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Abstract. For a class of subordinators we investigate the spectrum of the

infinitesimal generator of subordinate Brownian motion on a closed manifold.
We consider three spectral functions of the generator: the zeta function, the

heat trace and the spectral action. Each spectral function explicitly yields

both probabilistic and geometric information, the latter through the classical
heat invariants. All constructions are done with classical pseudodifferential

operators and are fully analytically tractable.

1. Introduction

This paper investigates the correspondence between analytic, geometric and
probabilistic objects. On a closed Riemannian manifold (i.e. compact and without
boundary) we consider a subordinate Brownian motion. From the spectrum of its
infinitesimal generator A we extract both geometric and probabilistic information
using spectral functions that aggregate the spectrum suitably. Two of the best
known examples of such functions are the heat trace Trace(etA) and the number of
eigenvalues N(λ) below a certain level λ. The latter is associated with Weyl [48]
who investigated the behaviour of N(λ) for λ→∞ noting that this depends on the
volume and dimension of the manifold.

In the tradition of Blumenthal and Getoor [12], Applebaum [3] computes the
heat trace and Weyl asymptotics for the generator of the Cauchy process on certain
compact Lie groups. He notes that the eigenvalue asymptotics differ markedly from
the standard case for the Laplace operator. Bañuelos and Baudoin [6] give Weyl
asymptotics for subordinate Brownian motion on general closed manifolds for a
class of Laplace exponents (Bernstein functions) that are regularly varying at ∞.
The authors derive the lowest-order heat trace asymptotics involving the volume of
the manifold and prove their dependence on properties of the Bernstein function.

We extend this line of research by considering a subclass of the regularly varying
Bernstein functions that lead to generators which are classical pseudodifferential
operators. This allows the asymptotic computation of spectral functions to arbi-
trary order and reveals the connection between certain stochastic processes and
invariance theory [26]. Our class of Bernstein functions is small enough to be ana-
lytically tractable yet large enough to be interesting in applications. For example,
the class covers the relativistic α-stable processes.

To describe our contribution more precisely, let Bt be a Brownian motion on a
closed manifold M of dimension n and let Xt be a subordinator, i.e. an increasing
Lévy process on [0,∞) such that X0 = 0 almost surely. The generator of the
subordinate process BXt is given by A = −f

(
− 1

2∆
)

for f a Bernstein function
and ∆ the Laplace-Beltrami operator. One shows that A belongs to a suitable

1991 Mathematics Subject Classification. 60G51 (primary), 35S05, 58J42 (secondary).
Key words and phrases. subordinate Brownian motion, pseudodifferential operators, noncom-

mutative residue, zeta function, heat trace, spectral action.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287494084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M.A. FAHRENWALDT

commutative subalgebra of the classical pseudodifferential operators on M that is
generated by ∆. It is then straightforward to explicitly compute several spectral
functions, namely the zeta function Trace((−A+c)−z) and the heat trace Trace(etA)
which also yields Weyl-type asymptotics for −A. To illustrate the limitations of this
approach we also consider the spectral action Trace(Φ((−A+ c)/λ)) for suitable Φ.
Here, c is a positive constant depending on f . One of our key results is illustrated
in the following diagram.

Stochastics Analysis & Geometry

Process on M Spectrum of the generator

BXt Sp(A)y y
α = 2 lim

x→0+

1
xE
(
XT (x)−

)
︸ ︷︷ ︸

Lévy’s arcsine law with first passage time
T (x)=inf{t≥0|Xt>x}

−−−−→ Trace
(
eAt
)
∼
ect
∑∞
j=0 cj(α,M)t(n−j)/α

−ect
∑∞
k=1 c

′
k(α,M)tk log t︸ ︷︷ ︸

heat trace asymptotics for t→ 0+, log terms only if α is rational

Here, the cj and c′k depend on the classical heat invariants of M and on the
coefficients in an asymptotic expansion of f in which the parameter α also plays
a key role. This parameter can be interpreted probabilistically in terms of a first
passage time. Logarithmic terms appear only if α is rational. As the classical heat
invariants depend on geometric features of the manifold such as the volume and the
scalar curvature, this shows that the heat trace of subordinate Brownian motion
mixes geometric and probabilistic information.

The main advantages of our approach are: it is highly transparent and no lo-
cal computations are needed; it immediately generalizes to quantum stochastic
processes in noncommutative algebras; and it allows to distinguish geometry and
probability, the former represented by the Laplace-Beltrami operator ∆ and the
latter being represented by the Laplace exponent f .

One could argue that a complicated calculation involving the eigenvalues of ∆
yields the same results without resorting to pseudodifferential operators. However,
two reasons justify the approach. First, the generator of the subordinate process
is naturally a pseudodifferential operator and these operators are a convenient tool
that allow the computation of the spectral functions. Moreover, we can appeal to
the known connections between traces of powers of the Laplacian and the geom-
etry of the manifold, cf. Proposition 4.3. This is also very much in the spirit of
noncommutative geometry where one tries to infer geometric information from the
spectrum of a strategically associated operator.

There is a related but orthogonal line of research that considers the heat trace
asymptotics of subordinate Brownian motion on domains in Euclidean space with
various boundary conditions [7, 8, 9, 41]. The authors treat the specific examples
of the stable or relativistic stable processes using a combination of hard analy-
sis and probabilistic methods. More general results for a class of Lévy processes
and subordinate Brownian motion were recently obtained in [15]. A key issue in
this direction is how to define the generator of processes when boundary condi-
tions are present. A case at hand is applying Dirichlet boundary conditions when
one considers subordinate processes: the two ways to define a generator would be
as f(∆Dirichlet) or f(∆)Dirichlet where the subscript indicates on which operator
the boundary conditions are imposed, cf. [20] for a spectral comparison of these
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approaches. For manifolds with boundary the second type of generator may be
probabilistically more natural, cf. also [15].

The use of pseudodifferential operators associated to Markov processes is exten-
sively discussed in the seminal joint and individual work of Hoh, Jacob and Schilling
building on [29], cf. also the comprehensive series [32, 33, 34] and the survey papers
[17, 35]. The authors construct a global pseudodifferential calculus on Euclidean
space that allows parametrices, cf. also [16]. The study of Markov processes on
compact Lie groups using pseudodifferential operators is done in Applebaum [4].
The group properties of the manifold allow a global calculus. Neither calculus
is, however, suitable for our purposes as we require classicality of the operators
and work on general closed manifolds. Classical pseudodifferential operators were
also applied in the context of derivative pricing in financial mathematics based on
Normal Inverse Gaussian processes that are a special case of our class of Laplace
exponents, cf. [18].

Our exposition is the companion paper of [25] which considers the analogous
investigation on Euclidean space. At the expense of some minor overlaps we have,
however, ensured that the present paper is self-contained.

This paper is organized as follows. The following section summarizes the key
results. Section 3 introduces a commutative subalgebra of classical pseudodiffer-
ential operators including a parameter-dependent parametrix and complex powers.
In Section 4 we use this calculus to compute certain spectral functions; this is also
of independent interest. Proofs of the key results are collected in Section 5.

2. Key results

We briefly describe the probabilistic setup and summarize selected results. The
reader is referred to [10] for details of Lévy processes, to [5, 30] for studies of sto-
chastic processes on manifolds and for the potential theory of stable processes we
refer to [13]. All proofs are deferred to Section 5.

Brownian motion. Let (M, g) be a compact manifold without boundary en-
dowed with a Riemannian metric g. Let Bt be a canonical Brownian motion on M .
The generator of the corresponding semigroup is 1

2∆ with ∆ the Laplace-Beltrami
operator on M . It is defined as ∆ = div grad and it can be locally described as

∆ =
1
√
g

n∑
i,j=1

∂

∂xj

√
ggij

∂

∂xi

where
√
g is the volume factor

√
det(gij) and gij is the inverse of the metric tensor.

Remark 2.1. Following the probabilistic convention, the Laplace operator just de-
fined has negative spectrum whereas the geometric literature sometimes uses the
convention that ∆ = −div grad leading to positive spectrum.

Subordinator. A subordinator is an increasing Lévy process Xt with values in
[0,∞) and X0 = 0 a.s. that is independent of Bt. The generating function of the
subordinator can be written as

E
(
e−λXt

)
= e−tf(λ),

with Laplace exponent f which is a Bernstein function.

Definition 2.2 (([42, Definition 3.1])). A function f : (0,∞) → R is a Bernstein
function if f is smooth, f(λ) ≥ 0 and (−1)k−1f (k)(λ) ≥ 0 for k ∈ N.

The Bochner subordination principle yields a simple description of the generator
of the subordinate Brownian motion in terms of the Bernstein function.
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Proposition 2.3 (([6])). The infinitesimal generator of BXt is given by −f
(
− 1

2∆
)
.

Any Bernstein function can be given in Lévy-Khintchin form as

f(λ) = a+ bλ+

∫ ∞
0

(
1− e−λt

)
µ(dt), (1)

for constants a, b ≥ 0 and µ a measure (the Lévy measure) on (0,∞) satisfying∫∞
0

min{t, 1} µ(dt) <∞. The function f is uniquely determined by the Lévy char-
acteristic triplet (a, b, µ). We restrict ourselves to Bernstein functions with charac-
teristic triplet (0, 0, µ) whose Lévy measure possesses a locally integrable density m
with respect to Lebesgue measure, the Lévy density. Reasonable assumptions on
this density turn −f

(
− 1

2∆
)

into a classical pseudodifferential operator, cf. [25].
To state the assumptions we recall the definition of asymptotic expansions.

Definition 2.4. Suppose that m : (0,∞)→ R is a function. We say that m(t) ∼∑∞
k=0 pkt

ak as t→ 0+ if pk ∈ R, ak ↑ ∞ and

lim
t→0+

t−aN

(
m(t)−

N∑
k=0

pkt
ak

)
= 0

for every N ≥ 0. Analogously for t→∞ when we require ak ↓ −∞.

The assumptions on the Lévy density then read as follows.

Hypothesis 2.5. Let f(λ) =
∫∞

0

(
1− e−λt

)
m(t)dt be a Bernstein function with

locally integrable density m : (0,∞)→ R such that

(i) it has an asymptotic expansion m(t) ∼ t−1−α/2∑∞
k=0 pkt

k as t→ 0+ for some
α ∈ (0, 2),

(ii) m is of rapid decay at ∞, i.e. m(t)tβ is bounded a.e. for t > 1 for all β ∈ R,
(iii) m(0,∞) < 0 where m(0,∞) =

∫∞
0

(
m(t)− p0t

−1−α/2) dt.
Assumption (i) yields an asymptotic expansion of f for large λ and the second

assumption makes f smooth at the origin. Overall the assumptions ensure that
f
(
− 1

2∆
)
− m(0,∞) is a classical pseudodifferential operator with positive spec-

trum, cf. Proposition 5.1.

The α-stable processes with f(λ) = λα/2 and density m(t) = α/2
Γ(1−α/2) t

−1−α/2

are not in this class of Bernstein functions. However, the class contains the following
examples from [42] where α ∈ (0, 2), a > 0 and Γ denotes the Gamma function.

Bernstein function f Lévy density m

(λ+ 1)α/2 − 1 α/2
Γ(1−α/2)e

−tt−α/2−1

λ/(λ+ a)α/2 sin(πα/2)Γ(1−α/2)
π e−attα/2−2(at+ 1− α/2)

λ(1− e−2
√
λ+a)/

√
λ+ a

e−1/t−at(2+t(e1/t−1)(1+2at))
2
√
πt5/2

Γ
(
λ+a
2a

)
/Γ(λ/2a) a3/2e2at

2
√
π(e2at−1)3/2

Γ(αλ/2 + 1)/Γ(αλ/2 + 1− α/2) e−2t/α

Γ(1−α/2)(1−e−2t/α)1+α/2 .

Remark 2.6. The literature typically uses “local” and “global” scaling classes that
characterize the behaviour of the Bernstein function as λ→∞, cf. for example [14]
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and [40]. The Bernstein functions satisfying Hypothesis 2.5 are regularly varying
at ∞ and belong to the intersection of the local upper and lower scaling classes
used in the cited papers with parameters arbitrarily close to α. The global scaling
conditions need not be satisfied as can be seen in the case of the relativistic stable
processes.

Probabilistic interpretation. We touch upon the relationship between the
asymptotic expansion of the Lévy density on the one hand and probabilistic prop-
erties of the subordinator and the subordinate Brownian motion on the other. The
first connection is phrased in terms of a first-passage time and follows from Lévy’s
arcsine law.

Proposition 2.7 (([25, Theorem 2])). Let Xt be the subordinator corresponding to
the Bernstein function f satisfying Hypothesis 2.5. For any x > 0 define the first
passage time strictly above x by T (x) = inf {t ≥ 0|Xt > x}. Then

α = 2 lim
x→0+

1
xE
(
XT (x)−

)
.

The lowest-order coefficient is thus given as

p0 =
1

t

1

Γ(−α/2)
lim
λ→∞

λ−α/2 logE
(
e−λXt

)
,

for t > 0 with similar expressions for the higher-order coefficients.

Furthermore, the parameter α governs the transition density of the subordinate
process on M , cf. also [14, 40] and references therein for a general class of processes
on Rn.

Proposition 2.8 (([27, Theorem 1])). The transition density p of the process BXt ,
i.e., the heat kernel for −f

(
− 1

2∆
)
, satisfies the estimates

p(t, x, y) ≤ Ct

(d(x, y) + t1/α)n+α

for a constant C > 0 where x, y ∈M and d(x, y) is distance between x and y.

More intuitively we can view the term p0t
−1−α/2 in the asymptotic expansion

of the Lévy density as coming from a tempered stable process with Lévy density
p0e
−λtt−1−α/2 for some λ > 0. As in the comments after Proposition 4.2 of [23]

one can interpret α and p0 as follows.

• The parameter α determines the local behaviour of the process: small values
of α mean that the process BXt exhibits quieter periods interrupted by big
jumps. If α is close to 2, then the process is similar to a Brownian motion.
• The parameter p0 determines the frequency of jumps: the larger this pa-

rameter is, the more often BXt shows jumps larger than a given size.

The zeta function. The first key result illuminates the pole structure of the
zeta function. We phrase this in terms of the shifted positive operator f(− 1

2∆) −
m(0,∞).

Theorem 2.9. Let f be a Bernstein function satisfying Hypothesis 2.5 and set
m(0,∞) =

∫∞
0

(
m(t)− p0t

−1−α/2) dt. Then the zeta function

ζ(z) = Trace
([
f
(
− 1

2∆
)
−m(0,∞)

]−z)
is meromorphic on C with at most simple poles at the points zj = (n − j)/α for
j = 0, 1, 2, . . . More precisely, the singularity structure of the function Γ(z)ζ(z) can
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be expressed as

Γ(z)ζ(z) ∼
∞∑
j=0

cj

z − n−j
α

+

∞∑
k=1

c′k
(z + k)2

in the sense that for large N , the left hand side minus the sums for j, k ≤ N in
the right hand side is holomorphic for Re z > max{(n−N − 1)/α,−N − 1}. The
complex coefficients cj, c

′
k depend on the pk and the classical heat invariants of M .

The double poles only appear if α is rational.

The heat trace expansion. Our second main result is gives the asymptotic
expansion of the heat trace of −f(− 1

2∆).

Theorem 2.10. Let f be a Bernstein function satisfying Hypothesis 2.5. Then the
heat trace expansion of −f

(
− 1

2∆
)

as t→ 0+ is given by

Trace
(
e−tf(−

1
2 ∆)
)
∼ e−m(0,∞)t

 ∞∑
j=0

cjt
−(n−j)/α −

∞∑
k=1

c′kt
k log t


with coefficients cj, c

′
k from Theorem 2.9. The logarithmic terms only appear if α is

rational. Here, the constant m(0,∞) is given by m(0,∞) =
∫∞

0

(
m(t)− p0t

−1−α/2) dt.
The coefficients can in principle be computed to arbitrary order. In dimension

n ≥ 3 the geometric content of the expansion becomes visible in c0 and c2. In
lowest orders we find

Trace
(
e−tf(−

1
2 ∆)
)
∼ e−m(0,∞)t

[
c0t
−n/α + c2t

−(n−2)/α + · · ·
]

with coefficients given by

c0 =
Γ (n/α)

α(2π)n
a
−n/α
0 Ωnvol(M)

c2 =
Γ
(
n−2
α

)
α(2π)n

[
a
−(n−2)/α
0

(n2 − 1)Ωn

6

∫
M

s
√
g dnx− n−2

α a
−(n−2)/α−1
0 a1Ωnvol(M)

]
,

where

a0 = −p0Γ(−α/2)( 1
2 )α/2, a1 = −p1Γ(−α/2 + 1)( 1

2 )α/2−1.

Here Ωn = 2πn/2/Γ(n/2) the volume of the unit sphere in Rn, s the scalar cur-
vature of M and

√
g the Riemannian density. The coefficients mix geometric and

probabilistic information. The powers of 1
2 are due to the generator of Brownian

motion being 1
2 times the Laplace operator. Using the identity Γ(z + 1) = zΓ(z),

the coefficient c0 becomes c0 = a
−n/α
0

Γ(n/α+1)vol(M)
Γ(n/2+1)(4π)n/2 in which form it appears in [6]

for the subordinator f(λ) = λα/2 with a0 = 1.

Weyl asymptotics. An immediate consequence concerns the asymptotics of the
eigenvalues of the positive operator f

(
− 1

2∆
)
, cf. [12] for a probabilistic discussion

of this.

Corollary 2.11. Denote by N(λ) the number of eigenvalues of f
(
− 1

2∆
)

less than
λ. Under Hypothesis 2.5 we have

N(λ) ∼ a−n/α0

vol(M)

(4π)n/2Γ(1 + n/2)
λn/α (2)

as λ→∞ in the sense of Definition 2.4 with a0 = −p0Γ(−α/2)( 1
2 )α/2.
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The analogous result for the subordinator f(λ) = λα/2 is a special case in [3, 6]
and reads

N(λ) ∼ vol(M)

(4π)n/2Γ(1 + n/2)
λn/α.

The authors consider the generator ∆ instead of 1
2∆ so that there are no powers of 1

2 .

The probabilistic and geometric information represented by the cj and c′k, i.e. the
short-time asymptotics of the Lévy density and the heat invariants of the manifold
appears to be the key information that can be extracted from the spectrum of
−f(− 1

2∆) in a pseudodifferential operator approach, cf. the discussion in Remark
4.8.

3. A global pseudodifferential operator calculus

We introduce a commutative subalgebra of the algebra of classical pseudodif-
ferential operators on a closed manifold. This allows us to construct complex
powers (and thence our spectral functions) globally without resorting to symbol
considerations in local coordinates. The subalgebra is motivated by the abstract
pseudodifferential operators introduced in [22].

As most of this material is well known we do not give full proofs of all results
but rather indicate where our approach leads to simplifications.

3.1. A subalgebra of pseudodifferential operators. We briefly recall selected
aspects of classical pseudodifferential operators on closed manifolds, cf. §4.3 of
[45] for details. For an open set X ⊆ Rn denote by C∞(X) the smooth functions
u : X → C and by C∞0 (X) the smooth functions of compact support. For a closed
manifold M let Hs(M) be the usual Sobolev spaces for s ∈ R.

Any pseudodifferential operator A on M can be represented in local coordinates
as an oscillatory integral. Formally forX ⊂ Rn open, we require for any u ∈ C∞0 (X)
that

Au(x) = (2π)−n
∫
Rn

eix·yσA(x, ξ)û(ξ)dξ

where x · y denotes the standard inner product in Rn and û =
∫
e−ix·yu(ξ)dξ is

the Fourier transform of u. We call σA ∈ C∞(X × Rn) the symbol of A and
demand that for any multi-indices α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn0 and
any compact set K ⊂ X there is a z ∈ C and a constant Cα,βK such that

|∂αξ ∂βxσA(x, ξ)| ≤ Cα,β,K〈ξ〉Re z−|α|−β|

for all x ∈ K and ξ ∈ Rn. Here, 〈ξ〉 = (1 + |ξ|2)1/2, |α| = α1 + · · ·αn and
∂αξ = ∂α1

ξ1
· · · ∂α1

ξ1
. We call z the order of the symbol (and the corresponding oper-

ator) and denote the space of such symbols by Sz(X ×Rn). Recall that classical
pseudodifferential operators have asymptotic expansions of the symbol that are
homogeneous in the covariable ξ. This means we can write

σA(x, ξ) ∼
∞∑
j=0

χ(ξ)σAz−j(x, ξ)

in the sense that σA(x, ξ)−
∑N
j=0 χ(ξ)σAz−j(x, ξ) ∈ Sz−N (X×Rn) and the σAz−j(x, ξ)

are homogeneous of degree z − j in ξ, i.e. σAz−j(x, τξ) = τz−jσAz−j(x, ξ) for any
τ > 0. Here χ is a bump function supported away from the origin and equal to 1
for |ξ| ≥ 1. The symbol of the highest order is called the principal symbol of A.

We denote the algebra of classical pseudodifferential operators of order z ∈ C
on M by ΨDOzcl(M). Any A ∈ ΨDOzcl(M) gives rise to a continuous linear map
Hs(M)→ Hs−Re z(M).
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We say that a classical pseudodifferential operator A of order z is elliptic if its
principal symbol vanishes nowhere: σAz (x, ξ) 6= 0 for x ∈ X and ξ 6= 0. It is standard
(cf. §5.5 of [45]) that an elliptic pseudodifferential operator A ∈ ΨDOzcl(M) has a
parametrix B ∈ ΨDO−zcl (M), i.e. an inverse up to order −∞ such that AB− I and
BA− I belong to ΨDO−∞(M).

To make our presentation accurate we introduce the operator

∆1 = −∆ + εΠ

where Π is the projection onto the kernel of ∆ and ε > 0 is smaller than the lowest
non-zero eigenvalue of −∆. Note that ∆1 has positive spectrum so it is invertible.
Moreover, ∆ and ∆1 differ by an operator of order −∞ on the scale of Sobolev
spaces and have the same symbol

σ∆1(x, ξ) = ||ξ||2g =

n∑
i,j=1

gij(x)ξiξj .

The principal symbol of ∆µ
1 is given by σ

∆µ
1

2µ (x, ξ) = ||ξ||2µg by the construction in

Chapter 11.2 of [45], equation (11.11).
We mimic the notion of classicality on the level of operators by formally replacing

the covariable with ∆1.

Definition 3.1. For µ ∈ C we define Ψ2µ to be the set of linear operators A :
C∞(M)→ C∞(M) such that

A ∼ a0∆µ
1 + a1∆µ−1

1 + a2∆µ−2
1 + · · ·

with ak ∈ C for k = 0, 1, 2, . . . where the asymptotic expansion is in the sense that
for any N = 1, 2, . . . we have

A−
N∑
k=0

ak∆µ−k
1 ∈ ΨDO−Ncl (M).

We let Ψ∗ = ∪µ∈CΨµ be the union of all such operators.

Lemma 3.2. The space Ψ∗ is a commutative algebra. Also, Ψ2µ ⊂ ΨDO2µ
cl (M).

Proof. The algebraic property follows from addition and multiplication of asymp-

totic sums. Any such A is a classical pseudodifferential operator as the ∆µ−k
1 are

classical pseudodifferential operators of order 2(µ−k) for k = 0, 1, 2, . . ., cf. [44]. �

3.2. A parameter-dependent parametrix. We now construct a parametrix of
A − λ for A ∈ Ψµ with µ > 0 and λ in a sector in the complex plane. This is
analogous to the parameter-dependent parametrices in a global calculus of classical
pseudodifferential operators on Rn from [39]. We make the following assumption.

Hypothesis 3.3. Let A ∈ Ψ2µ for some µ > 0 with asymptotic expansion

A ∼ a0∆µ
1 + a1∆µ−1

1 + a2∆µ−2
1 + · · · ,

where a0 > 0 and ak ∈ C for k ≥ 1. Let Λ be a sector in the left half of the
complex plane with apex at the origin: Λ = {reiφ ∈ C|π− ρ < φ < π+ ρ} for some
ρ ∈ (0, π/2). Assume that

(i) the principal symbol σA2µ(x, ξ) is positive for nonzero ξ: σA2µ(x, ξ)− λ 6= 0 for
any λ ∈ (−∞, 0] and ξ 6= 0; and

(ii) the spectrum of A is contained in the interval (0,∞); in particular, A is
invertible with bounded inverse.

Remark 3.4. Conditions (i) and (ii) are simply the conditions for constructing the
complex powers Az, cf. §1 of [44] or Chapter 10.1 of [45]. The first assumption is
automatically satisfied as σA2µ(x, ξ) = a0||ξ||2µg and is given for completeness only.
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Let Λδ be a the set Λ∪ {|λ| ≤ δ} for δ > 0 so small that the spectrum of A does
not intersect the disk {λ ∈ C||λ| < δ}. For the shifted Laplacian ∆1 = −∆ + εΠ
we choose δ < ε.

Proposition 3.5. Assume Hypothesis 3.3. Then there is a family of operators
B(λ) ∈ ΨDO−2µ

cl (M) depending on λ ∈ Λδ such that the following holds.

(i) B(λ) is a parametrix for A− λ, i.e. (A− λI)B(λ)− I and B(λ)(A− λI)− I
belong to ΨDO−∞(M) uniformly in λ ∈ Λδ.

(ii) There is an asymptotic expansion B(λ) ∼ b−2µ(λ) + b−2µ−2(λ) + b−2µ−4(λ) +

· · · where each b−2µ−2k(λ) ∈ ΨDO−2µ−2k
cl (M) can be explicitly expressed in

terms of ∆1.
(iii) We have |λ|2((A− λ)−1 −B(λ)) ∈ ΨDO−∞(M) uniformly in λ ∈ Λδ.

In lowest orders the expansion of the parametrix reads

b−2µ(λ) =(a0∆µ
1 − λ)−1,

b−2µ−2(λ) =− a1∆µ−1
1 (a0∆µ

1 − λ)−2,

b−2µ−4(λ) =a2
1∆2µ−2

1 (a0∆µ
1 − λ)−3 − a2∆µ−2

1 (a0∆µ
1 − λ)−2.


Proof. This is analogous to the arguments in Section 3.2 of [39].

1. We first construct the parametrix in the form of an explicit asymptotic ex-
pansion

B(λ) ∼ b−2µ(λ) + b−2µ−2(λ) + b−2µ−4(λ) + · · ·
with operators b−2µ−2k(λ) ∈ ΨDO−2µ−2k

cl (M). Without loss of generality a0 = 1.
We determine the b−2µ−2k(λ) by the formal ansatz[

(∆µ
1 − λ) + a1∆µ−1

1 + · · ·
]

[b−2µ(λ) + b−2µ−2(λ) + · · · ] = 1.

Collecting according to the orders of operators yields

b−2µ(λ) = (∆µ
1 − λ)−1

b−2µ−2k(λ) = −(∆µ
1 − λ)−1

[
a1∆µ−1

1 b−2µ−2(k−1)(λ) + · · ·+ ak∆µ−k
1 b−2µ(λ)

]
for k ≥ 1. In closed form this can be expressed as

b−2µ−2k(λ) =

k∑
l=1

bkl(∆
µ
1 − λ)−(l+1), (3)

with bkl ∈ ΨDO2lµ−2k
cl (M) given by

bkl = (−1)l

∑
|j|=k

aj1 · · · ajl

∆lµ−k
1 . (4)

Here j = (j1, . . . , jn) ∈ Nl is a multi-index of length l and |j| = j1 + · · ·+ jn.
2. To see that B(λ) is a classical pseudodifferential operator note that from

spectral considerations the operator ∆µ
1 − λ is invertible for λ ∈ Λδ. It is also

an elliptic pseudodifferential operator. This means that it has a parametrix B′(λ)
with (∆µ

1 − λ)B′(λ) = I + R1(λ) and B′(λ)(∆µ
1 − λ) = I + R2(λ) with R1, R2 ∈

ΨDO−∞(M). By the identity

(∆µ
1 − λ)−1 −B′(λ) = B′(λ)R1(λ) +R2(λ)(∆µ

1 − λ)−1R1(λ) (5)

the inverse (∆µ
1 − λ)−1 and the parametrix B′(λ) differ by an operator of or-

der −∞ so that (∆µ
1 − λ)−1 ∈ ΨDO−2µ

cl (M). This also implies that b−2µ−2k ∈
ΨDO−2µ−2k

cl (M). Let B(λ) be the operator obtained by asymptotically summing
the b−2µ−2k, cf. Proposition 3.4 of [45].
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3. From the definition of the b−2µ−2k we find

|λ|b−2µ(λ) ∈ ΨDO−2µ
cl (M), |λ|2b−2µ−2k(λ) ∈ ΨDO−2µ−2k

cl (M) (6)

for k = 1, 2, . . . uniformly in λ ∈ Λδ.

4. To see that B(λ) is a parametrix of A − λ set BN (λ) =
∑N−1
k=0 b−2µ−2k(λ).

Then

(A− λ)B(λ) = (A− λ)BN (λ) + (A− λ)(B(λ)−BN (λ)).

By construction, we have |λ|(A−λ)(B(λ)−BN (λ)) ∈ ΨDO−2µ−2N
cl (M) and |λ|((A−

λ)BN (λ)−I) ∈ ΨDO−2µ−2N
cl (M) uniformly in λ ∈ Λδ. As N was arbitrary, we find

that B(λ) is a right parametrix and by a similar argument also a left parametrix.
5. The assertion in (iii) follows from (6) using (5) for the difference (A− λ)−1−

B(λ). If we set R1 = (A− λ)B(λ)− I and R2 = B(λ)(A− λ)− I, then by step 4
we have |λ|2Ri ∈ ΨDO−∞(M) so that the claim follows. �

3.3. Complex powers. We construct the complex powers of certain operators in
Ψ∗ and show that the complex powers also belong to this class.

For Re z < 0 the complex powers of A are defined by a Dunford integral

Az =
i

2π

∫
∂Λδ

λz(A− λ)−1dλ, (7)

where ∂Λδ is a parametrization of the boundary of Λδ. The power λz = ez log λ is
given by the main branch of the logarithm. The integral converges for Re (z) < 0
to a bounded operator in L2(M) since ||(A− λ)−1|| ≤ C/|λ| for some C > 0 from
spectral considerations.

One defines Az = AkAz−k for arbitrary z ∈ C by choosing k ∈ N sufficiently
large so that Re z − k < 0. Lemma 3 of [44] shows that the complex powers have
the group property and that this definition is independent of k.

We can now show that Az also belongs to Ψµz, i.e. has a suitable asymptotic
expansion.

Theorem 3.6. Assume Hypothesis 3.3. Then the operator Az belongs to Ψ2µz for
any z ∈ C and there are operators b2µz−2k ∈ Ψ2µz−2k for k = 0, 1, 2, . . . such that

Az ∼ b2µz + b2µz−2 + b2µz−4 + · · · .

For Re z < 0 these operators are given as Dunford integrals

b2µz−2k =
i

2π

∫
Λδ

λzb−2µ−2k(λ)dλ

with b−2µ−2k(λ) from Proposition 3.5.

We mention for completeness that the map z 7→ Az is a holomorphic family of
operators between Sobolev spaces, cf. Theorem 3 of [44]. This will allow us to
define the zeta function ζA(z) = Trace(A−z) as a meromorphic function.

The lowest-order terms in the asymptotic expansion of Az are given as

bµz(∆1) = az0∆µz
1

bµz−2(∆1) = zaz−1
0 a1∆µz−1

1

bµz−4(∆1) =
[
z(z−1)

2 az−2
0 a2

1 + zaz−1
0 a2

]
∆µz−2

1 ,

 (8)

where we assumed Re z < 0.
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Proof. We show the claim analogously to Section 3.2 of [39]. Without loss of gen-
erality a0 = 1. We need only consider the case Re z < 0. As usual, the idea is to
replace the resolvent in (7) by a parameter-dependent parametrix. We write

i

2π

∫
Λδ

λz(A−λ)−1dλ =
i

2π

∫
Λδ

λzB(λ)dλ+
i

2π

∫
Λδ

λz
[
(A− λ)−1 −B(λ)

]
dλ (9)

with B(λ) be as in Proposition 3.5. By Proposition 3.5 (iii) the second summand
defines an operator of order −∞ on the scale of Sobolev spaces.

To construct the asymptotic expansion recall that B(λ) can be expressed as the
asymptotic sum

∑∞
k=0 b−2µ−2k(λ). Thus, the first integral in (9) has an asymptotic

expansion

i

2π

∫
Λδ

λzB(λ)dλ ∼
∞∑
k=0

b2µz−2k,

where each summand can be rewritten using (3) and (4) as

b2µz−2k =
i

2π

∫
Λδ

λzb−2µ−2k(λ)dλ =

k∑
l=1

bkl
i

2π

∫
Λδ

λz (∆µ
1 − λ)

−(l+1)
dλ.

Each integral can be computed explicitly. For k = 0 we have b−2µ(λ) = (∆µ
1 −λ)−1

so that
b2µz(∆1) = ∆µz

1 .

For b2µz−2k with k = 1, 2, . . . we observe that from spectral considerations the
functions

Λδ → Ψ0 :λ 7→ |λ|k(∆µ
1 − λ)−k

Λδ → Ψ−2µk :λ 7→ (∆µ
1 − λ)−k

are bounded uniformly in λ in operator norm so that we can integrate by parts

i

2π

∫
Λδ

λz (∆µ
1 − λ)

−(l+1)
dλ =

z(z − 1) · · · (z − (l − 1))

l!
(∆µ

1 )z−l

belonging to Ψ2µ(z−l). We had bkl ∈ Ψ2µl−2k so that overall b2µz−2k ∈ Ψ2µz−2k. �

4. Spectral functions of the global pseudodifferential operators

We now compute three spectral functions of certain A ∈ Ψ∗.

4.1. The zeta function. The above construction of the complex powers allows us
to investigate the zeta function Trace(A−z). It is meromorphic and the residues
at the poles are given in terms of the Wodzicki residue [37, 49] which we denote
by RES. For a classical pseudodifferential operator A the Wodzicki residue can be
computed explicitly in terms of the symbol. Let σA−n be the homogeneous function
of degree −n in the symbol expansion. Then

RES(A) =

∫
S∗(M)

σA−nds,

with integration over the unit sphere in the cotangent bundle T ∗(M).

Theorem 4.1. Let M be a closed manifold of dimension n. With A ∈ Ψ2µ satis-
fying Hypothesis 3.3 the zeta function

ζA(z) = Trace(A−z)

is analytic for Re z > n/2µ. It can be extended to a meromorphic function on the
whole complex plane with at most simple poles. The poles are located in the set

P =
{
n−j
2µ

∣∣∣j = 0, 1, 2, . . .
}
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with residues given by

res
z=(n−j)/2µ

ζA(z) =
1

2µ(2π)n
RES

(
A−(n−j)/2µ

)
for j 6= n. The zeta function ζA(z) has a removable singularity at z = 0.

Proof. The arguments of the proof of Theorem 13.1 of [45] apply here. The residue
calculation appeared in [37]. �

Corollary 4.2. The singularity structure of the function Γ(z)ζA(z) can be expressed
as

Γ(z)ζA(z) ∼
∞∑
j=0

cj

z − n−j
2µ

+

∞∑
k=1

c′k
(z + k)2

,

in the sense that for large N , the left hand side minus the sums for j, k ≤ N in the
right hand side is holomorphic for Re z > max{(n−N − 1)/2µ,−N − 1}.

The double poles appear if the poles of the zeta function and of the Gamma
function (located at 0,−1,−2, . . .) coincide. This can only happen if the order
of A is rational. In Section 4.2 we illustrate the computation of the lowest-order
coefficients.

It is well known that the residues of the zeta function of the Laplace operator
yield the classical heat invariants, cf. [26] for a general discussion.

Proposition 4.3. Let (M, g) be a closed Riemannian manifold of dimension n
with Riemannian metric g. Define Ωn to be the volume of the unit sphere in Rn

and vol(M) to be the volume of the manifold M under the canonical Riemannian
density

√
g. Then

RES
(

∆
−n/2
1

)
=Ωnvol(M)

RES
(

∆
−(n−1)/2
1

)
=0

If the dimension satisfies n ≥ 3, then

RES
(

∆
−(n−2)/2
1

)
=

(n2 − 1)Ωn

6

∫
M

s
√
g dnx

with s the scalar curvature of M .

Proof. The claim for RES
(

∆
−n/2
1

)
is Proposition 7.7 of [28], however, with non-

normalized Riemannian density on M ; the result originally appeared in [44].
The second assertion on the vanishing of the Wodzicki residue is a consequence

of the fact that the odd heat invariants of the Laplace operator vanish by Lemma
1.8.2 (d) of [26]. The heat invariants correspond precisely to the residues of the
zeta function.

Finally, the third assertion is the Kastler-Kalau-Walze theorem [36, 38] with
normalization as in Theorem 7.8 of [28]. It also follows from the correspondence of
heat invariants and residues of the zeta function [1]. �

4.2. The heat operator and the heat trace. A consequence of the pole struc-
ture of the zeta function is the short-time asymptotic expansion of the heat trace.

Theorem 4.4. With A ∈ Ψ2µ satisfying Hypothesis 3.3 the asymptotics of the heat
trace Trace

(
e−tA

)
as t→ 0+ are given as

Trace
(
e−tA

)
∼
∞∑
j=0

cjt
−(n−j)/2µ −

∞∑
k=0

c′kt
k log t (10)

with coefficients cj, c
′
k as in Corollary 4.2.
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Proof. The existence of e−tA as a trace-class operator is clear. The asymptotics
are obtained as a Mellin transform of the zeta function, cf. the detailed account in
Chapter 3.3.3 of [43]. �

Example 4.5. Consider a closed Riemannian manifold of dimension n ≥ 3. Choose
a A ∈ Ψ2µ satisfying Hypothesis 3.3 and let P be the set of poles of ζA. From (8)
we infer

ζA(z) = φ0(z)Trace
(
∆−µz1

)
+φ1(z)Trace

(
∆−µz−1

1

)
+φ2(z)Trace

(
∆−µz−2

1

)
+mero

with coefficient functions

φ0(z) = a−z0

φ1(z) = za
−(z+1)
0 a1

φ2(z) = z
2a
−(z+2)
0

[
(z + 1)a2

1 − 2a0a2

]
.

Here mero stands for a meromorphic function that is analytic for Re z > (n−3)/2µ.
We consider the three right-most points of P separately:
z0 = n

2µ : only Trace
(
∆−µz1

)
can have a pole with residue 1

2µ(2π)nRES
(
∆−n/2

)
.

Hence

c0 = res
z=z0

Γ(z)ζ(z)

=
Γ (n/2µ)

2µ(2π)n
a
−n/2µ
0 RES

(
∆
−n/2
1

)
=

Γ (n/2µ)

2µ(2π)n
a
−n/2µ
0 Ωnvol(M) (11)

z1 = n−1
2µ : at this point only Trace (∆−µz) can have a pole. However, due to

RES
(
∆−(n−1)/2

)
= 0 by Proposition 4.3 this trace is regular at z1 so that c1 = 0.

z2 = n−2
2µ : arguing as before we find

c2 = res
z=z2

Γ(z)ζ(z)

=
Γ (z2)

2µ(2π)n

(
φ0(z2)RES

(
∆−(n−2)/2

)
+ φ1(z2)RES

(
∆−n/2

))
=

Γ (z2)

2µ(2π)n

(
φ0(z2)

(n2 − 1)Ωn

6

∫
M

s
√
g dnx+ φ1(z2)Ωnvol(M)

)
.

We thus obtain the heat kernel expansion

Trace
(
e−tA

)
∼ c0t−n/2µ + c2t

−(n−2)/2µ + · · · .
Upon setting A = ∆1, i.e. µ = 1, a0 = 1, a1 = a2 = . . . = 0 we recover the usual
heat trace asymptotics of the Laplace operator.

As a consequence of this result we find Weyl-type asymptotics.

Corollary 4.6. Denote by N(λ) the number of number of eigenvalues of A less
than or equal to λ. Under the assumptions of Theorem 4.4 we have

N(λ) ∼ a−n/2µ0

vol(M)

(4π)n/2Γ(1 + n/2)
λn/2µ

as λ→∞.

Proof. There are several methods to derive the eigenvalue asymptotics from the zeta
function or the heat trace, cf. the discussion following Theorem 6.1.1. of [2]. One
can for example use Karamata’s Tauberian theorem: if the function Trace(e−tA) has
the asymptotics t−n/2µ(c0+c1t+· · · ) as t→ 0+, then N(λ) ∼ c0/Γ(n/2µ+1)λn/2µ,
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cf. the proof of Theorem 3.1 in [47]. The claim follows using (11) and standard
properties of the Gamma function. �

4.3. The spectral action. To complete the picture (and to indicate the limita-
tions of our approach) we now investigate a third spectral function, viz. the spectral
action principle. It was introduced in order to apply tools from noncommutative
geometry to quantum field theory, cf. [19]. It is also of high importance in non-
commutative geometry itself.

Broadly speaking, the spectral action is defined by Trace (Φ (D/λ)) where D
is the Dirac operator, λ ∈ (0,∞) is the cut-off parameter and Φ is any positive
function such that Φ(D/λ) is trace-class. This includes the functions Φ(x) = e−x

corresponding to the heat trace and Φ(x) = x−z corresponding to the zeta func-
tion. The terminology cut-off parameter is based on the case when Φ is a cut-off
function with support in [0, 1] so that Trace (Φ (D/λ)) merely counts the number of
eigenvalues of D in [0, λ]. The spectral action is very hard to compute in general,
so one develops an asymptotic expansion for large λ.

In our context we consider the spectral action Trace(Φ(A/λ)) which represents
a general way to aggregate the eigenvalues of A. The simplest but instructive case
is when Φ is represented as a Laplace transform.

Proposition 4.7. Let A ∈ Ψ2µ satisfy Hypothesis 3.3. Suppose that Φ is given as
a Laplace transform Φ(x) =

∫∞
0
e−txΦ̂(t)dt for a function Φ̂ which is of rapid decay

at 0 and ∞ (i.e. the function Φ is smooth at the origin). Then

Trace (Φ(A/λ)) ∼
∞∑
j=0

cjΦjλ
(n−j)/2µ −

∞∑
k=1

c′kΦ′kλ
−k log λ (12)

as λ→∞ with coefficients cj, c
′
k from Corollary 4.2. Here

Φj =


1

Γ((n−j)/2µ)

∫∞
0
u(n−j)/2µ−1Φ(u)du for n−j

2µ > 0∫∞
0
u−(n−j)/2µΦ̂(u)du for n−j

2µ < 0

Φ′k =
(−1)k+1

2πi

∫ c+i∞

c−i∞

log u+ C

u
Φ(k)(−u)du

with Re c > 0 and C is Euler’s constant. If l = −n−j2µ is a natural number, then

Φj = (−1)lΦ(l)(0), i.e. the spectral action for rational µ depends on the Taylor
series of Φ at 0.

Proof. We start with the heat trace expansion (10). As in the proof of Theorem
1.145 of [21] we argue as follows:

Trace(Φ(A)) = Trace

(∫ ∞
0

e−tAΦ̂(t)dt

)
=

∫ ∞
0

Trace(e−tA)Φ̂(t)dt

∼
∞∑
j=0

cj

∫ ∞
0

Φ̂(t)t−(n−j)/2µdt+

∞∑
k=1

c′k

∫ ∞
0

Φ̂(t)tk log tdt.

If (n− j)/2µ > 0, then by standard properties of the Laplace transform we find∫ ∞
0

Φ̂(t)t−(n−j)/2µdt =
1

Γ ((n− j)/2µ)

∫ ∞
0

u(n−j)/2µ−1Φ(u)du.
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Denote the Laplace transform of a function f by L[f ]. Then one has by Parseval’s
formula∫ ∞

0

Φ̂(t)tk log tdt = lim
s→0

∫ ∞
0

e−stΦ̂(t)tk log tdt

= lim
s→0

1

2πi

∫ c+i∞

c−i∞
L[log t](u)L

[
tkΦ̂(t)

]
(s− u)du

= lim
s→0

(−1)k+1

2πi

∫ c+i∞

c−i∞

log u+ γ

u
Φ(k)(s− u)du

with Re c > 0 and γ being Euler’s constant. �

Remark 4.8. We first note that the Weyl asymptotics of Corollary 4.6 formally
follow from (12) by setting Φ equal to the indicator function on [0, 1] and consid-
ering only the highest order in λ. However, due to Gibb’s phenomenon we cannot
represent the indicator function as a Laplace transform. To overcome this, different
approaches have been developed that allow more general Φ such as step functions,
cf. [24, 31]. In a broader perspective, even if we had techniques for general Φ,
Proposition 4.6 suggests that we only recover the coefficients of the heat trace ex-
pansion (or the singularities of the zeta function). This indicates the limits of the
pseudodifferential operator approach to extract information from the spectrum of
an infinitesimal generator of a stochastic process.

5. Proof of the key results

The generator of the subordinate Brownian motion is a pseudodifferential oper-
ator in the commutative algebra Ψ∗ obtained from applying a Bernstein function
to the operator 1

2∆. We state the claim for the positive operator f(− 1
2∆).

Proposition 5.1. Let f be a Bernstein function satisfying Hypothesis 2.5 whose
density m of the Lévy measure has the asymptotic expansion

m(t) ∼ t−1−α/2 (p0 + p1t+ p2t
2 + · · ·

)
as t→ 0+ for some α ∈ (0, 2) and real coefficients pk with p0 > 0. Set m(0,∞) =∫∞

0

(
m(t)− p0t

−1−α/2) dt. Then f
(
− 1

2∆
)
−m(0,∞) ∈ Ψα and

f
(
− 1

2∆
)
−m(0,∞) ∼ a0∆

α/2
1 + a1∆

α/2−1
1 + a2∆

α/2−2
1 + · · · , (13)

in the sense of Definition 3.1 with

ak = −pkΓ(−α/2 + k)
(

1
2

)α/2−k
. (14)

Moreover, f
(
− 1

2∆
)
−m(0,∞) satisfies Hypothesis 3.3 so that it has complex powers

in Ψ∗.

Note that the leading term on the right hand side of (13) can be viewed as
the generator of a stable process. This drives both the heat kernel estimates in
Proposition 2.8 and the Weyl estimates in Corollary 2.11.

To prove the proposition we need a version of Watson’s Lemma.

Lemma 5.2 (([11, Chapter 4.1])). Let m : (0,∞)→ R be a function. We assume
that m is locally integrable, there is an a > 0 such that |m(t)| ≤ eat for all t ≥ 1
and it has an asymptotic expansion m(t) ∼

∑∞
k=0 pkt

αk as t→ 0+ where the ak are
real numbers such that α0 > −1 and αk increases monotonically as k → ∞. We
then have the asymptotic expansion∫ ∞

0

e−xtm(t)dt ∼
∞∑
k=0

pkΓ(αk + 1)x−1−αk
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as x→∞ where Γ denotes the Gamma-function.

of Proposition 5.1. We first note that A = f(− 1
2∆) −m(0,∞) is a classical pseu-

dodifferential operator by Theorem 1 of [46]. This applies since f has symbol-like
properties by Proposition 1 (v) of [25] in the sense that f is smooth on [0,∞) and
for every l ∈ N there is a constant Cl ≥ 0 such that |f (l)(λ)| ≤ Clλα/2−l as λ→∞.

It remains to prove the validity of the asymptotic expansion (13) in the sense of
Definition 3.1. Set m(t) = m(t) − p0t

−1−α/2. It belongs to L1(0,∞) and has the
asymptotic expansion

m(t) ∼ t−1−α/2 (p1t+ p2t
2 + · · ·

)
as t→ 0+. We decompose f(λ) =

∫∞
0

(1− e−λt)m(t)dt as

f(λ) =

∫ ∞
0

(1− e−λt)m(t)dt+ p0

∫ ∞
0

(1− e−λt)t−1−α/2dt

= m(0,∞)−
∫ ∞

0

e−λtm(t)dt+ p0Γ(−α/2)λα/2 (15)

Applying Lemma 5.2 to the integral in (15) yields the asymptotic expansion

f(λ)−m(0,∞) ∼ a0λ
α/2 + a1λ

α/2−1 + a2λ
α/2−2 + · · ·

in the sense of Definition 2.4.
Now let λk ≥ 0 be the eigenvalues of −∆ in increasing order. By Definition 2.4

we have for any N ∈ N that

lim
k→∞

λ
α/2+N
k

f(λk/2)−m(0,∞)−
N∑
j=0

ajλ
α/2−j
k

 = 0,

so that the left hand side is bounded as a function of λ. This means in terms of
operators that

∆
α/2+N
1

f( 1
2∆)−m(0,∞)−

N∑
j=0

aj∆
α/2−j
1


has bounded eigenvalues. Since it is a classical pseudodifferential operator, it must
have order 0 or less. This means

f(− 1
2∆)−m(0,∞)−

N∑
j=0

aj∆
α/2−j
1 ∈ ΨDO

−α/2−N
cl (M)

so that f(− 1
2∆)−m(0,∞) ∼

∑∞
j=0 aj∆

α/2−j
1 in the sense of Definition 3.1.

Finally, Hypothesis 3.3 is also satisfied: the principal symbol of f(− 1
2∆) −

m(0,∞) is given by a0||ξ||2µg which only takes positive values for ξ 6= 0 and the
spectrum of the operator is contained in the interval (0,∞). �

It is now easy to prove the key theorems. We set A = f
(

1
2∆
)
−m(0,∞) as in

Proposition 5.1 with coefficients ak from (14). Theorem 2.9 follows from Theorem
4.1 and Theorem 2.10 is a consequence of Theorem 4.4 with explicit computations
from Example 4.5.

Finally, Corollary 2.11 follows from Corollary 4.6 which gives the eigenvalue
asymptotics of the shifted operator f(− 1

2∆)−m(0,∞) in terms of λn/α. This trans-

lates to eigenvalue asymptotics of f(− 1
2∆) in terms of (λ+m(0,∞))n/α. However,

(λ+m(0,∞))n/α/λn/α → 1 as λ→∞ whence the result.
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