topologies, system performance, routing mechanisms and application-
specific implementations. Security aspects related to such systems have emerged
recently in the literature. Especially in shared memory architectures for many-
core systems the protection of data is a key concern. Once a processing core is
compromised, the sensitive application data can be altered by gaining illegiti-
mate access to secured blocks of the memory such as through buffer overflow
attacks[6].

A hardware-assisted security solution in the form of Id and Address Verifica-
tion (IAV) module has been designed and implemented at communication level
for FPGA-based multi-core devices. The IAV module targets security attacks by
intercepting the transferred packets between processing cores and verifying the
identity and memory address before passing them to their destination nodes. In
addition to securing against code modification attacks, the designed IAV module
has reduced area and power consumption overhead when compared to similar
solutions[8, 7] with the same configuration settings. The designed solution is
rigorously tested in terms of its functionality (using different configuration set-
tings depending on the router channel width and the number of nodes present
in the network) and evaluation (area, power consumption and performance are
tested on different network sizes ranging from 16 nodes to 256 nodes).

The paper is organized as follows: Section 2 presents an overview of current
work related to the security aspects of shared memory architectures for many-
core systems. Section 3 describes the architecture of the proposed security
mechanism at the router level. Section 4 defines the hardware implementation
used to obtain area and power consumption estimation results followed by a
performance evaluation in Section 5. Section 6 concludes this paper.

3

2 Related Work

Diverse hardware-based security solutions have been proposed in the literature
depending on the hardware architecture of embedded devices to handle security
attacks. Simple embedded systems are usually comprised of single processor
along with other peripherals to execute the program code whereas modern multi-
core devices have many processing cores to perform distributed execution of
programs.

Hardware security components in embedded systems are typically focused
on monitoring processor-executed code by comparing it to a predefined model
and the security subsystem operates in parallel with each processor[16]. The
hardware-assisted monitors[3, 20, 23] are based on the concept of sensing devia-
tion in program execution at run-time by comparing behaviour against a static
model for the purpose of detecting code modification attacks. Arora et al.[3] pre-
sented a security mechanism using hash values at basic block level (containing
several instructions) along with inter- and intra-procedural control flow graphs.
Shufu et al.[20] have also used hashed-based patterns for basic blocks comprising
of few instructions. On similar basis, Gebotys et al.[11] have presented security
solution for the exchange of cryptographic keys in a NoC-based system. Their
solution prevents illegal access to unencrypted keys and provides protection
against power and electromagnetic analysis attacks for system containing both
un-trusted and trusted processing cores. Only secure IP cores running trusted
software are allowed to access the keys. At the network level, symmetric key
cryptography is implemented where each trusted core has a dedicated security
wrapper where private network key is stored in a non-volatile memory.

Diguet et al.[7] proposed a security mechanism for NoC-based reconfigurable
systems which is based on a centralized security and configuration manager
(SCM) for safe hardware and communication configurations and attack mon-
itoring. They designed a dedicated secured network interface (SNI) for each
processing element to handle different attack scenarios by implementing access
control rules at the time of configuration. The address extracted from a packet is
compared with a valid address bound stored in the SNI. The SNI configurations
and monitoring are performed by the SCM through a separate secured virtual
channel (VC) so that the configurations cannot be altered by any malicious
code. It is configured for each shared memory region resulting in multiple SNIs
for a single memory unit and the area overhead is provided at system level for
the particular network configuration only. Area overhead of the SNI is presented
in terms of the number of slices required when a complete system consisting of
22 nodes is synthesized with SNIs for a FPGA device whereas energy overhead
or power consumed by each SNI is not presented.

Fiorin et al.[9] proposed a Data Protection Unit (DPU) for a NoC architec-
ture to handle unauthorized accesses to selected blocks of memory using address
and access rules lookup tables. This DPU is placed inside the network inter-
face of a processing core or memory unit and requires a complete packet to be
fetched to start processing. This work is extended[8] by presenting the imple-
mentation analysis of DPU in terms of area, energy and performance by placing

4

it either at the network interface (NI) of the processing cores or in the NI of
the memory unit for a network of 10 nodes. The area estimation is achieved
by comparing the DPU chip area with the IP core chip area when the complete
system is synthesized at fabrication level. They have also presented a compa-
rable approach[10] to that of Diguet et al.[7]. Probes are implemented within
the network interface of each processing core and there is a centralized network
manager to monitor alert signals generated by each core. A dedicated commu-
nication medium separate from the normal data traffic is proposed to handle
monitoring traffic towards the network manager.

Lukovic et al.[18] presented a solution to handle buffer overflow attacks by
adding a hardware module named processor protection system (PPU) within
the network interface of each processor. The Data Protection Unit (DPU)[9] is
embedded in NI attached to shared memory unit to filter unauthorized memory
access rights. Stack Protection Unit (SPU)[17] is used to copy functions return
addresses to provide protection against buffer overflow attacks. Dedicated secure
NoC is implemented in parallel to regular NoC connecting security elements
embedded in NIs with central Network Security Manager (NSM). The area
overhead for each PPS represents 77% of the enhanced NI area. Neither the area
overhead for the dedicated NoC, nor the application details and power/energy
analysis of the proposed system were presented. This work is further extended
by presenting a conceptual approach[19] to secure multi-core NoC-based systems
at different levels of design. It is based on implementing security agents in a
hierarchical manner stopping the transmission of attacks all the way through the
NoC. It is a conceptual solution and experimental setup and synthesis results
are the same as they have presented in their previous solution[18]. The complete
system is not synthesized as cluster level security agent (CLSA) implementation
is avoided to simplify the experimental setup.

Porquet et al. [22] presented a hardware and software based security mech-
anism to isolate multiple applications and process data securely in a shared
memory NoC-based systems. They implemented a hardware module inside the
network interface of each processing core and divided the shared memory ad-
dress space so that each software application is isolated and has its own secure
memory region. A trusted software model has also been tested to work along
with the hardware protection module. They called each application address
space a compartment, tagged it with a unique identity and associate access
rules with each compartment. At the time of execution, isolation is achieved in
the NoC by intercepting the transmitted packet and verifying the information
against the set of pre-defined access rights for each compartment.

Ancajas et al.[2] presented a three layer security framework for NoC-based
systems where a compromised NoC (C-NoC) provided by a third party can en-
able a range of security attacks with an accomplice software component. They
implemented their security mechanism as a hardware firmware that interfaces
processing core with the network interface of the NoC. Their solution is based
on scrambling of transmitted data through hardware encryption, attaching en-
crypted tag with each packet before transmitting it in the NoC and obfuscation
of processing nodes by migrating the applications at run-time. The area and

5

power consumption overhead is measured by implementing proposed security
features within the network interface.

Wassel et al.[27] proposed a non-interfering and low-latency approach in
order to secure NoC- based systems. The aim of the proposed solution is to
provide security by maximizing temporal and spatial separation of communica-
tion flows in the NoC. The network traffic is statically separated in the network
without sacrificing NoC performance. Static isolation of resources are desired
to prevent sharing of information through side-channels. The proposed solution
is based on implementing network scheduling in a wave manner which allows
multiple traffic flows in the network to be processed in a non-interfering nature
while also avoiding the overheads of a cycle-by-cycle time multiplexing. This
technique does not detect software-based attacks such as code modification and
extraction of secret information through applications running on compromised
cores.

The above mentioned security solutions are centralized in nature and provide
single layer of protection either at initiator or target node. Moreover, they have
only been tested for small network sizes. In contrast, we propose a scalable
solution based on id and address lookup tables which is distributed in nature
and provides two levels of protection by embedding the IAV module in the
local channel’s input and output port of the router. At the first level, the
IAV module performs an identity and address check at the local input port
of the router attached to the transmitting node. At the second level, if the
packet contents are modified during its flight time in the event of a security
attack, the source identity and address is again verified at the local output port
of the router attached to the receiving node. The scalability of the proposed
solution is evaluated in terms of area, power and performance overhead for
various NoC sizes up to 256 nodes. Performance evaluation results are achieved
through trace-driven simulations of real world multithreaded applications as
well as synthetic traffic patterns using a cycle accurate simulation framework.

3 ID and Address Verification Module

In this section, the architecture of IAV module is presented, along with the gen-
eral characteristics of the overall system in which the IAV would operate. The
Proposed IAV module is designed for multi-core NoC-based systems having a
shared memory architecture where a memory unit can be accessed by several
different processing cores. Data coming from the processing cores is processed
by the network interface into the required packet format which is used within
the NoC. The communication mechanism is based on the transactions of packets
between different processing cores and memory units, therefore it is based on the
assumption that all the processing cores on the NoC are memory mapped. NoC
architectures can be manipulated to get illegal access to the storage unit due
to the sharing of memory areas among different processing cores and accessing
them via NoC. To verify the memory accesses, the IAV module works in simi-
lar fashion as a firewall operates in the network security system by monitoring

6

the incoming and outgoing data traffic. IAV is a hardware module that applies
access control rules to the memory accesses by specifying particular processing
cores that can initiate a transaction to a predefined memory blocks in a shared
memory NoC. The partitioning of the memory unit into blocks allows the sep-
aration between trusted and non-trusted data for the different processing cores
attached to the NoC communication architecture.

The communication among different processing cores is controlled through
routers, therefore to achieve secure communication, IAV module has been im-
plemented in the local channel’s input and output port of the router attached to
the network interface of the processing core or memory unit. The block diagram
of a standard router is shown in Fig. 2 and it consists of five ports or channels
namely east, west, north, south and local port and a central crosspoint switch.

South channel

Local channel North channel

W
es

t
ch

an
n

el

Ea
st

 c
h

an
n

el

In
p

u
t

p
o

rt
o

u
tp

u
t

p
o

rt

Input port output port

In
p

u
t

p
o

rt
o

u
tp

u
t

p
o

rt

Input port output portInput port output port

Crossbar switch

Data_in

ack_in
req_in

D
ata_in

ack_in
req

_in

D
at

a_
o

u
t

ac
k_

o
u

t

re
q

_o
u

t
D

ata_o
u

t

ack_o
u

t

req
_o

u
t

D
at

a_
o

u
t

ac
k_

o
u

t

re
q

_o
u

t

Data_out

ack_out
req_out

D
at

a_
in

re
q

_i
n

ac
k_

in

D
at

a_
in

re
q

_i
n

ac
k_

in

Data_out

ack_out
req_out

Data_in

req_in
ack_in

Figure 2: Standard five port router

Each channel has a dedicated input port and output port. Data packet moves
in to the input port of one channel of router by which it is forwarded to the
output channel of the other port.

Each input and output port has its own decoding logic which increases the
performance of the router. Buffers are present at all ports to store the packets.
Store and forward mechanism is used as the buffering method. Arbitration
decisions are made by the control logic which is implemented inside each input
port and output port whereas the crossbar switch forwards the data packet. As
per routing algorithm being deployed, the data packet is transmitted from one

7

of the receiving input ports to the output port.
Based on the destination node, the transmitted packet contains a unique

identifier of the destination and address to be accessed in its header flit. Before
forwarding the packet to the other routers, the IAV module verifies the identity
and memory address by retrieving them from header flit and comparing them
with the information stored in its own lookup table. The local port of the router
is connected with the network interface while other channels are connected with
the neighbouring routers. As the local channel of the router communicates with
the processing core, it is the ideal place to embed IAV module in order to filter
out unauthorized packets at the time of injection.

The format of the header packet is compatible with OCP-IP interface[21].
For reference, the header packet packet format for 64 node network using 16-nit
channel router is shown in Fig. 3. The header flit keeps the identity of the source
and destination processing core and the second flit contains the address of the
memory block to be accessed at the destination node. The Id dest and Id src

fields identify target and initiator of the packet respectively that is assigned
directly by network interface at the time of packet generation. The id src field

06122831

Id_destId_srcAddress
Access
type

63

Data and configuration bits

Figure 3: 64-bit header packet format for 64 node network having 16-bit channel
routers

can also be configured by OCP-IP interface signals, MConnID and MThreadID,
which provide identifiers associated with processing core and thread respectively.
Similarly, MAddr signals of the OCP-IP interface can be used by the network
interface to generate Address field in the header packet.

3.1 IAV Enabled Local Input Port

As mentioned earlier, two level protection is delivered by our proposed solution.
At the first level, packets to be transmitted by the processing core are verified
by modifying the architecture of the local channel’s input port and embedding
the IAV module. For reference, the block diagram of the standard input port
without IAV module is shown in Fig. 4. A standard input port has three main
components i.e., input FIFO, routing logic and control logic. Input FIFO acts
as a buffer and stores incoming flits. This buffer has the capacity to store four
flits at a time where the size of each flit is either 16 or 32 bits depending on the
width of the physical channel. The incoming packet consists of four flits and
each input port has a buffer to store packets.

The incoming packet is processed by the input port depending on the FIFO
status. The read/write operation to the FIFO is controlled by control logic. For
instance, if the FIFO is empty, the control logic generates ack in signal whenever
it receives the req in signal from the output port of its neighbouring router.

8

Input FIFO

Control Logic

C
o

n
tr

o
l s

ig
n

al
s

Routing
Logic

Input Port

route

Data_in

req_in

ack_in
4

16

6id

Enable

swt_ack

swt_req 4

16

Data_out

Figure 4: Router standard input port internal architecture without IAV module

When a complete packet is received, the FIFO generates FIFO full signal to
the control logic which in return disables ack in to stop receiving incoming data
packet. The routing logic extracts the destination from the first flit of the packet,
computes the output port to which the data packet should be transmitted and
enables the route signal. XY routing algorithm is implemented and a cut-
through flow control mechanism is used to handle packet flits. On receiving
route and FIFO full signals from the routing logic and the FIFO respectively,
the control logic generates swt req signal to the crossbar switch so that the
packet can be forwarded to the corresponding output port of the router. On
receiving swt ack signal, the control logic initiates transfer of packet by sending
read signal to the FIFO.

The block diagram of the local input port with an IAV module is shown in
Fig. 5. On receiving the first two flits, the FIFO generates enable signal and
then IAV module reads the identity of the destination node from the first flit and
the memory address from the second flit. First 6 bits of header flit represents
the identity of the destination node and next 6 bits defines the identity of the
source node. The internal architecture of the IAV module for the local channel’s
input port is shown in Fig. 6. The identities stored in the first column of the
lookup table correspond to those destination processing cores that are allowed to
communicate whereas the memory bounds in the next two columns correspond
to the lower and upper bounds of particular shared memory areas that are
accessible by specific processing cores only. Each address entry in the IAV
lookup table defines 64 byte memory blocks for 16-bit address. If any processing
core tries to access memory region other than the permitted address bounds, it
will be considered as a security breach and alert signal will be generated to the
control logic which stops further processing of the data packet and attack signal
can be conveyed to central manager core. In case of successful verification of
the id and address, the IAV module generates enable signal for the routing logic

9

Data_in

req_in

ack_in

Input FIFO

Control Logic

IAV
Module

C
o

n
tr

o
l s

ig
n

al
s

En
ab

le

Routing
Logic

Alert

Local Channel Input Port

address
id

route

16 16

12

16

4

Enable

Data_out

swt_ack

4swt_req

Figure 5: Router local input port internal architecture enabled with IAV module

which computes the output port and generates the route signal.

3.2 IAV Enabled Local Output Port

At the second level of our twofold protection, the packets to be received by the
processing core are verified by modifying the architecture of the local channel’s
output port and embedding the IAV module. For a network of 64 nodes and
physical channel width of 16 bits, the block diagram of the standard output
port without the IAV module is presented in Fig. 7. As shown in this figure,
the standard output port consists of output FIFO, arbiter and the control logic.
The output FIFO and control logic works similarly as described for the input
port in the previous section. For output port routing logic is replaced with
the arbiter which is responsible for handling multiple requests coming from the
input ports of the other channels of the router. When the output port receives
request signals from more than one input ports, the arbiter selects the request
based on the rotating priority to each of the input ports. The priority of each
port is lowered after it has been served. The arbiter receives the swt req signals
from the input ports and after making the decision sends the swt ack to the
selected input port. The request signal is also generated for the control logic
which asserts the write enable signal for the FIFO.

The block diagram of the local output port with an IAV module is shown
in Fig. 8. On receiving the first two flits, the FIFO generates enable signal
and then IAV module reads the identity of the source and destination nodes
from the first flit and the memory address from the second flit. First 6 bits
of header flit represents the identity of the destination node and next 6 bits
defines the identity of the source node. The internal layout of the IAV module
for the local output port is shown in Fig. 9. For example, the ids stored in
the first column of the lookup table correspond to those processing cores that

10

Id_dest L_bound U_bound

“000000” 0x“0000” 0x“A3FF”

“001100” 0x“6540” 0x“A3FF”

“01011” 0x“AA80” 0x“BB7F”
.
.
.

.

.

.

.

.

.

“01011” 0x“AA80” 0x“BB7F”

id

12

6
Id_dest

6

Id_src
6 Router_id

16 Address

alert

enable
Check_dest

Check_src
Check_L Check_U

IAV Module-Input port

id

Figure 6: IAV module internal architecture for the local input port

are allowed to communicate whereas the memory bounds correspond to those
particular shared memory areas that are accessible by specific processing cores
only. If any processing core tries to access memory other than the permitted
address bounds, it is considered as a security attack and alert signal is generated
for central manager core.

Each address entry in IAV module defines 64 byte memory blocks for 16-bit
address and a 4KB memory block for an address size of 32 bits. On receiving
the enable signal from FIFO, the IAV module extracts the source and desti-
nation identities in the form of 12-bit coordinates from the header flit. The
6-bit destination id is compared with the router id and the 6-bit source id is
matched with each of the ids stored in IAV lookup table. After verification
of the identities, address bits are compared with the corresponding lower and
upper bounds stored in the second and third column of the lookup table. If the
address is found within the bounds, an enable signal is generated by the IAV
module, otherwise an alert signal will be transmitted to the manager core for
further action.

3.3 Effectiveness Evaluation

The effectiveness of the IAV module is evaluated based on the fact that in case
of software attack (such as thorough buffer overflow), the compromised core can
transmit the copy of the packet to an unintended processing core by executing
the malicious application. This can only be achieved by altering the header flit
and replacing the destination node identity and the IAV module can successfully
detect such modifications.

The proposed IAV module has generic architecture and can be embedded
inside any multi-core system that uses NoC as a communication architecture.

11

Output FIFO

Control Logic
C

o
n

tr
o

l s
ig

n
al

s

Arbiter

Output Port

Data_out

swt_req

swt_sel

4

4

2

1616

Data_in

req_out

ack_out

swt_ack

request

Figure 7: Router output port internal architecture without IAV module

The IAV module will be embedded inside the local channel of each router and
it will not require any extra modifications to be made at system level. Here
FPGA has been used only as a testing platform. When implemented for FPGA
based systems, the IAV module will be configured at design time. It is assumed
that the designer will have memory layout of all the applications to be loaded
from which the IAV entries can be configured. For FPGA based systems, the
IAV module can be reconfigured at run-time through partial reconfiguration
by uploading updated bitstream containing new entries for each IAV module.
The code modification attacks i.e., buffer overflows will be detected by this
module whereas denial of service and information extraction attacks cannot be
handled through this proposed technique. The security enhancement has been
verified by implementing IAV enabled router for a FPGA device and running
behavioural simulations by configuring IAV with various test cases. For invalid
test cases, the IAV module has generated alert signal successfully. Depending on
the security policy, the manager core on receiving alert signal may disable the
compromised core under attack or reboot the system with default configurations.
Our solution could also be easily augmented with more granular access control
rules (e.g., read only) to provide an extra security layer.

4 Hardware Implementation

In this section, the hardware cost analysis of the IAV module has been presented
by evaluating the area and power consumption overhead for different channel
widths and number of nodes in the network. The proposed module must have
minimum impact on the system area and power consumption in order to have a
scalable security solution. The IAV module has been designed to be embedded
inside the router without requiring any modifications at the network level. For
this purpose as a baseline, the standard five port router architecture, as shown

12

Output FIFO

Control Logic

IAV
Module

C
o

n
tr

o
l s

ig
n

al
s

Arbitor

En
ab

le

A
lert req

Local Channel Output Port

address
id

En
ab

le

Data_out

FIFO empty

swt_ack

swt_req

swt_sel

4

4

2

16

16

Data_in

16

req_out

ack_out

Figure 8: Router local output port internal architecture enabled with IAV mod-
ule

in Fig. 2) is designed and implemented for a Virtex-7 FPGA device using the
register transfer logic (RTL) where target technology is 28 nm.

In order to measure the impact of an IAV module, the router architecture
is modified as per requirement and the area and power consumption overhead
is evaluated in two phases. In the first phase, a standard router is synthesized
without an IAV module and it is configured for cut-through packet switching
with XY routing logic to compute the next hop for the packet. The FIFO
length is also adjusted to accommodate a four flit packet. After successful
implementation and verification of a standard router, in the second phase the
IAV module is embedded in the local ports of the router. The router with the
IAV module is synthesized for 16 and 32 bit channel routers, with networks
consisting of 16, 64 and 256 nodes. Here 16 bit channel router refers to a router
where its each input port and output port can receive and transmit a flit of 16
bits at a time respectively.

Synthesis results are generated using Xilinx Synthesis Tool (XST). To obtain
area and power consumption overhead results, the DSP and BRAM utilization is
disabled and XST is set to use lookup tables and flip flops only during synthesis
phase.

4.1 Area Overhead

The IAV is embedded inside the local channel’s transmitting and receiving ports
of the router providing two level protection but it also increases the area uti-
lization. Area overhead is defined as the increase in the slice utilization when
the router is synthesized with the IAV module, as compared to the number of
slices utilized by the standard router. The FPGA slice utilization for 16-bit and
32-bit channel router, when configured for different network sizes, is given in

13

alert

enable

Id_src L_bound U_bound

“000000” 0x“0000” 0x“A3FF”

“001100” 0x“6540” 0x“A3FF”

“01011” 0x“AA80” 0x“BB7F”
.
.
.

.

.

.

.

.

.

“01011” 0x“AA80” 0x“BB7F”

id

12

6

Id_dest

6

Id_src

6 Router_id

16 Address

alert

enable

Check_dest

Check_src
Check_L Check_U

IAV Module-Output port

Figure 9: IAV module internal architecture for the local output port

Fig. 10. In our case, the IAV module has been configured with upto 8 entries
for 16 nodes network and with maximum of 32 entries for 64 nodes network.

The IAV has been tested with maximum 128 entries for 256 node network
and presented area overhead of 83.4% for a 32-bit channel router as shown in
Fig. 10. Depending on the security level required and resource constraints, the
IAV module can be configured either in input port or output port to reduce the
area overhead.

From the results, it is clear that an increase in router channel width has
more impact on the area overhead for all the network sizes. This is evident as
increasing the channel width results in extra hardware resources for routing and
verification of Id and address offset in the IAV module. For example, in our case
a 32-bit channel router verifies 20-bit address offset whereas in 16-bit channel
router, the address offset of 12 bits is compared respectively which requires less
logic to implement. Furthermore, the area increases with the number of entries
in the IAV table. As an example, the area overhead for a 16 entries IAV module
is 17% as compared to area overhead of 83.4% for a 128 entries IAV module
configured in a 256 node network (see Fig. 10).

Table 1 compares the area overhead of our proposed IAV module, when con-
figured inside both local ports of the router, with the existing similar solutions
in terms of percentage increase in area utilization for different number of entries
in the lookup table. For instance, the SNI based secure system [7] has a 45%
area increase when the system is synthesized as a 2-D mesh network of 22 nodes.
Each SNI has 2% area overhead per node with a single entry for address verifi-
cation, whereas the proposed IAV module has resulted in area increase of 1.5%
per router when configured in a 64 node network using single entry table for ad-
dress verification. DPU[8] with 8 entries has area utilization of 0.034mm2 while
128 entries DPU occupies 0.581mm2 of area. This is a very significant increase
in area, whereas the proposed IAV module having 128 entries when configured

14

with same address lines and channel width as DPU has presented increase of
83.4% as compared to 8 entries IAV which has area overhead of 10%. Moreover,
the experimental results presented by Fiorin et al.[8] shows that in a network of
10 nodes, eight DPUs each with 8 entries occupies 9% of the total area (1.125%
per DPU) whereas ten routers utilizes 35% of the area (3.5% per router). This
means that there is a 24% increase in area for each DPU per router. In our
case, a 8 entries IAV module has approximately a 10% area increase compared
to a standard router.

4.2 Power Consumption

Achieving lower power consumption has become one of the main targets in
today’s FPGA designs as devices have considerably increased in capacity, con-
suming more power. In our case, the primary interest is in the run-time power
consumed by a router when the IAV module is in operation. Here the power con-
sumption overhead is defined as the percentage increase in the dynamic power
consumed by an IAV enabled router as compared to a standard router with-
out an IAV module. It is measured using the XPE (Xilinx Power Estimator)
tool[28].

Fig. 11 shows the power consumption overhead results when IAV module is
configured inside local input and output ports of the router considering different
network sizes and number of entries in the lookup table. The results indicate
that the IAV module has less effect on the power consumed as compared to
area overhead with similar configurations. To illustrate this, consider a 32-
bit channel width router with 16 and 128 entries IAV for 256 node network
respectively. The power consumption overhead for the first router is 12.88%,
whereas for the second router it is 59.6%. For 16-bit channel router, the 128
entries IAV module has presented 52% increase in power consumption which
is lower than 32-bit channel router. This overhead can be reduced further by
configuring IAV module inside Local input port of the router only for such
systems where low power consumption is one of the main design requirements.

Table 1: Comparison of area and power consumption overhead of the IAV mod-
ule with existing solutions

SecuritySolution Table entries Area Overhead (%)
Power

Consumption (mW)

SNI[7] 1 2 Not provided

Proposed IAV 1 1.5 10

DPU[8] 8 24 18

Proposed IAV 8 10 14

DPU[8] 16 36 30

Proposed IAV 16 17 16

15

0

2

4

6

8

10

2 4 8

%
 A

re
a

In
cr

e
as

e

Number of entries in IAV table

16-bit channel width 32-bit channel width

(a) 16 node network

0

5

10

15

20

25

30

2 4 8 16 32

%
 A

re
a

In
cr

e
as

e

Number of entries in IAV table

16-bit channel width 32-bit channel width

(b) 64 node network

0

10

20

30

40

50

60

70

80

90

2 4 8 16 32 64 128

%
 A

re
a

In
cr

e
as

e

Number of entries in IAV table

16-bit channel width 32-bit channel width

(c) 265 node network

Figure 10: Area overhead as percentage inc-
rease for security enhanced router (IAV
embedded inside both local ports) as co-
mpared to a standard router.

0

2

4

6

8

10

2 4 8%
 I

n
cr

ea
se

 in
 P

o
w

e
r

C
o

n
su

m
p

ti
o

n

Number of entries in IAV table

16-bit channel width 32-bit channel width

(a) 16 node network

0

5

10

15

20

25

2 4 8 16 32%
 I

n
cr

ea
se

 in
 P

o
w

er
 C

o
n

su
m

p
ti

o
n

Number of entries in IAV table

16-bit channel width 32-bit channel width

(b) 64 node network

0

10

20

30

40

50

60

70

2 4 8 16 32 64 128%
 I

n
cr

e
as

e
 in

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

Number of entries in IAV table

16-bit channel width 32-bit channel width

(c) 256 node network

Figure 11: Power consumption overhead as
percentage increase for security enhanced
router (IAV embedded inside both local ports)
as compared to a standard router

16

In addition, these results are generated by considering the IAV module to
be dynamically active after receiving first flit of the packet. In normal mode,
the IAV module will be active only when the header of each packet is received
and for the rest of the packet flits it will be in idle mode. The proposed IAV
module consumes less power as compared to existing solutions. Table 1 summa-
rizes the comparison of power consumption and area overhead of the proposed
IAV module with the similar solutions[8, 7]. For example, a 16 entry DPU[8]
dissipates 59.9pj of energy when synthesized with 500 MHz clock frequency.
This is equivalent to 30mW of power consumption, whereas a 16 entries IAV
module consumes only 16mW of power. Similarly, 128 entries DPU dissipates
508pj of energy, which is equivalent to 254mW , while a 128 entries IAV module
consumes only 104mW in similar configuration. The power consumption of the
SNI is not measured in by Diguet et al. [7].

5 Performance and Energy Evaluation

In addition to the area and power consumption overhead, evaluation of the
performance and energy consumption overhead is also very important as any
modifications in the communication sub-system must have minimum impact on
the overall system performance. To measure the performance impact on each
router the delay introduced by the IAV module is measured. The total delay is
calculated by using Equation 1.

Delay(Cycles) =
t2 − t1

t1
× total clock cycles (1)

where t1 and t2 are the respective times taken by a router without and with an
IAV module, and the total clock cycles is the number of clock cycles taken by
the standard router, to complete transmission of four flit packet from one input
port to the output port. The synthesis results show that t2 and t1 remain the
same for an IAV module with up to 8 entries and hence do not introduce any
delay in the router. It is also observed that the delay caused by the IAV module
is directly proportional to the number of entries in the IAV module lookup table.
For instance, the standard router has an operating frequency of 248 MHz when
implemented and synthesized without IAV module, while considering the worst
case scenario, an IAV enabled router having 128 entries operates at frequency
of 156 MHz.

To determine the performance and energy consumption overhead of the pro-
posed IAV module for different network sizes, a cycle accurate interconnection
network simulator[14] is used. The synthesized router is configured in this sim-
ulator for a mesh network of 64 and 256 nodes with virtual cut-through packet
switching and XY routing. The packet size is fixed to four flits. Each simula-
tion is carried out for 200,000 cycles and first 2000 cycles are used as a warm-up
period during which the performance is not measured. The results are collected
up to the network saturation point where it is no longer possible to inject new
messages in the system unless previous messages are cleared out.

17

Performance overhead is measured considering total packet latency which is
defined as the total number of cycles taken by all the injected packets to reach
their destination nodes. At first, the packet latency is measured by using the
standard router architecture. In the second phase, the router configurations are
modified to adjust the delay introduced by IAV module and its impact on the
message latency is measured for different number of lookup table entries and
number of nodes in the network.

Regarding energy consumption evaluation, the Orion[26] power model is
used within the simulation framework. Xilinx Power Estimator tool is used to
measure the extra energy being required by the IAV module within the router.
To get the total network energy consumption overhead, the simulator framework
is extended to incorporate IAV module energy overhead. The network energy
is measured by first simulating the network with the standard router and then
with the modified IAV enabled router, using different configuration settings. In
our case, the packet latency and total network energy consumption are measured
for two different types of traffic patterns: synthetic and realistic.

5.1 Synthetic Traffic Patterns

At first, simulations are carried out with three different synthetic traffic patterns:
uniform, transpose and hotspot. With a uniform traffic pattern, the source
and destination is selected randomly for each generated packet with the equal
probability of communication among different nodes. For non-uniform traffic
patterns such as transpose, a fixed source-destination pair is generated for each
packet (a node with binary value an−1, an−2, ..., a1, a0 communicates with the
node an/2−1, ..., a0, an−1, ..., an/2). For realistic applications, some nodes might
receive more packets as compared to other nodes resulting in hotpot nodes in
the network. Therefore, the hotspot traffic patterns are generated considering
different number of hotspot nodes with higher packet injection rate.

5.1.1 Uniform traffic Pattern

Under uniform traffic pattern the network has presented high inter-node com-
munication density as the packets are generated with equal distribution by all
the nodes. The simulation results under uniform traffic pattern are presented
in Figs. 12 and 13.

Network performance is more affected when 64 or 128 entries are used in the
IAV module. For instance, in a 256 node network, the delay in packet latency
in the worst case scenario is increased by 8.12% for a 128 entries IAV module
whereas a 64 entries IAV module resulted in only 5.28% increase as shown in
Figs. 12(b) and 18(a). This impact can be reduced by placing more frequently
communicating nodes in a neighbouring area. To further bring down message
latency for a large number of nodes such as in 256 node mesh network, the IAV
module can be embedded in selective routers, such as those requiring a higher
level of security. It can be also observed from the energy consumption results,
as shown in Fig. 13, that the proposed IAV module has a negligible overhead in

18

1
9

.2

4
0

.0

6
3

.2

9
0

.0

1
2

5
.0

1
4

8
.2

1
8

3
.4

2
5

5
.0

7
1

8
.0

1
,6

0
2

.0

2
,5

7
1

.7

1
9

.5

4
0

.6

6
4

.1

9
1

.2

1
2

6
.6

1
5

0
.5

1
8

5
.3

2
5

7
.0

7
2

0
.2

1
,6

0
4

.3

2
,5

7
4

.0

2
0

.5

4
2

.6

6
7

.1

9
5

.2

1
3

1
.6

1
5

5
.9

1
9

1
.2

2
6

3
.5

7
2

7
.1

1
,6

1
1

.3

2
,5

8
1

.1

0

500

1000

1500

2000

2500

3000

0.005 0.01 0.015 0.02 0.025 0.0275 0.03 0.0325 0.035 0.0357 0.0358

To
ta

l P
ac

ke
t

La
te

n
cy

 (
C

yc
le

s)

x 100,000

Injection Rate(Packet/Node/Cycle)

Without IAV

16 entries-IAV

32 entries-IAV

(a) 64 node network

2
6

.0

6
5

.7

1
3

4
.9

2
5

7
.4

2
9

1
.9

3
8

8
.6

5
1

8
.0

8
2

8
.8

1
,2

3
8

.1

1
,9

2
3

.3

2
7

.3

6
9

.1

1
4

1
.7

2
6

9
.7

3
0

5
.6

4
0

5
.7

5
3

8
.6

8
5

2
.8

1
,2

6
3

.0

1
,9

4
8

.5

2
8

.1

7
1

.0

1
4

5
.4

2
7

6
.4

3
1

2
.9

4
1

4
.9

5
4

9
.6

8
6

5
.7

1
,2

7
6

.4

1
,9

6
2

.0

0

500

1000

1500

2000

2500

0.001 0.0025 0.005 0.009 0.01 0.0125 0.015 0.0175 0.0182 0.0184

To
ta

l P
ac

ke
t

La
te

n
cy

 (
C

yc
le

s)

x 100,000

Injection Rate(Packet/Node/Cycle)

Without IAV
64 entries-IAV
128 entries-IAV

(b) 256 node network

Figure 12: Packet latency under uniform traffic pattern

8
.3

E-0
5

1
.7

E-0
4

2
.5

E-0
4

3
.3

E-0
4

4
.2

E-0
4

4
.6

E-0
4

5
.0

E-0
4

5
.4

E-0
4

5
.8

E-0
4

5
.9

E-0
4

5
.9

E-0
4

8
.9

E-0
5

1
.8

E-0
4

2
.7

E-0
4

3
.5

E-0
4

4
.4

E-0
4

4
.9

E-0
4

5
.3

E-0
4

5
.8

E-0
4

6
.2

E-0
4

6
.3

E-0
4

6
.3

E-0
4

9
.2

E-0
5

1
.8

E-0
4

2
.8

E-0
4

3
.7

E-0
4

4
.6

E-0
4

5
.1

E-0
4

5
.5

E-0
4

6
.0

E-0
4

6
.4

E-0
4

6
.5

E-0
4

6
.6

E-0
4

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

8.0E-04

0.005 0.01 0.015 0.02 0.025 0.0275 0.03 0.0325 0.035 0.0357 0.0358

To
ta

l E
n

er
gy

 C
o

n
su

m
ti

o
n

 (
Jo

u
le

s)

Injection Rate(Message/Node/Cycle)

Without IAV
16 entries-IAV
32 entries-IAV

(a) 64 node network

1
.3

E-0
4

3
.2

E-0
4

6
.4

E-0
4

1
.1

E-0
3

1
.3

E-0
3

1
.6

E-0
3

1
.9

E-0
3

2
.2

E-0
3

2
.3

E-0
3

2
.3

E-0
3

1
.4

E-0
4

3
.6

E-0
4

7
.1

E-0
4

1
.3

E-0
3

1
.4

E-0
3

1
.8

E-0
3

2
.1

E-0
3

2
.5

E-0
3

2
.6

E-0
3

2
.6

E-0
3

1
.5

E-0
4

3
.7

E-0
4

7
.4

E-0
4

1
.3

E-0
3

1
.5

E-0
3

1
.8

E-0
3

2
.2

E-0
3

2
.6

E-0
3

2
.7

E-0
3

2
.7

E-0
3

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

0.001 0.0025 0.005 0.009 0.01 0.0125 0.015 0.0175 0.0182 0.0184
To

ta
l E

n
er

gy
 C

o
n

su
m

ti
o

n
 (

Jo
u

le
s)

Injection Rate(Packet/Node/Cycle)

Without IAV
64 entries-IAV
128 entries-IAV

(b) 256 node network

Figure 13: Total network energy consumption under uniform traffic pattern

terms of network energy consumption. For instance, the IAV module having 64
entries has increased network energy consumption by 11.13% in the worst case
scenario whereas the 128 entries IAV module has incurred 15.9% increase when
simulated for 256 node network. Similarly for 64 node network, the 16 entries
IAV module resulted in 6.85% increase in energy consumption as compared to
10.65% for 32 entries IAV module as shown in Figs. 13(a) and 18(b).

5.1.2 Transpose Traffic Pattern

In non-uniform traffic patterns such as transpose, more packets are being gen-
erated for communication between remote nodes which result in network satu-
ration with lower packet injection rate as compared to uniform traffic pattern.
Furthermore, as the source to destination hop-count varies in non-uniform man-
ner which results in reduced performance overhead as compared to uniform traf-
fic pattern. As it can be seen in Fig. 14(b), the packet latency for 64 and 128
entries IAV module has increased up to 5.02% and 7.71% respectively in the
worst case scenario.

The network energy consumption overhead results are presented in Fig. 15.
For 64 node network, the energy consumption overhead is increased up to 6.19%
when 16 entries IAV module is embedded inside each router whereas 32 entries
IAV module has resulted in 9.63% increase in total network energy consumption.
Furthermore, as presented in Fig. 15(b), routers enabled with 64 and 128 entries
IAV module has incurred 10.54% and 15.06% increase in energy consumption
respectively. These results clearly show that the proposed security mechanism
is a scalable solution for larger number of nodes in the network.

19

9
.1

1
8

.5

2
8

.5

4
0

.0

5
5

.7

9
1

.0

1
3

2
.9

2
1

9
.9

4
1

8
.5

8
8

6
.8

9
.2

1
8

.8

2
9

.0

4
0

.6

5
6

.4

9
1

.8

1
3

3
.7

2
2

0
.7

4
1

9
.3

8
8

7
.7

9
.7

1
9

.7

3
0

.3

4
2

.3

5
8

.5

9
4

.4

1
3

6
.4

2
2

3
.5

4
2

2
.1

8
9

0
.5

0

100

200

300

400

500

600

700

800

900

1000

0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0155 0.0157 0.016 0.0162

To
ta

l P
ac

ke
t

La
te

n
cy

 (
C

yc
le

s)

x 100,000

Injection Rate(Packet/Node/Cycle)

Without IAV

16 entries-IAV

9
.1

1
8

.5

2
8

.5

4
0

.0

5
5

.7

9
1

.0

1
3

2
.9

2
1

9
.9

4
1

8
.5

8
8

6
.8

9
.2

1
8

.8

2
9

.0

4
0

.6

5
6

.4

9
1

.8

1
3

3
.7

2
2

0
.7

4
1

9
.3

8
8

7
.7

9
.7

1
9

.7

3
0

.3

4
2

.3

5
8

.5

9
4

.4

1
3

6
.4

2
2

3
.5

4
2

2
.1

8
9

0
.5

0

100

200

300

400

500

600

700

800

900

1000

0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0155 0.0157 0.016 0.0162

To
ta

l P
ac

ke
t

La
te

n
cy

 (
C

yc
le

s)

x 100,000

Injection Rate(Packet/Node/Cycle)

Without IAV

16 entries-IAV

32 entries-IAV

(a) 64 node network

2
5

.7

3
8

.5

5
1

.7

6
5

.2

1
3

8
.4

1
7

5
.5

2
5

3
.6

4
1

7
.3

8
6

5
.0

2
6

.9

4
0

.5

5
4

.2

6
8

.4

1
4

4
.8

1
8

3
.2

2
6

2
.6

4
2

6
.7

8
7

4
.6

2
7

.6

4
1

.5

5
5

.6

7
0

.1

1
4

8
.3

1
8

7
.3

2
6

7
.4

4
3

1
.8

8
7

9
.8

0

100

200

300

400

500

600

700

800

900

1000

0.001 0.0015 0.002 0.0025 0.005 0.006 0.007 0.0073 0.0075

To
ta

l P
ac

ke
t

La
te

n
cy

 (
C

yc
le

s)

x 100,000

Injection Rate(Packet/Node/Cycle)

Without IAV

64 entries-IAV

128 entries-IAV

(b) 256 node network

Figure 14: Packet latency under transpose traffic pattern

4
.0

8
E-0

5

8
.1

1
E-0

5

1
.2

2
E-0

4

1
.6

2
E-0

4

2
.0

3
E-0

4

2
.4

3
E-0

4

2
.5

2
E-0

4

2
.5

5
E-0

4

2
.5

8
E-0

4

2
.5

9
E-0

4

4
.3

3
E-0

5

8
.6

2
E-0

5

1
.2

9
E-0

4

1
.7

2
E-0

4

2
.1

5
E-0

4

2
.5

8
E-0

4

2
.6

7
E-0

4

2
.7

0
E-0

4

2
.7

4
E-0

4

2
.7

6
E-0

4

4
.5

E-0
5

8
.9

E-0
5

1
.3

E-0
4

1
.8

E-0
4

2
.2

E-0
4

2
.7

E-0
4

2
.8

E-0
4

2
.8

E-0
4

2
.8

E-0
4

2
.8

E-0
4

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0155 0.0157 0.016 0.0162

To
ta

l E
n

er
gy

 C
o

n
su

m
ti

o
n

 (
Jo

u
le

s)

Injection Rate(Packet/Node/Cycle)

Without IAV

16 entries-IAV

32 entries-IAV

(a) 64 node network

1
.3

E-0
4

1
.9

E-0
4

2
.5

E-0
4

3
.2

E-0
4

6
.4

E-0
4

7
.6

E-0
4

8
.9

E-0
4

9
.3

E-0
4

9
.5

E-0
4

1
.4

E-0
4

2
.1

E-0
4

2
.8

E-0
4

3
.5

E-0
4

7
.0

E-0
4

8
.4

E-0
4

9
.8

E-0
4

1
.0

E-0
3

1
.0

E-0
3

1
.5

E-0
4

2
.2

E-0
4

2
.9

E-0
4

3
.6

E-0
4

7
.3

E-0
4

8
.8

E-0
4

1
.0

E-0
3

1
.1

E-0
3

1
.1

E-0
3

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

0.001 0.0015 0.002 0.0025 0.005 0.006 0.007 0.0073 0.0075

To
ta

l E
n

er
gy

 C
o

n
su

m
ti

o
n

 (
Jo

u
le

s)

Injection Rate(Packet/Node/Cycle)

Without IAV
64 entries-IAV
128 entries-IAV

(b) 256 node network

Figure 15: Total network energy consumption under transpose traffic pattern

5.1.3 Hotspot Traffic Pattern

Different number of nodes are selected as hotspot nodes to receive two times
more packets as compared to other nodes in the network. Simulations are carried
out for three different scenarios by selecting centre node in the middle row, three
closely placed nodes in the middle rows and four distributed nodes as hotspots
respectively. For example, Figs. 16 and 17 illustrate detailed simulation results
when four nodes are selected as hotspot nodes that are separated from each
other with minimum hop-count of six and fourteen nodes for the network size
of 64 and 256 nodes respectively.

The IAV module has presented almost similar overhead in terms of packet
latency as compared to other synthetic traffic patterns. For instance, under
single hotspot node, 16 and 32 entries IAV modules configured in 64 node net-
work, have presented packet latency overhead of 1.73% and 7.14% respectively
as illustrated in Fig. 18(a). Moreover, 64 entries IAV module for 256 node net-
work has resulted in 4.2% increase in packet latency whereas 128 entries IAV
module has presented an increase of 8.42%. As shown in Fig. 18(b), the net-
work energy consumption is least affected when hotspot nodes are distributed
with more hop-count as compared to closely placed hotspot nodes. For in-
stance, in case of distributed four hotspots, the 128 entries IAV module has
incurred 12.27% increase in energy consumption as compared to 18.31% in-
crease for closely placed three hotspots. Similarly, for packet latency overhead,
as illustrated in Fig. 18(a), where distributed hotspots presented 6.22% increase
as compared to 8.76% when 128 entries IAV module is used for three closely

20

9
.0

2
4

.4

4
9

.7

8
7

.6

1
7

5
.0

3
4

1
.1

6
3

9
.9

1
,0

9
2

.1

9
.1

2
4

.7

5
0

.2

8
8

.1

1
7

5
.6

3
4

1
.7

6
4

0
.5

1
,0

9
2

.7

9
.5

2
5

.7

5
1

.8

8
9

.9

1
7

7
.5

3
4

3
.6

6
4

2
.4

1
,0

9
4

.7

0

200

400

600

800

1000

1200

0.002 0.005 0.008 0.009 0.0094 0.0096 0.0097 0.0098

To
ta

l P
ac

ke
t

La
te

n
cy

 (
C

yc
le

s)
 x 100,000

Injection Rate(Packet/Node/Cycle)

Without IAV
16 entries-IAV
32 entries-IAV

(a) 64 node network

3
3

.9

8
5

.9

1
4

9
.1

2
3

3
.8

3
5

1
.4

7
3

8
.7

9
8

2
.7

1
,1

8
7

.2

3
5

.3

8
8

.6

1
5

2
.1

2
3

6
.9

3
5

4
.5

7
4

1
.8

9
8

5
.8

1
,1

9
0

.4

3
6

.0

9
0

.1

1
5

3
.7

2
3

8
.5

3
5

6
.2

7
4

3
.5

9
8

7
.5

1
,1

9
2

.1

0

200

400

600

800

1000

1200

1400

0.001 0.002 0.0022 0.00225 0.00227 0.0023 0.00231 0.00232

To
ta

l P
ac

ke
t

La
te

n
cy

 (
C

yc
le

s)

x 100,000

Injection Rate(Packet/Node/Cycle)

Without IAV

64 entries-IAV

128 entries-IAV

(b) 256 node network

Figure 16: Packet latency under hotspot traffic pattern with four distributed
hotspots.

4
.0

7
E-0

5

1
.0

2
E-0

4

1
.6

2
E-0

4

1
.8

2
E-0

4

1
.9

1
E-0

4

1
.9

4
E-0

4

1
.9

6
E-0

4

1
.9

6
E-0

4

4
.2

9
E-0

5

1
.0

8
E-0

4

1
.7

1
E-0

4

1
.9

3
E-0

4

2
.0

1
E-0

4

2
.0

5
E-0

4

2
.0

7
E-0

4

2
.0

7
E-0

4

4
.4

E-0
5

1
.1

E-0
4

1
.8

E-0
4

2
.0

E-0
4

2
.1

E-0
4

2
.1

E-0
4

2
.1

E-0
4

2
.1

E-0
4

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0.002 0.005 0.008 0.009 0.0094 0.0096 0.0097 0.0098To
ta

l E
n

er
gy

 C
o

n
su

m
ti

o
n

 (
 J

o
u

le
s)

Injection Rate(Packet/Node/Cycle)

Without IAV 16 entries-IAV 32 entries-IAV

(a) 64 node network

1
.7

E-0
4

3
.3

E-0
4

3
.6

E-0
4

3
.7

E-0
4

3
.8

E-0
4

3
.8

E-0
4

3
.8

E-0
4

3
.8

E-0
4

1
.8

E-0
4

3
.6

E-0
4

4
.0

E-0
4

4
.0

E-0
4

4
.1

E-0
4

4
.1

E-0
4

4
.1

E-0
4

4
.2

E-0
4

1
.9

E-0
4

3
.7

E-0
4

4
.1

E-0
4

4
.2

E-0
4

4
.2

E-0
4

4
.3

E-0
4

4
.3

E-0
4

4
.3

E-0
4

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

0.001 0.002 0.0022 0.00225 0.00227 0.0023 0.00231 0.00232To
ta

l E
n

e
rg

y
C

o
n

su
m

ti
o

n
 (

Jo
u

le
s)

Injection Rate(Packet/Node/Cycle)

Without IAV 64 entries-IAV 128 entries-IAV

(b) 256 node network

Figure 17: Total network energy consumption under hotspot traffic pattern with
four distributed hotspots.

placed hotspots with hop-count of two.

5.2 Real World Applications Traffic

To further check the scalability of proposed solution, the impact on perfor-
mance is also evaluated through trace-driven simulations of multithreaded real
world applications. For this purpose, applications from the PARSEC bench-
mark suite[4] have been used. The traffic patterns for these benchmark appli-
cations are generated using the Netrace[12, 13] tool which has been designed
specifically to produce traffic patterns by modelling the multithreaded applica-
tion communication traffic traces and incorporating the dependences between
network packets for a 64-core system.

The traffic patterns for different benchmark applications are obtained in a
specific format required for our simulator[1], and simulations are carried out with
the IAV having distinct number of entries in a 64 node network environment.
The impact on average packet latency is shown in Fig. 19. For real world
benchmark applications the network performance is not much affected even
when a 128 entries IAV is placed inside each router in a 64 node network,
whereas the existing solutions have been tested with a reduced number of nodes

21

0

1

2

3

4

5

6

7

8

9

10

Uniform transpose hotspot-1node hotspot-3node hotspot-4node

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 P
ac

ke
t

La
te

n
cy

Synthetic Traffic Patterns

16 entries IAV-64 node 32 entries IAV-64 node 64 entries IAV-256 nodes 128 entries IAV-256 nodes

(a) Percentage increase in packet latency.

0

2

4

6

8

10

12

14

16

18

20

Uniform transpose hotspot-1node hotspot-3node hotspot-4node

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Synthetic Traffic Patterns

16 entries IAV-64 node 32 entries IAV-64 node 64 entries IAV-256 nodes 128 entries IAV-256 nodes

(b) Percentage increase in total newtork energy consumption

Figure 18: Maximum percentage increase in packet latency and total network
energy consumption under different synthetic traffic patterns.

only. For example, the DPU[9] has only been tested for a network of ten nodes
claiming no effect on the network performance while SNI[7] is tested for a 4× 3
mesh network only with zero effect on the network performance. The proposed
IAV module also has zero latency when configured with 16 entries for a network
sixteen nodes.

6 Conclusion

In this paper, a scalable and secure on-chip communication mechanism has been
presented for shared memory systems using NoC as a communication architec-
ture. The proposed IAV module retrieves and verifies the identity and address
of each packet being generated by the processing cores. Security is a prime
concern in a shared memory systems and the proposed IAV module provides
security layer through identity and address verification for each memory access
by embedding itself inside the local channel of each router. The experimental

22

286
300 304 313

0

50

100

150

200

250

300

350

(a) blackscholes application

M
e

ss
ag

e
 L

at
e

n
cy

 (
C

yc
le

s)

6465 6478 6482 6491

0

1000

2000

3000

4000

5000

6000

7000

(b) fluidanimate application
M

e
ss

ag
e

 L
at

e
n

cy
 (

C
yc

le
s)

Without IAV

IAV-32 entries

IAV-64 entries

IAV-128 entries

Figure 19: Average packet latency for 64 node network using multithreaded
applications from PARSEC benchmark suite

results show the area and power consumption overhead for FPGA-based sys-
tems considering different network sizes ranging from 16 to 256 nodes, which
are improved compared to the existing solutions. Furthermore, the comprehen-
sive simulation results have been obtained to show the impact of this approach
on the network performance and energy consumption. In simulations of real
world applications, the proposed architecture has presented lower impact on
the network performance.

References

[1] P. Abad, P. Prieto, L.G. Menezo, A. Colaso, V. Puente, and J.-A. Gre-
gorio. Topaz: An open-source interconnection network simulator for chip
multiprocessors and supercomputers. In Networks on Chip (NoCS), 2012
Sixth IEEE/ACM International Symposium on, pages 99–106, 2012.

[2] Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. Fort-
nocs: Mitigating the threat of a compromised noc. In Proceedings of the
51st Annual Design Automation Conference, DAC ’14, pages 158:1–158:6,
New York, NY, USA, 2014. ACM.

[3] D. Arora, S. Ravi, A. Raghunathan, and N.K. Jha. Secure embedded
processing through hardware-assisted run-time monitoring. In Design, Au-
tomation and Test in Europe, 2005. Proceedings, pages 178–183 Vol. 1,
2005.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
PARSEC benchmark suite: Characterization and architectural implica-
tions. In Proceedings of the 17th International Conference on Parallel

23

Architectures and Compilation Techniques, PACT ’08, pages 72–81, New
York, NY, USA, 2008. ACM.

[5] C. Bobda and A. Ahmadinia. Dynamic interconnection of reconfigurable
modules on reconfigurable devices. Design Test of Computers, IEEE,
22(5):443–451, 2005.

[6] Eric Chien and Péter Ször. Blended attacks exploits, vulnerabilities and
buffer-overflow techniques in computer viruses. Virus, 1, 2002.

[7] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin. Noc-centric
security of reconfigurable soc. In Networks-on-Chip, 2007. NOCS 2007.
First International Symposium on, pages 223–232, 2007.

[8] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano. Secure
memory accesses on networks-on-chip. Computers, IEEE Transactions on,
57(9):1216–1229, 2008.

[9] Leandro Fiorin, Gianluca Palermo, Slobodan Lukovic, and Cristina Silvano.
A data protection unit for noc-based architectures. In Proceedings of the
5th IEEE/ACM International Conference on Hardware/Software Codesign
and System Synthesis, CODES+ISSS ’07, pages 167–172, New York, NY,
USA, 2007. ACM.

[10] Leandro Fiorin, Gianluca Palermo, and Cristina Silvano. A security moni-
toring service for nocs. In Proceedings of the 6th IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’08, pages 197–202, New York, NY, USA, 2008. ACM.

[11] C. H. Gebotys and Y. Zhang. Security wrappers and power analysis for
soc technologies. In Proceedings of the 1st IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’03, pages 162–167, New York, NY, USA, 2003. ACM.

[12] Joel Hestness, Boris Grot, and Stephen W. Keckler. Netrace: Dependency-
driven trace-based network-on-chip simulation. In Proceedings of the Third
International Workshop on Network on Chip Architectures, NoCArc ’10,
pages 31–36, New York, NY, USA, 2010. ACM.

[13] Joel Hestness and Stephen W Keckler. Netrace: Dependency-Tracking
Traces for Efficient Network-on-Chip Experimentation. Technical Report
TR-10-11, The University of Texas at Austin, Department of Computer
Scienc, May 2011.

[14] Jingcao Hu and R. Marculescu. Energy- and performance-aware mapping
for regular noc architectures. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 24(4):551–562, April 2005.

24

[15] T. Huffmire, B. Brotherton, T. Sherwood, R. Kastner, T. Levin, T.D.
Nguyen, and C. Irvine. Managing security in fpga-based embedded sys-
tems. Design Test of Computers, IEEE, 25(6):590–598, 2008.

[16] Georgios Kornaros and Dionisios Pnevmatikatos. A survey and taxonomy of
on-chip monitoring of multicore systems-on-chip. ACM Trans. Des. Autom.
Electron. Syst., 18(2):17:1–17:38, April 2013.

[17] S. Lukovic, P. Pezzino, and L. Fiorin. Stack protection unit as a step to-
wards securing mpsocs. In Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages
1–4, 2010.

[18] Slobodan Lukovic and Nikolaos Christianos. Enhancing network-on-chip
components to support security of processing elements. In Proceedings of
the 5th Workshop on Embedded Systems Security, WESS ’10, pages 12:1–
12:9, New York, NY, USA, 2010. ACM.

[19] Slobodan Lukovic and Nikolaos Christianos. Hierarchical multi-agent pro-
tection system for NoC based MPSoCs. In Proceedings of the International
Workshop on Security and Dependability for Resource Constrained Embed-
ded Systems, S&D4RCES ’10, pages 6:1–6:7, New York, NY, USA, 2010.
ACM.

[20] Shufu Mao and T. Wolf. Hardware support for secure processing in em-
bedded systems. Computers, IEEE Transactions on, 59(6):847–854, 2010.

[21] Open Core Protocol 3.0 Specification, 2013. http://accellera.org/

downloads/standards/ocp/.

[22] J. Porquet, A. Greiner, and C. Schwarz. Noc-mpu: A secure architecture
for flexible co-hosting on shared memory mpsocs. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2011, pages 1–4, March
2011.

[23] M. Rahmatian, H. Kooti, I.G. Harris, and E. Bozorgzadeh. Hardware-
assisted detection of malicious software in embedded systems. Embedded
Systems Letters, IEEE, 4(4):94–97, 2012.

[24] Patrick Schaumont and Anand Raghunathan. Guest Editors’ Introduction:
Security and Trust in Embedded-Systems Design. Design Test of Comput-
ers, IEEE, 24(6):518–520, 2007.

[25] Radu Stefan and Kees Goossens. Noc security using multipath routing.
In 20th Workshop on Circuits, Systems and Signal Processing (ProRISC
2009), pages 522–525. Citeseer, 2009.

[26] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and S. Malik. Orion: a
power-performance simulator for interconnection networks. In Microarchi-
tecture, 2002. (MICRO-35). Proceedings. 35th Annual IEEE/ACM Inter-
national Symposium on, pages 294–305, 2002.

25

[27] H.M.G. Wassel, Ying Gao, J.K. Oberg, T. Huffmire, R. Kastner, F.T.
Chong, and T. Sherwood. Networks on chip with provable security prop-
erties. Micro, IEEE, 34(3):57–68, May 2014.

[28] Xilinx: Power Efficiency, 2013. http://www.xilinx.com/content/

xilinx/en/products/technology/power/.

26

