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Research Highlights 

Photocatalytic CO2 reduction combined with H2 through water splitting is studied. 

The carbon in CO can form CH3OH directly, so can increase CH3OH concentration. 

Excessive CO will react with HCOOCH3, resulting in a reduced CH3OH concentration. 

CH3OH concentration increases with increasing the reactor temperature and pressure. 

CH3OH product and reaction rate vary widely with time due to changing sun light. 
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reduction of carbon dioxide by CO co-feed in a novel twin reactor is developed with 19 

three subsidiaries of chemical reaction kinetics, gas-liquid mass transfer, and transient 20 

sun light intensity distribution. Thanks to previous experimental work as the reliable 21 

verification for the numerical simulation, the variations of the CH3OH concentration 22 

with the CO/CO2 ratio of gas mixture, pressure and temperature are obtained and 23 

analyzed. The results show that the carbon in CO can form CH3OH directly, however 24 

the excessive CO will react with HCOOCH3 to form CH3CHO, which results in a 25 

reduced CH3OH concentration. Besides, the CH3OH concentration subsequently 26 

increases as the temperature and pressure increase, and the CH3OH product and 27 

reaction rate vary widely with time due to the changing sun light intensity during the 28 

day. 29 

Key words: twin reactor, CO2 reduction, water splitting, photocatalysis, methanol, sun 30 

light intensity 31 

32 
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Nomenclature 33 

c concentration mol·m
-3

 

D diffusion coefficient m
2
·s

-1
 

I light intensity W·m
-2

 

k kinetic rate constant m
4
·s

-1
·mol

-2
 

L reactor height mm 

M molecular weight g·mol
-1

 

p pressure Pa 

r reaction rate mol·m
-3

·s
-1

 

R radius mm 

t time s 

T temperature K 

V molar volume cm
3
·mol

-1
 

N mass transfer rate mol·m
-2

·s
-1

 

K mass transfer coefficient s·mol·kg
-1

·m
-1

 

H Henry constant Pa·m
3
·mol

-1
 

V ionic strength mol·m
-3

 

E electric field intensity V·m
-1

 

z ionic valence  

h solubility coefficient  
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X sun unit vector  

Y sun unit vector  

Z sun unit vector  

m energy coefficient  

Rf reflectivity  

Tr transmissivity  

Ab absorptivity  

n refractivity  

L latitude  

Day day of year  

Hr  local solar time  

Greek letters 34 

δ film thickness mm 

ν chemical calculated number  

ρ density kg·m
-3

 

 correction coefficient of Henry constant  

 proportional coefficient S 

 hour angle  

 declination  

 solar altitude  
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 solar azimuth  

Subscript and superscript 

A material 

B material 

F material 

O material 

a chemical calculated number 

b chemical calculated number 

f chemical calculated number 

o chemical calculated number 

L liquid phase 

G gas phase 

j number of reaction 

i number of reactant or ion 

m interface 

s sun 

x carbon source from carbon dioxide  

y carbon source from carbon monoxide 

35 
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1. Introduction 36 

Since fossil fuels dominate more than 85% of energy consumption all over the 37 

world at the status quo, the rapid depletion has concentrated the growing concerns on 38 

the global energy crisis and an increasing carbon dioxide (CO2) emission, which 39 

motivates researchers exploring the CO2 reduction and utilization[1-5]. In the past 40 

decades, the conversion of CO2 to value-added chemicals and renewable fuels has 41 

been investigated by various methods such as thermal conversion, plasma conversion 42 

and photoreduction[6]. Among various technologies of energy conservation and 43 

emission reduction[7-9], the photocatalytic CO2 reduction into hydrocarbon fuels is a 44 

promising and eco-friendly method to prevent the increasing of greenhouse gases and 45 

depletion of fossil resources[5, 10, 11]. Since the first demonstration in 1979 by Inoue 46 

et al.[12], the approach of photocatalytic CO2 reduction has received increasing 47 

attentions [13-15]. 48 

For the traditional photo-technology, CO2 can be reduced by water (H2O) to CO, 49 

CH4, HCOOH, HCHO and CH3OH over semiconductor materials such as TiO2, ZnO, 50 

WO3, SiC, CdS, and GaP[16-19]. However, CO2 is hardly reducible since H2O is a 51 

weak reductant. What’s worse, the hydrocarbon products can be easily oxidized, 52 

which results in a low output ratio of hydrocarbons unexpectedly. In recent years, the 53 

technology of hydrogen production from photocatalytic water splitting has achieved a 54 

rapid progress [20, 21]. In 1987, Thampi et al.[22] reported that under the action of 55 
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TiO2 nanoparticles catalyst, CH4 was produced from the gas mixture of H2 and CO2 56 

with the production rate of about 116L/h. And in 2007, Lo et al.[23] confirmed that 57 

the CO2 photoreduction was improved by a mixture of H2 and H2O compared with 58 

that using solely H2 or H2O. Many studies on CO2 hydrogenation to yield organics 59 

have been reported, which provide a theoretical basis for the chemical reactions of 60 

photocatalytic reduction of carbon dioxide with the combination of H2 through water 61 

splitting. Twin reactor system can combine the water splitting with CO2 reduction 62 

because the reducibility of H2 is better than H2O, so the CO2 photo-reduction with H2 63 

through water splitting is more viable to produce fuels at a higher yield rate [11], as it 64 

has also been experimentally investigated in previous studies [24-26].  65 

Twin reactor usually consists of two components for photocatalytic water splitting 66 

and photocatalytic CO2 reduction, which are divided by an ion exchange unit. H
+
 from 67 

water splitting is directly used to perform the CO2 photo-hydrogenation with the 68 

participation of the light at the room temperature. The conversion of CO2 into 69 

hydrocarbons is feasible from the thermodynamic viewpoint. For instance, the 70 

photoreduction of CO2 to produce CH3OH can be represented by five possible 71 

reactions as listed in Table 1. The enthalpies (H
0
) of all the five reactions are 72 

negative at room temperature, which proves that the reactions are exothermic. The 73 

Gibbs free energies (G
0
) of the reactions (1), (4) and (5) are negative, meaning that 74 

the reactions are spontaneous, equilibrium favorable. Moreover, although the G
0 

of 75 
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the reactions (2) and (3) are positive, meaning that they are thermodynamically not 76 

spontaneous, those values are still much lower than that of water splitting (H
0
= 77 

285.8 kJ/mol; G
0
 = 237.1 kJ/mol). Hence, the photocatalysts can convert photon 78 

energy into chemical energy accompanied by this slightly positive change in the 79 

Gibbs free energy[25]. The combination of photocatalytic CO2 reduction with water 80 

splitting in the twin rector presents a better performance than the CO2 reduction by 81 

H2O, and prevents the oxygenation of hydrocarbon products.  82 

CO was considered as a co-feed to enhance the production efficiency of CH3OH, 83 

and a certain amount of CO mixed with the reaction gases can promote CH3OH 84 

production under the same conditions because CO is thermodynamically more 85 

favorable as compared to the CO2. However, due to the limitation of experimental 86 

conditions, it did not address how the CO affects the methanol production. When the 87 

reaction gas is pure CO, CH3OH cannot be produced, which was not clarified in detail 88 

by previous studies. Other operating conditions such as the pressure and temperature 89 

in the twin reactor, which are crucial to the photocatalytic reduction of CO2, were also 90 

not deeply investigated. What’s more, there are few related studies about the sun light 91 

effect on the photocatalytic CO2 reduction in twin reactors, since most of the 92 

experiments were carried out in an indoor environment with the artificial light instead 93 

of natural sources. Adopting the software SOLTRACE in this work, the principle of 94 

CO effect on the CH3OH production and the impacts of operation conditions on the 95 
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conversion efficiency from CO2 to CH3OH in the twin reactor are deeply investigated 96 

by unveiling the sun light distribution as well as the photocatalytic CO2 reduction 97 

mechanism. It can be of benefit to the optimal design and operation of twin reactors 98 

by investigating the photocatalytic reduction of CO2 by CO co-feed combined with 99 

photocatalytic water splitting.  100 

2. Model development 101 

2.1 Physical model 102 

The physical model of the twin reactor can be simplified as Fig.1, which has been 103 

described in detail and experimentally investigated in some of the photocatalytic 104 

characteristics [24-26]. With a Nafion membrane for segregation, 0.15 g of 105 

Pt/CuAlGaO4 and 0.15 g of Pt/SrTiO3:Rh in 2mM FeCl2 were placed in the CO2 106 

reduction reactor solution, while 0.30 g of commercial WO3 in 2mM FeCl3 solution 107 

were put in the water splitting reactor. In the novel twin reactor, one of the key 108 

components is the modified Nafion membrane that allows not only the transport of 109 

hydrogen ions, but also the exchange of the electron mediators (Fe
2+

/Fe
3+

). The 110 

electron is shuffled via the electron mediator (Fe
2+

/Fe
3+

) through membrane. The mass 111 

and charge balances are kept concurrently by the diffusion of H
+
 through the 112 

membrane[27]. The pH of the solution is 2.6 (adjusted by adding sulfuric acid) and 113 

the volume of each compartment of the twin reactor is 225 mL. The H
+
 generated by 114 

H2O splitting goes through the Nafion membrane and forms H2, which reacts with 115 
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CO2 to produce organic compounds. In this work, the multi-physics coupling software 116 

is used to simulate the above process with the following necessary assumptions, based 117 

on which the model can be well simplified without introducing unexpected errors. 118 

1) Since the driving force of the photoreaction originates from the light energy 119 

but not the thermal energy (i.e. molecular kinetics at high temperatures) in 120 

the traditional catalytic reaction, most photoreactions work at about the room 121 

temperature. As a result, the thermodynamic effects of the reactions at 122 

various temperatures can be ignored because of the extremely weak 123 

provoking energy in the photocatalysis. 124 

2) Thanks to the magnetic stirrer in the experiment for the uniform catalyst 125 

distribution in the solution, the reaction rate is assumed to be a function of 126 

the time rather than the location. 127 

3) Since CO and CO2 are free from liquidation at the room temperature and 128 

atmospheric pressure, the mixture can be seen as an ideal gas so as to easily 129 

calculate the partial pressure based on the ideal gas equation. Besides, the 130 

chemical process at the interface of the gas and liquid is not taken into 131 

account. 132 

4) The effects of the catalyst surface topography, concentration, band gap, and 133 

absorption or desorption existing on the surface of catalyst particles are 134 

ignored. 135 

5) The chemical reactions in the twin reactor take the following forms, which 136 

are regarded as single step reactions [25]. 137 
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 138 

With the aforementioned equations, the inferior middle processes are reasonably 139 

ignored for clearly uncovering the chemical mechanism from the reactants to 140 

products.  141 

2.2 Chemical reaction kinetics model 142 

For the chemical reaction aA+bB=fF+oO under constant volume conditions, the 143 

reaction rate can be expressed as follows: 144 

1 1 1 1A B F Odc dc dc dc
r

a dt b dt f dt o dt
     

                 
(1)

 145 

When the reaction is an elementary reaction, the above formula can be written as:    146 

A B
a br kc c                              (2) 147 

Where k is the reaction rate constant. 148 

In previous studies, it has been noticed that the photocatalytic reaction rate follows 149 

a power law expression of the light intensity[28]. By experimental studies, Herrmann 150 

suggested that the reaction rate is proportional to the light intensity at low light 151 
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intensities, and when the light intensity is high, the reaction rate is proportional to the 152 

square root of the light intensity [29]. According to the work of Wang et al., the 153 

photocatalytic reaction rate was considered proportional to the n-th power of the light 154 

intensity[17], where n is a factor to describe the reaction rate dependency on light 155 

irradiance. The higher n value of the reactor represents that the incident photons can 156 

be more effectively utilized for photocatalytic reactions[30]. Therefore, the reversible 157 

catalytic reaction rate equation can be written with the following form: 158 

1

im
j j i

i

r I k c



 
 
 
                           

(3) 
159 

Where rj is the reaction rate, kj is the kinetic rate constant, ci is the concentration, i is 160 

the chemical calculated number, I is the light intensity, m is the energy coefficient. 161 

2.3 Mass transfer model 162 

Many physical models, such as two-film, Higbie penetration, Danckwerts surface 163 

renewal and turbulent mass transfer theories, all formerly clarified the process of 164 

gas-liquid mass transfer. With two-film theory adopted in this work, a static film on 165 

each side of the gas-liquid interface is assumed as the gas membrane and liquid 166 

membrane. Moreover, the mass transfer rate of gas-liquid interphase depends on the 167 

diffusion rate of gas and liquid membranes.  168 

( ) ( )
G L

G m m L
G L

D D
N p p c c

RT 
   

                   
(4)

 169 

Where N is the mass transfer rate, DG and DL are the diffusion coefficients of 170 

components in gases and liquids respectively. G and L are the gas and liquid film 171 

thicknesses, which are about 0.1mm according to the experiment. cm and pm represent 172 
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the concentration and partial pressure at the interface of the membranes. pG is the 173 

partial pressure of components in gas phase while cL is the concentration of 174 

components in liquid phase. R is the perfect gas constant and T is temperature. 175 

By eliminating the interface concentration cm and the interface pressure pm in the 176 

above formula, the mass transfer rate is expressed as: 177 

( *) ( * )

* ; *

G LG L

G
L

N K p p K c c

p
p Hc c

H

   

 
                   (5) 178 

Where p* is the partial pressure in equilibrium with cL, c* is the concentration in 179 

equilibrium with pG, H is the Henry constant, KG and KL represent gas phase total 180 

mass transfer coefficient and liquid phase total mass transfer coefficient: 181 

1

1

G
G L

G L

L
G L

G L

K
RT H

D D

K
RT

HD D

 

 









                          (6) 182 

When the solution contains electrolytes, electrolyte ions will reduce the solubility 183 

of gases[31]. The Henry constant of gas in pure H2O is different from that in the 184 

electrolyte solution, hence the correction coefficient of Henry constant has been 185 

introduced in the research of Ueyama and Hatanaka [31]: 186 

0

lg i i

H H

h V








                           (7) 187 

H
0 

and H are Henry constants for the gas in the water and electrolyte, respectively. Vi 188 

is the electrolyte ionic strength calculated by Eq.(8) as followed, and hi is the reduced 189 

coefficient of solubility caused by electrolyte, which is calculated by h=h
+
+h

-
+h*. h

+
, 190 
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h
-
, h* are influenced by the positive and negative ions, and the dissolved gases.  191 

21

2
i j jV c z                             (8) 192 

Where, cj is the ion concentration, zj is the ion valence.  193 

The electrolytes in the system are H
+
, Fe

2+
, Fe

3+
, Cl

-
 and SO4

2-
 according to the 194 

related experiments. 195 

As the physical model introduced above, the pH which has an impact on gas 196 

dissolution process, is set as 2.6 (adjusted by adding sulfuric acid) of the solution. In 197 

this work, H
+
 is considered with the same electrolyte as Fe

2+
, Fe

3+
 and Cl

-
, so the pH 198 

effects on the solubility of CO2 are illustrated by the correction coefficient  199 

Diffusion coefficients of CO2 in the mixed gas and the solution can be calculated 200 

according to the following formula [32, 33]: 201 

3/2

1/3

5

2

1/3 2

712.5 2.591 10
log 8.1764

435.7 1 1

( )

L

G

A BA B

D
T T

T
D

P V V M M


   

 


              (9) 202 

Where A, B are two kinds of gas in the reactor, p is the total pressure, T is the 203 

temperature in the reactor and equals to 293K and M is the molar mass of the gas. V is 204 

the molar volume with the constant of 22.4 L/mol, due to the fact that the CO2 and 205 

CO are ideal gases in the reactor. 206 

2.4 Sun light model 207 

Since the photocatalytic CO2 reduction cannot work without sun light input in the 208 

twin reactor, most of the experiments were carried out in an indoor environment with 209 
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the artificial light for substitute. Unfortunately, few related studies emphasized on the 210 

sun light distribution. While in this work, with the software SOLTRACE based on the 211 

theory from Spencer and Murty[34], the sun light distribution is obtained and 212 

analyzed for its optical performance, which is highly affected by the light diffusion as 213 

a key factor that can be predicted by setting up accurate parameters in SOLTRACE. 214 

The angular intensity distribution and position of the light together define the 215 

natural energy source, and in Beijing (northern latitude 40°5’, east longitude 116°16’), 216 

the 200nd day during the year with the maximum sun declination is usually selected 217 

for sunlight acquisition. Although the Gaussian and Pillbox apparatus can together 218 

determine the sun shape, it cannot represent the real sunlight condition due to the 219 

complex atmospheric factors as well as inevitable errors from the optical equipment. 220 

Since the Gaussian leads to an obviously higher error than pillbox, it is dismissed in 221 

this paper. The sunlight position (Xs, Ys, Zs) can be calculated by latitude (L: +N, -S), 222 

day of year (Day) and local solar time (Hr) as follows. 223 

 

s s s

s s

s s s

sin cos

Y sin

Z cos cos

X  



 







                           (10) 224 

Where s is the solar altitude and s is the solar azimuth, which can be obtained by 225 

the following form. 226 

 

1

1

s

sin (cos cos cos sin sin )

sin sin sin
cos [ ]

cos cos

s

s

s

L L

L

L

   

 








 




                (11) 227 



 

16 

 

Where  is the hour angle, =15(Hr-12). Hr is the local solar time, which is set 228 

from 8:00 to 16:00.  is the declination, = 23.45sin (360(284+Day)/365). Day is set 229 

as 200, implying the maximum sun declination, and L as 40°5’, representing the 230 

latitude of Beijing.  231 

Optical properties can be obtained from the movement of rays when they hit the 232 

surfaces. According to the experiment of Chen et al.[25], the body of the reactor is 233 

made of glass which can be treated as fully transparent, so the absorptivity is set to 0. 234 

The reflectivity and the transmissivity of the twin reactor can be obtained by the 235 

following forms. 236 

1 2

1 2

( )

1

( )

n n
R

T

f
n n

Rf r






 

                         (12) 237 

Where Rf is reflectivity, Tr is transmissivity, n is refractivity that can be obtained 238 

from the relevant literature. In addition, due to the effect of the element surface shape 239 

on ray direction, surface slope error and surface specularity can be included, which 240 

together affect ray interaction at the surface in a combined form as follows  241 

 2 2 1/2
optical slope specularity(4 )                     (13) 242 

Where optical is the comprehensive factor, slope means the surface slope error, and 243 

specularity represents the surface specularity error. 244 

2.5 Evaluation of model parameters 245 

The variables and constants used in this model are listed in Table 2 with specific 246 
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meanings. The geometric parameters were obtained based on the real dimensions of 247 

the reactor and the kinetics parameters by fitting the experimental data. Since the 248 

reaction rate constant is not known in advance, should it be assumed at first. The 249 

CH3OH production can be numerically calculated and then compared with the 250 

experimental data. If the error is not within the allowed value, should the reaction rate 251 

constant as aforementioned above be reassumed for expecting results. The mass 252 

transfer parameters were estimated by Eqs.(7-9) with the initials referring to the 253 

experiment, and the sun position parameters by Eqs.(10) and (11) with the optical 254 

variables determined by Eqs.(12) and (13). 255 

2.6 Validation of numerical results 256 

Adopting the reaction engineering and diluted species transport modules, Eqs.(2-3) 257 

and (4-9) can be solved respectively by the commercial software COMSOL. Besides, 258 

the reaction rate can be iterated as the light intensity was taken into account by 259 

setting global variables.  260 

The initial conditions with pure CO2 are simulated as shown in Figs. 2 and 3. As 261 

observed, the H2 concentration increases sharply at the beginning since the H
+
 262 

generated by water decomposition penetrates directly through the ion exchange 263 

membrane to form H2. Meanwhile, the O2 concentration in the water splitting reactor 264 

also rises with a half production of H2. However as the O2 increases stably, the H2 in 265 

the CO2 reduction reactor no longer increases and keeps at the rate of nearly 266 
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0.85μmol/g, showing that H2 already reaches a balance since it generated by water 267 

splitting transforms directly into the CH3OH and other organic compounds. So at the 268 

beginning five hours, even the increasing rate declines gradually, the CH3OH rises 269 

conspicuously with an average speed of 0.8mol/g/h, while it then keeps almost no 270 

change with the ultimate concentration of 4mol/g as shown in Fig. 3. Besides, Fig. 3 271 

shows that the average error between the simulation and experimental results is about 272 

13.12%, which is quite small. Moreover, Fig. 4 shows the concentration of methyl 273 

formate (HCOOCH3) and acetaldehyde (CH3CHO) as the two by-products during the 274 

reaction process, which reaches 1.5mol/g and 0.4mol/g with the average rate of 275 

0.1875mol/g/h and 0.05mol/g/h respectively within the 8 hours. The CO2 and CO 276 

composite process is also numerically calculated with the initial partial pressure of 277 

CO set in accordance with the mixing ratio of 1:10 and 1:5 respectively as shown in 278 

Figs. 5 and 6, which clearly present that the final CH3OH concentrations are 279 

7.8mol/g and 7.4mol/g after 8 hours with the relative errors between the 280 

simulating and experimental results of 4.41% and 2.92% respectively.  281 

The comparisons show that the numerical and experimental results agree well with 282 

each other, so the modelling approach is reliable and accurate enough to predict the 283 

photocatalytic CO2 reduction performances in the twin reactor system. Since the 284 

photocatalytic CO2 reduction gradually recedes with an ultimately constant CH3OH 285 

concentration, the working conditions of the twin reactor system can be optimized by 286 
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means of numerical simulations. 287 

3. Results and discussion 288 

3.1 Effects of gas mixture ratio 289 

Pure CO as the reactant gas is specifically simulated so as to unveil its 290 

characteristics during the overall process at the ambient pressure and temperature of 291 

1atm and 293K respectively. Fig. 7 shows that the H2 presents almost twice the 292 

concentration of O2, while the CH3OH concentration displays nearly zero due to the 293 

non-conversion from hydrogen, which clearly shows the unavailable direct chemical 294 

reaction between the pure CO and hydrogen or hydrogen ions. However, very small 295 

amount of CH3OH (less than 0.1mol/g) exists inevitably due to the following 296 

reaction in the reduction reactor: 297 

photocatalyst

photocataly

UV,
2 22

UV,+ -
2 3 2

st

H O+CO H +CO

CO +6H +6e CH OH+H O




 298 

The overall process at various gas mixture ratios of CO to CO2 was numerically 299 

simulated during the whole 20 hours with the carbon elements symbolized as Cx from 300 

CO2 and Cy from CO for easy analysis of the carbon trails existing in methanol. Fig.8 301 

displays the processing amount of CxH3OH as well as CyH3OH at the CO to CO2 ratio 302 

of 1:10. During the first 8 hours, it can be observed that the CxH3OH has a higher 303 

production rate of 0.53 mol/g/h, while only 0.45 mol/g/h for the CyH3OH. After 304 

then, it changes little for the concentration of CxH3OH with a stable amount of 305 

4.2mol/g at the 20th hour. But for CyH3OH, the concentration always increases and 306 
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eventually reaches about 4.6 mol /g after 20 hours. It shows that the CO can easily 307 

transform into the methanol and other organic compounds through the chemical 308 

chains as aforementioned above compared with CO2. As shown in Fig. 9, the 309 

production of CxH3OH declines with the CO to CO2 ratio of 1:5 compared with the 310 

case of 1:10, and only arrives at 3.6mol/g for the maximum concentration. As for 311 

CyH3OH, the concentration reaches the peak of nearly 3.75 mol/g at the time of 7.5h, 312 

then it decreases to 2.1 mol /g after 20 hours and finally presents a declining 313 

tendency. Since CO plays a double role during the CH3OH production, may the 314 

CH3OH increase due to its positive effect with a small amount, while should other 315 

organic compounds unexpectedly emerge with an excessive CO ratio. Fig. 10 shows 316 

the CH3CHO concentration at various gas mixture ratios, which clearly presents the 317 

always small value less than 0.5 mol/g at the first 5 hours. But the CH3CHO 318 

production rate increases as the chemical process continues, and it presents a higher 319 

value at a more intensive CO concentration. Besides, as the ratio of CO to CO2 320 

changes from 1/20 to 1/2, the CH3CHO concentration increases from 1.5 mol/g to 321 

3.75 mol/g after 20 hours.  322 

Figs.8-10 fully explain the mechanisms of the CO dominance in the photocatalytic 323 

process, which can be described by the following three reactions. 324 

photocatalyst

photocatal

UV

ys

,
3 3 

UV,
3 3 2

t

photocatalystUV,+ -
3 3

(1)   CH OH+CO HCOOCH

(2)   HCOOCH +CO CH CHO+CO

(3)   HCOOCH +4H +4e 2CH OH
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When a small amount of CO gas exists in the reactor, the CO reacts with CH3OH to 326 

form HCOOCH3 as reaction (1). Due to the excessive H2, the HCOOCH3 reacts with 327 

H2 and then generates CH3OH as reaction (3). In this case, the CO promotes CH3OH 328 

production. However, if CO gas is excessive, the CO will react with CH3OH to form 329 

HCOOCH3 at first, then the remaining CO continues to react with HCOOCH3 to 330 

produce CH3CHO as reaction (2), which prevents HCOOCH3 from reacting with H2, 331 

resulting in an indirect consumption of CH3OH. 332 

The aforementioned conclusion about the gas mixture ratio can be of benefit to the 333 

design and application of photocatalytic reactor systems. For the twin reactor, the 334 

optimal CO to CO2 ratio as well as reaction time can be recommended with reference 335 

to the light intensity distribution and reactor structure. Moreover, increasing the 336 

byproduct of CH3CHO during the photocatalytic process proves efficient to prevent 337 

the side effect as reaction (2). 338 

3.2 Effects of pressure 339 

The mixture pressure in the reactor is of great importance for photocatalytic 340 

reactions. According to Henry's law, the partial pressure of the mixture above the 341 

liquid surface can directly affect the gas solubility. Besides, the mass transfer rate 342 

between the gas and liquid is related greatly with the partial pressure in terms of the 343 

two-film theory. Fig. 11 presents the production of CH3OH at various pressures 344 

during the 20 hours. It can be seen that as the initial pressure in the reactor goes up, 345 
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the CH3OH yield increases. When the initial pressure reaches 20atm, the CH3OH 346 

concentration arrives at 14.5 mol/g at 20 hours, which is 52.6% higher than that of 347 

9.5 mol/g at the initial pressure of 1atm. As for the efficiency, increasing the initial 348 

pressure in the reactor will consume more energy, so a viable operating pressure 349 

should be determined for the photocatalytic reactor in potential engineering 350 

applications. 351 

3.3 Effects of temperature 352 

The Henry constant can well represent the solubility of CO2 and CO in the 353 

electrolyte. As observed from Table 3, the Henry constant increases as the temperature 354 

rises. Besides, the diffusion coefficients of the gas-gas as well as gas-liquid depend 355 

also upon the temperature according to Eq.(9), so the mass transfer correlates strongly 356 

with the temperature. Fig.12 shows the CH3OH concentration change at various 357 

temperatures, from which can be seen that the CH3OH concentration increases with 358 

increasing the temperature, resulting from the comprehensive effects of the solubility 359 

and mass transfer rate. At the temperature of 273K, the ultimate CH3OH concentration 360 

at the 20th hour is 6 mol/g, while at 333K it approaches 11mol/g, presenting an 361 

increase of 83.2%, which shows that the conversion efficiency can be greatly 362 

improved by increasing the temperature. 363 

3.4 Effects of light intensity 364 

Based on the optical parameters of the physical model aforementioned, the sun 365 
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light model is developed and the two dimensional distribution of light intensity on a 366 

cross-section of the reactor is achieved by adopting the software SOLTRACE. Fig. 13 367 

shows transient solar flux distribution in the reactor at 8:00, 12:00 and 16:00 368 

respectively, in which the positive direction of the X-axis stands for the west of the 369 

reactor and the positive direction of the Y-axis represents the zenith of the twin reactor. 370 

The distribution of light intensity at 8:00 is shown in Fig.13(a), which presents a 371 

non-uniform light intensity scattering in the reactor with 832W/m
2 

on the east side 372 

while only 205W/m
2
 on the west side, and the average light intensity is about 373 

331W/m
2
. As observed from Fig. 13(b), the reactor receives the sunlight vertically at 374 

12:00, so the light intensity arrives at the maximum value in the center while 375 

minimum value at both sides, due to the combined effects of the reflection and 376 

refraction by the glass container and colored solution with the iron ion. The average 377 

light intensity can reach nearly 620W/m
2
 in the reactor. Fig. 13(c) presents the 378 

irradiation at 16:00 from the west side of the reactor with the average light intensity of 379 

330W/m
2
.  380 

From 8:00 to 16:00, the average light intensity is obtained and shown in Fig.14, 381 

which is fitted to the following equation: 382 

I=-1996+435Hr-18Hr
2                                     

(14) 383 

It can be seen from Fig.14 that the results from the fitting curve agree well with the 384 

simulated data, so the fitting equation is reliable enough to predict the average light 385 



 

24 

 

intensity change over time. Together with the chemical reaction engineering module, 386 

the photocatalytic CO2 reduction combined with the water splitting process can be 387 

numerically simulated within the 8 hours (8:00-16:00) at the temperature of 293K and 388 

pressure of 1atm. Fig.15 shows the concentration changes of O2, H2 and CH3OH over 389 

time, proving that the CH3OH product using the sun light source is less than that using 390 

the artificial light source in the experiment of Cheng et al.[25]. As also clearly 391 

presented, the CH3OH concentration reaches the climax of 4.6 μmol/g about 3.5 hours 392 

later (11:30), and then it begins to decrease gradually due to the weakened light 393 

intensity. Fig. 16 shows the reaction rates of the photocatalytic CO2 reduction and 394 

water splitting process. It can be seen that as the light intensity decreases, the 395 

photocatalytic water splitting reaction becomes slow, resulting in the reduced H2 for 396 

CO2 reduction. The CH3OH generating rate is lower than the consuming rate of side 397 

reaction, leading to a reduced CH3OH concentration. 398 

Since the experimental study with the artificially unchanged light intensity could 399 

not totally represent the photocatalytic CO2 reduction mechanism, the numerical 400 

method with the natural sunlight changing over time demonstrates an attractive 401 

superiority, which is closer to the real chemical process.  402 

4. Conclusions 403 

The photocatalytic reduction of CO2 by CO co-feed combined with photocatalytic 404 

water splitting in a novel twin reactor was modeled and numerically investigated. 405 
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The CH3OH concentration almost linearly increases with increasing the gas mixture 406 

ratio of CO to CO2, due to the direct conversion from CO to CH3OH. However, the 407 

excessive CO will react with HCOOCH3 to form CH3CHO unexpectedly, resulting in 408 

a reduced CH3OH concentration. Besides, with the temperature and pressure increase, 409 

the CH3OH production rises owing to the enhanced mass transfer.  410 

The numerical method with the natural sunlight in this work proves a more accurate 411 

photocatalytic CO2 reduction process compared with the experiment, and the yield of 412 

CH3OH is reduced due to the changing light intensity. It suggests the artificial light 413 

intensity adjusted with time in the photocatalytic experiment, so as to obtain a more 414 

reliable result. 415 
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Table 1 

Changes of enthalpy and Gibbs free energy in the CO2 photoreduction reactions[25]. 

Reactions H
0
 (kJ/mol) G

0
 (kJ/mol) 

(1) CO2 (g)+3H2 (g)→CH3OH (l) +H2O (l) －137.8 －10.7 

(2) CO(g)+CH3OH(l)→HCOOCH3(l) －25.6 6.6 

(3) CO2(g)+H2(g)+CH3OH(l)→HCOOCH3(l)+H2O(l) －31.8 25.8 

(4) HCOOCH3(l)+2H2 (g)→2CH3OH(l) －99.7 －35.1 

(5) HCOOCH3(l)+CO(g)→CH3CHO(l)+CO2 (g) －96.5 －86.7 
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Table 2  

Model parameters for photocatalytic CO2 reduction by CO co-feed. 

Type Variables Values Unit 

kinetics k1 3.3E-9 m
3
/(s﹒mol) 

 k2 1.7E-2 m
9
/(s﹒mol

3
) 

 k3 2.3E-4 m
3
/(s﹒mol) 

 k4 1.7E-4 m
3
/(s﹒mol) 

 k5 5.8E-6 m
6
/(s﹒mol

2
) 

 k6 8.1E-3 m
3
/(s﹒mol) 

Geometry L 11.46 cm 

 R1 5 cm 

 R2 4 cm 

Mass transfer DL 1.9809E-9 m
2
/s 

 DG 1.41E-7 m
2
/s 

 G  0.1 mm 

 L 0.1 mm 

 hH
+ 0  

 hFe
2+ 0.049  

 hFe
3+ 0.054  

 hSO4
2- 0.029  

 hCl
- 0.021  



 

30 

 

 hCO
2 -0.019  

 hCO 0.0283  

 H0CO 5.43E+6 kPa 

 H0CO2 1.44E+5 kPa 

Initial value CCO2 30.73 mol/m
3 

 CCO 0.095 mol/m
3
 

 CSO4
2- 1.21 mol/m

3
 

 CFe
2+ 8.8 mol/m

3
 

 CFe
3+ 8.8 mol/m

3
 

 I 900 W/m
2
 

 m 1  

Sun position Day 200  

 Hr 8-16  

 L 40°5’  

 Shape Pillbox  

Optical property Rfglass 0.05  

 Trglass 0.95  

 Abglass 0  

 nglass 1.6  

 Rfsolution 0.2  
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 Trsolution 0.48  

 Absolution 0.32  

 nsolution 1.3  

 Slope error(mrad) 3.5  

 Specularity error(mrad) 0.2  
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Table 3  

Henry constants at various temperatures. 

T(K) 

Gas    

273 278 283 288 293 298 303 308 313 318 323 333 

CO (Hx×10
-6 

kPa) 3.57 4.01 4.48 4.95 5.43 5.88 6.28 6.68 7.05 7.39 7.71 8.32 

CO2(Hx×10
-5 

kPa) 0.37 0.8 1.05 1.24 1.44 1.66 1.88 2.12 2.36 2.60 2.87 3.46 

  
1000

x solvent
c

H M
H
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Fig.1. Schematic of photocatalytic CO2 reduction and H2O splitting in the twin 

reactor. 

Fig.2. H2 and O2 production during photocatalytic reduction of pure CO2 with 

simultaneous H2O splitting. 

Fig.3. CH3OH production during photocatalytic reduction of pure CO2 with 

simultaneous H2O splitting. 

Fig.4. CH3CHO and HCOOCH3 production during photocatalytic reduction of pure 

CO2 with simultaneous H2O splitting. 

Fig.5. CH3OH concentration at the CO to CO2 ratio of 1:10. 

Fig.6. CH3OH concentration at the CO to CO2 ratio of 1:5. 

Fig.7. H2, O2 and CH3OH concentrations with the pure CO as the reactant gas. 

Fig.8. Total CH3OH concentration, CxH3OH and CyH3OH concentrations at the CO 

to CO2 ratio of 1:10. 

Fig.9. Total CH3OH concentration, CxH3OH and CyH3OH concentrations at the CO 

to CO2 ratio of 1:5. 

Fig.10. CH3CHO concentrations at various CO to CO2 gas mixture ratios. 

Fig.11. CH3OH concentration change with time at various pressures. 

Fig.12. CH3OH concentration change with time at various temperatures. 

Fig.13. Light intensity distribution in CO2 reduction reactor. (a) 8:00, (b) 12:00, (c) 

16:00. 

Fig.14. Average light intensity change over time under the sun light. 
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Fig.15. Concentration changes of H2, O2 and CH3OH over time under the sun light. 

Fig.16. Reaction rate changes of water splitting and CO2 reduction over time under 

the sun light. 
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H
0 
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is the electrolyte ionic strength calculated by Eq.(2) as follows, and hi is the reduced 

coefficient of solubility caused by electrolyte, which is calculated by h=h
+
+h

-
+h*. h+

, 

h
-
, h* are influenced by the positive and negative ions, and the dissolved gases.  

21

2
i j jV c z                             (2) 

Where, cj is the ion concentration, zj is the ion valence.  
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reduction of carbon dioxide by CO co-feed in a novel twin reactor is developed with 19 

three subsidiaries of chemical reaction kinetics, gas-liquid mass transfer, and transient 20 

sun light intensity distribution. Thanks to previous experimental work as the reliable 21 

verification for the numerical simulation, the variations of the CH3OH concentration 22 

with the CO/CO2 ratio of gas mixture, pressure and temperature are obtained and 23 

analyzed. The results show that the carbon in CO can form CH3OH directly, however 24 

the excessive CO will react with HCOOCH3 to form CH3CHO, which results in a 25 

reduced CH3OH concentration. Besides, the CH3OH concentration subsequently 26 

increases as the temperature and pressure increase, and the CH3OH product and 27 

reaction rate vary widely with time due to the changing sun light intensity during the 28 

day. 29 

Key words: twin reactor, CO2 reduction, water splitting, photocatalysis, methanol, sun 30 

light intensity 31 

32 
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Nomenclature 33 

c concentration mol·m
-3

 

D diffusion coefficient m
2
·s

-1
 

I light intensity W·m
-2

 

k kinetic rate constant m
4
·s

-1
·mol

-2
 

L reactor height mm 

M molecular weight g·mol
-1

 

p pressure Pa 

r reaction rate mol·m
-3

·s
-1

 

R radius mm 

t time s 

T temperature K 

V molar volume cm
3
·mol

-1
 

N mass transfer rate mol·m
-2

·s
-1

 

K mass transfer coefficient s·mol·kg
-1

·m
-1

 

H Henry constant Pa·m
3
·mol

-1
 

V ionic strength mol·m
-3

 

E electric field intensity V·m
-1

 

z ionic valence  

h solubility coefficient  
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X sun unit vector  

Y sun unit vector  

Z sun unit vector  

m energy coefficient  

Rf reflectivity  

Tr transmissivity  

Ab absorptivity  

n refractivity  

L latitude  

Day day of year  

Hr  local solar time  

Greek letters 34 

δ film thickness mm 

ν chemical calculated number  

ρ density kg·m
-3

 

 correction coefficient of Henry constant  

 proportional coefficient S 

 hour angle  

 declination  

 solar altitude  
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 solar azimuth  

Subscript and superscript 

A material 

B material 

F material 

O material 

a chemical calculated number 

b chemical calculated number 

f chemical calculated number 

o chemical calculated number 

L liquid phase 

G gas phase 

j number of reaction 

i number of reactant or ion 

m interface 

s sun 

x carbon source from carbon dioxide  

y carbon source from carbon monoxide 

35 
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1. Introduction 36 

Since fossil fuels dominate more than 85% of energy consumption all over the 37 

world at the status quo, the rapid depletion has concentrated the growing concerns on 38 

the global energy crisis and an increasing carbon dioxide (CO2) emission, which 39 

motivates researchers exploring the CO2 reduction and utilization[1-5]. In the past 40 

decades, the conversion of CO2 to value-added chemicals and renewable fuels has 41 

been investigated by various methods such as thermal conversion, plasma conversion 42 

and photoreduction[6]. Among various technologies of energy conservation and 43 

emission reduction[7-9], the photocatalytic CO2 reduction into hydrocarbon fuels is a 44 

promising and eco-friendly method to prevent the increasing of greenhouse gases and 45 

depletion of fossil resources[5, 10, 11]. Since the first demonstration in 1979 by Inoue 46 

et al.[12], the approach of photocatalytic CO2 reduction has received increasing 47 

attentions [13-15]. 48 

For the traditional photo-technology, CO2 can be reduced by water (H2O) to CO, 49 

CH4, HCOOH, HCHO and CH3OH over semiconductor materials such as TiO2, ZnO, 50 

WO3, SiC, CdS, and GaP[16-19]. However, CO2 is hardly reducible since H2O is a 51 

weak reductant. What’s worse, the hydrocarbon products can be easily oxidized, 52 

which results in a low output ratio of hydrocarbons unexpectedly. In recent years, the 53 

technology of hydrogen production from photocatalytic water splitting has achieved a 54 

rapid progress [20, 21]. In 1987, Thampi et al.[22] reported that under the action of 55 
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TiO2 nanoparticles catalyst, CH4 was produced from the gas mixture of H2 and CO2 56 

with the production rate of about 116L/h. And in 2007, Lo et al.[23] confirmed that 57 

the CO2 photoreduction was improved by a mixture of H2 and H2O compared with 58 

that using solely H2 or H2O. Many studies on CO2 hydrogenation to yield organics 59 

have been reported, which provide a theoretical basis for the chemical reactions of 60 

photocatalytic reduction of carbon dioxide with the combination of H2 through water 61 

splitting. Twin reactor system can combine the water splitting with CO2 reduction 62 

because the reducibility of H2 is better than H2O, so the CO2 photo-reduction with H2 63 

through water splitting is more viable to produce fuels at a higher yield rate [11], as it 64 

has also been experimentally investigated in previous studies [24-26].  65 

Twin reactor usually consists of two components for photocatalytic water splitting 66 

and photocatalytic CO2 reduction, which are divided by an ion exchange unit. H
+
 from 67 

water splitting is directly used to perform the CO2 photo-hydrogenation with the 68 

participation of the light at the room temperature. The conversion of CO2 into 69 

hydrocarbons is feasible from the thermodynamic viewpoint. For instance, the 70 

photoreduction of CO2 to produce CH3OH can be represented by five possible 71 

reactions as listed in Table 1. The enthalpies (H
0
) of all the five reactions are 72 

negative at room temperature, which proves that the reactions are exothermic. The 73 

Gibbs free energies (G
0
) of the reactions (1), (4) and (5) are negative, meaning that 74 

the reactions are spontaneous, equilibrium favorable. Moreover, although the G
0 

of 75 
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the reactions (2) and (3) are positive, meaning that they are thermodynamically not 76 

spontaneous, those values are still much lower than that of water splitting (H
0
= 77 

285.8 kJ/mol; G
0
 = 237.1 kJ/mol). Hence, the photocatalysts can convert photon 78 

energy into chemical energy accompanied by this slightly positive change in the 79 

Gibbs free energy[25]. The combination of photocatalytic CO2 reduction with water 80 

splitting in the twin rector presents a better performance than the CO2 reduction by 81 

H2O, and prevents the oxygenation of hydrocarbon products.  82 

CO was considered as a co-feed to enhance the production efficiency of CH3OH, 83 

and a certain amount of CO mixed with the reaction gases can promote CH3OH 84 

production under the same conditions because CO is thermodynamically more 85 

favorable as compared to the CO2. However, due to the limitation of experimental 86 

conditions, it did not address how the CO affects the methanol production. When the 87 

reaction gas is pure CO, CH3OH cannot be produced, which was not clarified in detail 88 

by previous studies. Other operating conditions such as the pressure and temperature 89 

in the twin reactor, which are crucial to the photocatalytic reduction of CO2, were also 90 

not deeply investigated. What’s more, there are few related studies about the sun light 91 

effect on the photocatalytic CO2 reduction in twin reactors, since most of the 92 

experiments were carried out in an indoor environment with the artificial light instead 93 

of natural sources. Adopting the software SOLTRACE in this work, the principle of 94 

CO effect on the CH3OH production and the impacts of operation conditions on the 95 
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conversion efficiency from CO2 to CH3OH in the twin reactor are deeply investigated 96 

by unveiling the sun light distribution as well as the photocatalytic CO2 reduction 97 

mechanism. It can be of benefit to the optimal design and operation of twin reactors 98 

by investigating the photocatalytic reduction of CO2 by CO co-feed combined with 99 

photocatalytic water splitting.  100 

2. Model development 101 

2.1 Physical model 102 

The physical model of the twin reactor can be simplified as Fig.1, which has been 103 

described in detail and experimentally investigated in some of the photocatalytic 104 

characteristics [24-26]. With a Nafion membrane for segregation, 0.15 g of 105 

Pt/CuAlGaO4 and 0.15 g of Pt/SrTiO3:Rh in 2mM FeCl2 were placed in the CO2 106 

reduction reactor solution, while 0.30 g of commercial WO3 in 2mM FeCl3 solution 107 

were put in the water splitting reactor. In the novel twin reactor, one of the key 108 

components is the modified Nafion membrane that allows not only the transport of 109 

hydrogen ions, but also the exchange of the electron mediators (Fe
2+

/Fe
3+

). The 110 

electron is shuffled via the electron mediator (Fe
2+

/Fe
3+

) through membrane. The mass 111 

and charge balances are kept concurrently by the diffusion of H
+
 through the 112 

membrane[27]. The pH of the solution is 2.6 (adjusted by adding sulfuric acid) and 113 

the volume of each compartment of the twin reactor is 225 mL. The H
+
 generated by 114 

H2O splitting goes through the Nafion membrane and forms H2, which reacts with 115 
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CO2 to produce organic compounds. In this work, the multi-physics coupling software 116 

is used to simulate the above process with the following necessary assumptions, based 117 

on which the model can be well simplified without introducing unexpected errors. 118 

1) Since the driving force of the photoreaction originates from the light energy 119 

but not the thermal energy (i.e. molecular kinetics at high temperatures) in 120 

the traditional catalytic reaction, most photoreactions work at about the room 121 

temperature. As a result, the thermodynamic effects of the reactions at 122 

various temperatures can be ignored because of the extremely weak 123 

provoking energy in the photocatalysis. 124 

2) Thanks to the magnetic stirrer in the experiment for the uniform catalyst 125 

distribution in the solution, the reaction rate is assumed to be a function of 126 

the time rather than the location. 127 

3) Since CO and CO2 are free from liquidation at the room temperature and 128 

atmospheric pressure, the mixture can be seen as an ideal gas so as to easily 129 

calculate the partial pressure based on the ideal gas equation. Besides, the 130 

chemical process at the interface of the gas and liquid is not taken into 131 

account. 132 

4) The effects of the catalyst surface topography, concentration, band gap, and 133 

absorption or desorption existing on the surface of catalyst particles are 134 

ignored. 135 

5) The chemical reactions in the twin reactor take the following forms, which 136 

are regarded as single step reactions [25]. 137 
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 138 

With the aforementioned equations, the inferior middle processes are reasonably 139 

ignored for clearly uncovering the chemical mechanism from the reactants to 140 

products.  141 

2.2 Chemical reaction kinetics model 142 

For the chemical reaction aA+bB=fF+oO under constant volume conditions, the 143 

reaction rate can be expressed as follows: 144 

1 1 1 1A B F Odc dc dc dc
r

a dt b dt f dt o dt
     

                 
(1)

 145 

When the reaction is an elementary reaction, the above formula can be written as:    146 

A B
a br kc c                              (2) 147 

Where k is the reaction rate constant. 148 

In previous studies, it has been noticed that the photocatalytic reaction rate follows 149 

a power law expression of the light intensity[28]. By experimental studies, Herrmann 150 

suggested that the reaction rate is proportional to the light intensity at low light 151 
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intensities, and when the light intensity is high, the reaction rate is proportional to the 152 

square root of the light intensity [29]. According to the work of Wang et al., the 153 

photocatalytic reaction rate was considered proportional to the n-th power of the light 154 

intensity[17], where n is a factor to describe the reaction rate dependency on light 155 

irradiance. The higher n value of the reactor represents that the incident photons can 156 

be more effectively utilized for photocatalytic reactions[30]. Therefore, the reversible 157 

catalytic reaction rate equation can be written with the following form: 158 

1

im
j j i

i

r I k c



 
 
 
                           

(3) 
159 

Where rj is the reaction rate, kj is the kinetic rate constant, ci is the concentration, i is 160 

the chemical calculated number, I is the light intensity, m is the energy coefficient. 161 

2.3 Mass transfer model 162 

Many physical models, such as two-film, Higbie penetration, Danckwerts surface 163 

renewal and turbulent mass transfer theories, all formerly clarified the process of 164 

gas-liquid mass transfer. With two-film theory adopted in this work, a static film on 165 

each side of the gas-liquid interface is assumed as the gas membrane and liquid 166 

membrane. Moreover, the mass transfer rate of gas-liquid interphase depends on the 167 

diffusion rate of gas and liquid membranes.  168 

( ) ( )
G L

G m m L
G L

D D
N p p c c

RT 
   

                   
(4)

 169 

Where N is the mass transfer rate, DG and DL are the diffusion coefficients of 170 

components in gases and liquids respectively. G and L are the gas and liquid film 171 

thicknesses, which are about 0.1mm according to the experiment. cm and pm represent 172 



 

13 

 

the concentration and partial pressure at the interface of the membranes. pG is the 173 

partial pressure of components in gas phase while cL is the concentration of 174 

components in liquid phase. R is the perfect gas constant and T is temperature. 175 

By eliminating the interface concentration cm and the interface pressure pm in the 176 

above formula, the mass transfer rate is expressed as: 177 

( *) ( * )

* ; *

G LG L

G
L

N K p p K c c

p
p Hc c

H

   

 
                   (5) 178 

Where p* is the partial pressure in equilibrium with cL, c* is the concentration in 179 

equilibrium with pG, H is the Henry constant, KG and KL represent gas phase total 180 

mass transfer coefficient and liquid phase total mass transfer coefficient: 181 

1

1

G
G L

G L

L
G L

G L

K
RT H

D D

K
RT

HD D

 

 









                          (6) 182 

When the solution contains electrolytes, electrolyte ions will reduce the solubility 183 

of gases[31]. The Henry constant of gas in pure H2O is different from that in the 184 

electrolyte solution, hence the correction coefficient of Henry constant has been 185 

introduced in the research of Ueyama and Hatanaka [31]: 186 

0

lg i i

H H

h V








                           (7) 187 

H
0 

and H are Henry constants for the gas in the water and electrolyte, respectively. Vi 188 

is the electrolyte ionic strength calculated by Eq.(8) as followed, and hi is the reduced 189 

coefficient of solubility caused by electrolyte, which is calculated by h=h
+
+h

-
+h*. h

+
, 190 
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h
-
, h* are influenced by the positive and negative ions, and the dissolved gases.  191 

21

2
i j jV c z                             (8) 192 

Where, cj is the ion concentration, zj is the ion valence.  193 

The electrolytes in the system are H
+
, Fe

2+
, Fe

3+
, Cl

-
 and SO4

2-
 according to the 194 

related experiments. 195 

As the physical model introduced above, the pH which has an impact on gas 196 

dissolution process, is set as 2.6 (adjusted by adding sulfuric acid) of the solution. In 197 

this work, H
+
 is considered with the same electrolyte as Fe

2+
, Fe

3+
 and Cl

-
, so the pH 198 

effects on the solubility of CO2 are illustrated by the correction coefficient  199 

Diffusion coefficients of CO2 in the mixed gas and the solution can be calculated 200 

according to the following formula [32, 33]: 201 

3/2

1/3

5

2

1/3 2

712.5 2.591 10
log 8.1764

435.7 1 1

( )

L

G

A BA B

D
T T

T
D

P V V M M


   

 


              (9) 202 

Where A, B are two kinds of gas in the reactor, p is the total pressure, T is the 203 

temperature in the reactor and equals to 293K and M is the molar mass of the gas. V is 204 

the molar volume with the constant of 22.4 L/mol, due to the fact that the CO2 and 205 

CO are ideal gases in the reactor. 206 

2.4 Sun light model 207 

Since the photocatalytic CO2 reduction cannot work without sun light input in the 208 

twin reactor, most of the experiments were carried out in an indoor environment with 209 
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the artificial light for substitute. Unfortunately, few related studies emphasized on the 210 

sun light distribution. While in this work, with the software SOLTRACE based on the 211 

theory from Spencer and Murty[34], the sun light distribution is obtained and 212 

analyzed for its optical performance, which is highly affected by the light diffusion as 213 

a key factor that can be predicted by setting up accurate parameters in SOLTRACE. 214 

The angular intensity distribution and position of the light together define the 215 

natural energy source, and in Beijing (northern latitude 40°5’, east longitude 116°16’), 216 

the 200nd day during the year with the maximum sun declination is usually selected 217 

for sunlight acquisition. Although the Gaussian and Pillbox apparatus can together 218 

determine the sun shape, it cannot represent the real sunlight condition due to the 219 

complex atmospheric factors as well as inevitable errors from the optical equipment. 220 

Since the Gaussian leads to an obviously higher error than pillbox, it is dismissed in 221 

this paper. The sunlight position (Xs, Ys, Zs) can be calculated by latitude (L: +N, -S), 222 

day of year (Day) and local solar time (Hr) as follows. 223 

 

s s s

s s

s s s

sin cos

Y sin

Z cos cos

X  



 







                           (10) 224 

Where s is the solar altitude and s is the solar azimuth, which can be obtained by 225 

the following form. 226 

 

1

1

s

sin (cos cos cos sin sin )

sin sin sin
cos [ ]

cos cos

s

s

s

L L

L

L

   

 








 




                (11) 227 
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Where  is the hour angle, =15(Hr-12). Hr is the local solar time, which is set 228 

from 8:00 to 16:00.  is the declination, = 23.45sin (360(284+Day)/365). Day is set 229 

as 200, implying the maximum sun declination, and L as 40°5’, representing the 230 

latitude of Beijing.  231 

Optical properties can be obtained from the movement of rays when they hit the 232 

surfaces. According to the experiment of Chen et al.[25], the body of the reactor is 233 

made of glass which can be treated as fully transparent, so the absorptivity is set to 0. 234 

The reflectivity and the transmissivity of the twin reactor can be obtained by the 235 

following forms. 236 

1 2

1 2

( )

1

( )

n n
R

T

f
n n

Rf r






 

                         (12) 237 

Where Rf is reflectivity, Tr is transmissivity, n is refractivity that can be obtained 238 

from the relevant literature. In addition, due to the effect of the element surface shape 239 

on ray direction, surface slope error and surface specularity can be included, which 240 

together affect ray interaction at the surface in a combined form as follows  241 

 2 2 1/2
optical slope specularity(4 )                     (13) 242 

Where optical is the comprehensive factor, slope means the surface slope error, and 243 

specularity represents the surface specularity error. 244 

2.5 Evaluation of model parameters 245 

The variables and constants used in this model are listed in Table 2 with specific 246 
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meanings. The geometric parameters were obtained based on the real dimensions of 247 

the reactor and the kinetics parameters by fitting the experimental data. Since the 248 

reaction rate constant is not known in advance, should it be assumed at first. The 249 

CH3OH production can be numerically calculated and then compared with the 250 

experimental data. If the error is not within the allowed value, should the reaction rate 251 

constant as aforementioned above be reassumed for expecting results. The mass 252 

transfer parameters were estimated by Eqs.(7-9) with the initials referring to the 253 

experiment, and the sun position parameters by Eqs.(10) and (11) with the optical 254 

variables determined by Eqs.(12) and (13). 255 

2.6 Validation of numerical results 256 

Adopting the reaction engineering and diluted species transport modules, Eqs.(2-3) 257 

and (4-9) can be solved respectively by the commercial software COMSOL. Besides, 258 

the reaction rate can be iterated as the light intensity was taken into account by 259 

setting global variables.  260 

The initial conditions with pure CO2 are simulated as shown in Figs. 2 and 3. As 261 

observed, the H2 concentration increases sharply at the beginning since the H
+
 262 

generated by water decomposition penetrates directly through the ion exchange 263 

membrane to form H2. Meanwhile, the O2 concentration in the water splitting reactor 264 

also rises with a half production of H2. However as the O2 increases stably, the H2 in 265 

the CO2 reduction reactor no longer increases and keeps at the rate of nearly 266 
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0.85μmol/g, showing that H2 already reaches a balance since it generated by water 267 

splitting transforms directly into the CH3OH and other organic compounds. So at the 268 

beginning five hours, even the increasing rate declines gradually, the CH3OH rises 269 

conspicuously with an average speed of 0.8mol/g/h, while it then keeps almost no 270 

change with the ultimate concentration of 4mol/g as shown in Fig. 3. Besides, Fig. 3 271 

shows that the average error between the simulation and experimental results is about 272 

13.12%, which is quite small. Moreover, Fig. 4 shows the concentration of methyl 273 

formate (HCOOCH3) and acetaldehyde (CH3CHO) as the two by-products during the 274 

reaction process, which reaches 1.5mol/g and 0.4mol/g with the average rate of 275 

0.1875mol/g/h and 0.05mol/g/h respectively within the 8 hours. The CO2 and CO 276 

composite process is also numerically calculated with the initial partial pressure of 277 

CO set in accordance with the mixing ratio of 1:10 and 1:5 respectively as shown in 278 

Figs. 5 and 6, which clearly present that the final CH3OH concentrations are 279 

7.8mol/g and 7.4mol/g after 8 hours with the relative errors between the 280 

simulating and experimental results of 4.41% and 2.92% respectively.  281 

The comparisons show that the numerical and experimental results agree well with 282 

each other, so the modelling approach is reliable and accurate enough to predict the 283 

photocatalytic CO2 reduction performances in the twin reactor system. Since the 284 

photocatalytic CO2 reduction gradually recedes with an ultimately constant CH3OH 285 

concentration, the working conditions of the twin reactor system can be optimized by 286 
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means of numerical simulations. 287 

3. Results and discussion 288 

3.1 Effects of gas mixture ratio 289 

Pure CO as the reactant gas is specifically simulated so as to unveil its 290 

characteristics during the overall process at the ambient pressure and temperature of 291 

1atm and 293K respectively. Fig. 7 shows that the H2 presents almost twice the 292 

concentration of O2, while the CH3OH concentration displays nearly zero due to the 293 

non-conversion from hydrogen, which clearly shows the unavailable direct chemical 294 

reaction between the pure CO and hydrogen or hydrogen ions. However, very small 295 

amount of CH3OH (less than 0.1mol/g) exists inevitably due to the following 296 

reaction in the reduction reactor: 297 

photocatalyst

photocataly

UV,
2 22

UV,+ -
2 3 2

st

H O+CO H +CO

CO +6H +6e CH OH+H O




 298 

The overall process at various gas mixture ratios of CO to CO2 was numerically 299 

simulated during the whole 20 hours with the carbon elements symbolized as Cx from 300 

CO2 and Cy from CO for easy analysis of the carbon trails existing in methanol. Fig.8 301 

displays the processing amount of CxH3OH as well as CyH3OH at the CO to CO2 ratio 302 

of 1:10. During the first 8 hours, it can be observed that the CxH3OH has a higher 303 

production rate of 0.53 mol/g/h, while only 0.45 mol/g/h for the CyH3OH. After 304 

then, it changes little for the concentration of CxH3OH with a stable amount of 305 

4.2mol/g at the 20th hour. But for CyH3OH, the concentration always increases and 306 
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eventually reaches about 4.6 mol /g after 20 hours. It shows that the CO can easily 307 

transform into the methanol and other organic compounds through the chemical 308 

chains as aforementioned above compared with CO2. As shown in Fig. 9, the 309 

production of CxH3OH declines with the CO to CO2 ratio of 1:5 compared with the 310 

case of 1:10, and only arrives at 3.6mol/g for the maximum concentration. As for 311 

CyH3OH, the concentration reaches the peak of nearly 3.75 mol/g at the time of 7.5h, 312 

then it decreases to 2.1 mol /g after 20 hours and finally presents a declining 313 

tendency. Since CO plays a double role during the CH3OH production, may the 314 

CH3OH increase due to its positive effect with a small amount, while should other 315 

organic compounds unexpectedly emerge with an excessive CO ratio. Fig. 10 shows 316 

the CH3CHO concentration at various gas mixture ratios, which clearly presents the 317 

always small value less than 0.5 mol/g at the first 5 hours. But the CH3CHO 318 

production rate increases as the chemical process continues, and it presents a higher 319 

value at a more intensive CO concentration. Besides, as the ratio of CO to CO2 320 

changes from 1/20 to 1/2, the CH3CHO concentration increases from 1.5 mol/g to 321 

3.75 mol/g after 20 hours.  322 

Figs.8-10 fully explain the mechanisms of the CO dominance in the photocatalytic 323 

process, which can be described by the following three reactions. 324 
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When a small amount of CO gas exists in the reactor, the CO reacts with CH3OH to 326 

form HCOOCH3 as reaction (1). Due to the excessive H2, the HCOOCH3 reacts with 327 

H2 and then generates CH3OH as reaction (3). In this case, the CO promotes CH3OH 328 

production. However, if CO gas is excessive, the CO will react with CH3OH to form 329 

HCOOCH3 at first, then the remaining CO continues to react with HCOOCH3 to 330 

produce CH3CHO as reaction (2), which prevents HCOOCH3 from reacting with H2, 331 

resulting in an indirect consumption of CH3OH. 332 

The aforementioned conclusion about the gas mixture ratio can be of benefit to the 333 

design and application of photocatalytic reactor systems. For the twin reactor, the 334 

optimal CO to CO2 ratio as well as reaction time can be recommended with reference 335 

to the light intensity distribution and reactor structure. Moreover, increasing the 336 

byproduct of CH3CHO during the photocatalytic process proves efficient to prevent 337 

the side effect as reaction (2). 338 

3.2 Effects of pressure 339 

The mixture pressure in the reactor is of great importance for photocatalytic 340 

reactions. According to Henry's law, the partial pressure of the mixture above the 341 

liquid surface can directly affect the gas solubility. Besides, the mass transfer rate 342 

between the gas and liquid is related greatly with the partial pressure in terms of the 343 

two-film theory. Fig. 11 presents the production of CH3OH at various pressures 344 

during the 20 hours. It can be seen that as the initial pressure in the reactor goes up, 345 
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the CH3OH yield increases. When the initial pressure reaches 20atm, the CH3OH 346 

concentration arrives at 14.5 mol/g at 20 hours, which is 52.6% higher than that of 347 

9.5 mol/g at the initial pressure of 1atm. As for the efficiency, increasing the initial 348 

pressure in the reactor will consume more energy, so a viable operating pressure 349 

should be determined for the photocatalytic reactor in potential engineering 350 

applications. 351 

3.3 Effects of temperature 352 

The Henry constant can well represent the solubility of CO2 and CO in the 353 

electrolyte. As observed from Table 3, the Henry constant increases as the temperature 354 

rises. Besides, the diffusion coefficients of the gas-gas as well as gas-liquid depend 355 

also upon the temperature according to Eq.(9), so the mass transfer correlates strongly 356 

with the temperature. Fig.12 shows the CH3OH concentration change at various 357 

temperatures, from which can be seen that the CH3OH concentration increases with 358 

increasing the temperature, resulting from the comprehensive effects of the solubility 359 

and mass transfer rate. At the temperature of 273K, the ultimate CH3OH concentration 360 

at the 20th hour is 6 mol/g, while at 333K it approaches 11mol/g, presenting an 361 

increase of 83.2%, which shows that the conversion efficiency can be greatly 362 

improved by increasing the temperature. 363 

3.4 Effects of light intensity 364 

Based on the optical parameters of the physical model aforementioned, the sun 365 
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light model is developed and the two dimensional distribution of light intensity on a 366 

cross-section of the reactor is achieved by adopting the software SOLTRACE. Fig. 13 367 

shows transient solar flux distribution in the reactor at 8:00, 12:00 and 16:00 368 

respectively, in which the positive direction of the X-axis stands for the west of the 369 

reactor and the positive direction of the Y-axis represents the zenith of the twin reactor. 370 

The distribution of light intensity at 8:00 is shown in Fig.13(a), which presents a 371 

non-uniform light intensity scattering in the reactor with 832W/m
2 

on the east side 372 

while only 205W/m
2
 on the west side, and the average light intensity is about 373 

331W/m
2
. As observed from Fig. 13(b), the reactor receives the sunlight vertically at 374 

12:00, so the light intensity arrives at the maximum value in the center while 375 

minimum value at both sides, due to the combined effects of the reflection and 376 

refraction by the glass container and colored solution with the iron ion. The average 377 

light intensity can reach nearly 620W/m
2
 in the reactor. Fig. 13(c) presents the 378 

irradiation at 16:00 from the west side of the reactor with the average light intensity of 379 

330W/m
2
.  380 

From 8:00 to 16:00, the average light intensity is obtained and shown in Fig.14, 381 

which is fitted to the following equation: 382 

I=-1996+435Hr-18Hr
2                                     

(14) 383 

It can be seen from Fig.14 that the results from the fitting curve agree well with the 384 

simulated data, so the fitting equation is reliable enough to predict the average light 385 
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intensity change over time. Together with the chemical reaction engineering module, 386 

the photocatalytic CO2 reduction combined with the water splitting process can be 387 

numerically simulated within the 8 hours (8:00-16:00) at the temperature of 293K and 388 

pressure of 1atm. Fig.15 shows the concentration changes of O2, H2 and CH3OH over 389 

time, proving that the CH3OH product using the sun light source is less than that using 390 

the artificial light source in the experiment of Cheng et al.[25]. As also clearly 391 

presented, the CH3OH concentration reaches the climax of 4.6 μmol/g about 3.5 hours 392 

later (11:30), and then it begins to decrease gradually due to the weakened light 393 

intensity. Fig. 16 shows the reaction rates of the photocatalytic CO2 reduction and 394 

water splitting process. It can be seen that as the light intensity decreases, the 395 

photocatalytic water splitting reaction becomes slow, resulting in the reduced H2 for 396 

CO2 reduction. The CH3OH generating rate is lower than the consuming rate of side 397 

reaction, leading to a reduced CH3OH concentration. 398 

Since the experimental study with the artificially unchanged light intensity could 399 

not totally represent the photocatalytic CO2 reduction mechanism, the numerical 400 

method with the natural sunlight changing over time demonstrates an attractive 401 

superiority, which is closer to the real chemical process.  402 

4. Conclusions 403 

The photocatalytic reduction of CO2 by CO co-feed combined with photocatalytic 404 

water splitting in a novel twin reactor was modeled and numerically investigated. 405 
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The CH3OH concentration almost linearly increases with increasing the gas mixture 406 

ratio of CO to CO2, due to the direct conversion from CO to CH3OH. However, the 407 

excessive CO will react with HCOOCH3 to form CH3CHO unexpectedly, resulting in 408 

a reduced CH3OH concentration. Besides, with the temperature and pressure increase, 409 

the CH3OH production rises owing to the enhanced mass transfer.  410 

The numerical method with the natural sunlight in this work proves a more accurate 411 

photocatalytic CO2 reduction process compared with the experiment, and the yield of 412 

CH3OH is reduced due to the changing light intensity. It suggests the artificial light 413 

intensity adjusted with time in the photocatalytic experiment, so as to obtain a more 414 

reliable result. 415 
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Table 1 

Changes of enthalpy and Gibbs free energy in the CO2 photoreduction reactions[25]. 

Reactions H
0
 (kJ/mol) G

0
 (kJ/mol) 

(1) CO2 (g)+3H2 (g)→CH3OH (l) +H2O (l) －137.8 －10.7 

(2) CO(g)+CH3OH(l)→HCOOCH3(l) －25.6 6.6 

(3) CO2(g)+H2(g)+CH3OH(l)→HCOOCH3(l)+H2O(l) －31.8 25.8 

(4) HCOOCH3(l)+2H2 (g)→2CH3OH(l) －99.7 －35.1 

(5) HCOOCH3(l)+CO(g)→CH3CHO(l)+CO2 (g) －96.5 －86.7 
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Table 2  

Model parameters for photocatalytic CO2 reduction by CO co-feed. 

Type Variables Values Unit 

kinetics k1 3.3E-9 m
3
/(s﹒mol) 

 k2 1.7E-2 m
9
/(s﹒mol

3
) 

 k3 2.3E-4 m
3
/(s﹒mol) 

 k4 1.7E-4 m
3
/(s﹒mol) 

 k5 5.8E-6 m
6
/(s﹒mol

2
) 

 k6 8.1E-3 m
3
/(s﹒mol) 

Geometry L 11.46 cm 

 R1 5 cm 

 R2 4 cm 

Mass transfer DL 1.9809E-9 m
2
/s 

 DG 1.41E-7 m
2
/s 

 G  0.1 mm 

 L 0.1 mm 

 hH
+ 0  

 hFe
2+ 0.049  

 hFe
3+ 0.054  

 hSO4
2- 0.029  

 hCl
- 0.021  
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 hCO
2 -0.019  

 hCO 0.0283  

 H0CO 5.43E+6 kPa 

 H0CO2 1.44E+5 kPa 

Initial value CCO2 30.73 mol/m
3 

 CCO 0.095 mol/m
3
 

 CSO4
2- 1.21 mol/m

3
 

 CFe
2+ 8.8 mol/m

3
 

 CFe
3+ 8.8 mol/m

3
 

 I 900 W/m
2
 

 m 1  

Sun position Day 200  

 Hr 8-16  

 L 40°5’  

 Shape Pillbox  

Optical property Rfglass 0.05  

 Trglass 0.95  

 Abglass 0  

 nglass 1.6  

 Rfsolution 0.2  
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 Trsolution 0.48  

 Absolution 0.32  

 nsolution 1.3  

 Slope error(mrad) 3.5  

 Specularity error(mrad) 0.2  
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Table 3  

Henry constants at various temperatures. 

T(K) 

Gas    

273 278 283 288 293 298 303 308 313 318 323 333 

CO (Hx×10
-6 

kPa) 3.57 4.01 4.48 4.95 5.43 5.88 6.28 6.68 7.05 7.39 7.71 8.32 

CO2(Hx×10
-5 

kPa) 0.37 0.8 1.05 1.24 1.44 1.66 1.88 2.12 2.36 2.60 2.87 3.46 

  
1000

x solvent
c

H M
H
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Fig.1. Schematic of photocatalytic CO2 reduction and H2O splitting in the twin 

reactor. 

Fig.2. H2 and O2 production during photocatalytic reduction of pure CO2 with 

simultaneous H2O splitting. 

Fig.3. CH3OH production during photocatalytic reduction of pure CO2 with 

simultaneous H2O splitting. 

Fig.4. CH3CHO and HCOOCH3 production during photocatalytic reduction of pure 

CO2 with simultaneous H2O splitting. 

Fig.5. CH3OH concentration at the CO to CO2 ratio of 1:10. 

Fig.6. CH3OH concentration at the CO to CO2 ratio of 1:5. 

Fig.7. H2, O2 and CH3OH concentrations with the pure CO as the reactant gas. 

Fig.8. Total CH3OH concentration, CxH3OH and CyH3OH concentrations at the CO 

to CO2 ratio of 1:10. 

Fig.9. Total CH3OH concentration, CxH3OH and CyH3OH concentrations at the CO 

to CO2 ratio of 1:5. 

Fig.10. CH3CHO concentrations at various CO to CO2 gas mixture ratios. 

Fig.11. CH3OH concentration change with time at various pressures. 

Fig.12. CH3OH concentration change with time at various temperatures. 

Fig.13. Light intensity distribution in CO2 reduction reactor. (a) 8:00, (b) 12:00, (c) 

16:00. 

Fig.14. Average light intensity change over time under the sun light. 
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Fig.15. Concentration changes of H2, O2 and CH3OH over time under the sun light. 

Fig.16. Reaction rate changes of water splitting and CO2 reduction over time under 

the sun light. 
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