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Abstract

We investigate time domain boundary element methods for the wave equa-

tion in R3, with a view towards sound emission problems in computational

acoustics. The Neumann problem is reduced to a time dependent integral

equation for the hypersingular operator, and we present a priori and a pos-

teriori error estimates for conforming Galerkin approximations in the more

general case of a screen. Numerical experiments validate the convergence of

our boundary element scheme and compare it with the numerical approxima-

tions obtained from an integral equation of the second kind. Computations in

a half-space illustrate the influence of the reflection properties of a flat street.
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1. Introduction

Motivated by the sound radiation of tires [2], this article analyzes time domain

boundary element methods for a scattering or emission problem for the wave equa-

tion outside a sound-hard obstacle.

Let d ≥ 2 and Ωi ⊂ Rd be a bounded Lipschitz domain. We aim to find a

weak solution to an acoustic initial boundary problem for the wave equation in

Ωe = Rd \ Ωi:

∂2u

∂t2
−∆u = 0 in R+ × Ωe

u(0, x) =
∂u

∂t
(0, x) = 0 in Ωe (1.1)

∂u

∂n
= g̃ on R+ × Γ .
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Here n denotes the inward unit normal vector to Γ = ∂Ωe, and 2g̃ = g lies in a

suitable Sobolev space.

This article reduces the boundary problem (1.1) to a time dependent integral

equation on R+ × Γ and studies Galerkin time domain boundary element methods

for its approximation. While we focus on the hypersingular integral equation, nu-

merical examples compare it to an integral equation of the second kind.

Time domain boundary integral formulations for hyperbolic equations and their

numerical solution were introduced by Friedman and Shaw [7], resp. Cruse and

Rizzo [4]. A first mathematical analysis of time dependent boundary element meth-

ods goes back to Bamberger and Ha-Duong [1, 12], see also [9] for Dirichlet and

acoustic boundary problems in a half-space. First numerical experiments for inte-

gral equations of the second kind in the full space were reported by Ding, Forestier

and Ha-Duong [5], and the practical realization of the numerical marching-on-in-

time scheme include the Ph.D. thesis of Terrasse [19] as well as [14]. Also, fast

collocation methods have been developed in the engineering literature [21]. Some

recent work around space-time adaptive methods and applications is surveyed in [8].

A detailed exposition of the mathematical background of time domain integral equa-

tions and their discretizations is available in the lecture notes by Sayas [18].

In this work we investigate the Neumann problem (1.1), present a priori and a

posteriori error estimates for the Galerkin solution of the time dependent hypersin-

gular integral equation of the first kind (with the normal derivative of the double

layer potential). We compare the numerical scheme for the hypersingular equation

with numerical approximations of an integral equation of the second kind (with the

normal derivative of the single layer potential). We analyze the integral equations

in the more general setting of a screen Γ, i.e. allow ∂Γ ̸= ∅, which will prove relevant

for work in progress on dynamic contact problems.

A motivation for these results comes from applications to traffic noise [2, 9, 10],

where adaptive methods based on a posteriori error estimates are crucial to resolve

singular geometries. With this application in mind, we also present numerical results

in an acoustic half-space. Here, Ωi ⊂ Rd
+ is a bounded domain with Rd

+ \ Ωi

Lipschitz, and the Neumann boundary conditions on Γ = ∂Ωi∩Rd
+ are supplemented

by acoustic boundary conditions

∂u

∂n
− α

∂u

∂t
= 0 (1.2)

on Rd−1 × {0} = ∂Rd
+, α ≥ 0. Screens arise naturally when ∂Ωi ∩ ∂Rd

+ ̸= ∅.

Notation: To simplify notation, we will write f . g, if there exists a constant

C > 0 independent of the arguments of the functions f and g such that f ≤ Cg.

We will write f .σ g, if C may depend on σ.
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2. Time-domain integral equations and discretization

2.1. Boundary integral equations

Space–time anisotropic Sobolev spaces on the boundary Γ provide a convenient

setting to study the mapping properties of the time-dependent layer operators [3,

13]. We more generally consider the case of a screen, where the orientable, d − 1-

dimensional Lipschitz submanifold Γ ⊂ Rd may have a boundary. If ∂Γ ̸= ∅, first
extend Γ to a closed, orientable manifold Γ̃.

For σ > 0, s, r ∈ R the space Hs
σ(R+,Hr(Γ̃)) consists of certain distributions

ϕ on R+ × Γ̃, vanishing at t = 0, such that in local coordinates the space–time

Fourier–Laplace transform Fϕ satisfies

∥ϕ∥s,r,Γ̃ =

(∫ ∫
|ω + iσ|2s(|ω + iσ|2 + |ξ|2)r|Fϕ(ω + iσ, ξ)|2 dξ dω

) 1
2

<∞ .

The space Hs
σ(R+, H̃r(Γ)) is then defined as the closed subspace of distributions

ϕ ∈ Hs
σ(R+,Hr(Γ̃)) with support in Γ, and Hs

σ(R+,Hr(Γ)) as the quotient space

Hs
σ(R+,Hr(Γ̃))/Hs

σ(R+,Hr(Γ̃ \ Γ)). The corresponding norms are denoted by

∥ϕ∥s,r,Γ,∗ resp. ∥ϕ∥s,r,Γ. By truncation, we also obtain anisotropic Sobolev spaces on

finite time–intervals [0, T ], Hs
σ([0, T ], H̃

r(Γ)) and Hs
σ([0, T ],H

r(Γ)). When r ∈ 1
2Z,

resp. s+ r ∈ 1
2Z, there are subtle distinctions between the spaces of supported and

extensible distributions, and the closure of C∞
0 , as is known for time-independent

screen problems. See [9, 13] for a more detailed discussion.

Layer operators allow to reduce the boundary problem (1.1) to an integral equa-

tion on the boundary Γ, both in the case of the whole space Rd and in the half-space

with acoustic boundary conditions (1.2). These operators are based on a Green’s

function G for the wave equation. In R3, G is explicitly given by

G(t− s, x, y) =
δ(t− s− r(y3))

4πr(y3)
,

and in R3
+ by [15]

G(t− s, x, y) =
δ(t− s− r(y3))

4πr(y3)
+
δ(t− s− r(−y3))

4πr(−y3)
+ Σ , (2.1)

with

Σ =
α

2π

∂

∂t

H(t− s− r(−y3))√
(t− s+ α(x3 + y3))2 + (α2 − 1)R2

.

Here H denotes the Heaviside function, R2 = (x1−y1)2+(x2−y2)2 and r(±y3)2 =

R2 + (x3 ∓ y3)
2. The second and third terms on the right-hand side of G represent

the field reflected by the plane ∂R3
+.

From a single layer potential ansatz for the solution u of (1.1):

u(t, x) =

∫
R+×Γ

G(t− τ, x, y) φ(τ, y) dτ dsy (2.2)

with φ(s, y) = 0 for s ≤ 0, one obtains an equivalent boundary integral equation of

the second kind for the unknown density φ on Γ:

(−Id+K ′)φ = 2
∂u

∂n
= g . (2.3)
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Here, the time–dependent adjoint double layer operator K ′ is defined by

K ′φ(t, x) = 2

∫
R+×Γ

∂G

∂nx
(t− τ, x, y) φ(τ, y) dτ dsy. (2.4)

Knowing φ, one reconstructs the solution u of the wave equation from (2.2). Nu-

merical schemes based on (2.3) have been explored in [2]. However, little is known

about the theoretical analysis for discretizations of time dependent integral equa-

tions of the second kind.

In this article we focus on an integral equation of the first kind, which we obtain

from a double layer potential ansatz for u:

u(t, x) =

∫
R+×Γ

∂G

∂ny
(t− τ, x, y) ψ(τ, y) dτ dsy (2.5)

with ψ(s, y) = 0 for s ≤ 0. The wave equation (1.1) is then equivalent to a time–

dependent hypersingular equation for the unknown density ψ on Γ:

Wψ = 2
∂u

∂n
= g , (2.6)

where the time–dependent hypersingular operator W for the half-space is given by

Wψ(t, x) = 2

∫
R+×Γ

∂2G

∂nx∂ny
(t− τ, x, y) ψ(τ, y) dτ dsy .

More generally than for Γ = ∂Ω, we consider the integral equations (2.3) and

(2.6) on an orientable, d−1-dimensional Lipschitz submanifold Γ ⊂ Rd with bound-

ary. For the analysis we recall the mapping and coercivity properties of K ′ and W :

Theorem 2.1. a) The following operators are continuous for r ∈ R:

K ′ : Hr+1
σ (R+, H̃− 1

2 (Γ)) → Hr
σ(R+,H− 1

2 (Γ)) ,

W : Hr+1
σ (R+, H̃

1
2 (Γ)) → Hr

σ(R+, H− 1
2 (Γ)) .

b) The operator W∂t is weakly coercive:∫
R+×Γ

e−2σt(Wψ(t, x))∂tψ(t, x) dt dsx &σ ∥ψ∥20, 12 ,Γ,∗.

See [13] for part a) when ∂Γ = ∅. In this case part b) follows from Equation (2.14),

p. 174 in [12]. For the half-space or when ∂Γ ̸= ∅, a) is shown in [9]; the proof of b) is

obtained by extending Ha Duong’s proof in [13] for ∂Γ = ∅, using the modifications

from [9].

The mapping and coercivity properties give a basic well-posedness theorem for

the integral equations (2.3) and (2.6).

Theorem 2.2. Let g ∈ Hs+2
σ (R+,H− 1

2 (Γ)).

a) There exists a unique solution φ ∈ Hs
σ(R+, H̃− 1

2 (Γ)) to (2.3). It satisfies ∥φ∥s,− 1
2 ,Γ,∗

≤ C∥g∥s+2,− 1
2 ,Γ

for some constant C independent of g.

b) There exists a unique solution ψ ∈ Hs+1
σ (R+, H̃

1
2 (Γ)) to (2.6). It satisfies

∥ψ∥s+1, 12 ,Γ,∗
≤ C∥g∥s+2,− 1

2 ,Γ
for some constant C independent of g.
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The proof of part a) uses the equivalence of (2.3) with the original PDE problem

(1.1). It does not imply the well-posedness of the discretized problem. Part b) is

a direct consequence of the weak coercivity estimate in Theorem 2.1b); note that

the solution is less regular in time than the mapping properties in Theorem 2.1a)

might suggest, because coercivity only holds in a weaker norm.

Both formulations, (2.3) and (2.6), will be discretized from their variational for-

mulations, which admit a unique solution when g ∈ H
5
2
σ (R+,H− 1

2 (Γ)), resp. g ∈
H2

σ(R+,H− 1
2 (Γ)), i.e. for sufficiently smooth functions of time. They are given as:

Find φ ∈ H
1
2
σ (R+, H̃− 1

2 (Γ)) such that for all Ψ ∈ H
1
2
σ (R+, H̃

1
2 (Γ)) there holds:∫

R+×Γ

e−2σt(−Id+K ′)φ Ψ dt dsx =

∫
R+×Γ

e−2σtg Ψ dt dsx . (2.7)

Find ψ ∈ H1
σ(R+, H̃

1
2 (Γ)) such that for all Ψ ∈ H1

σ(R+, H̃
1
2 (Γ)) there holds:∫

R+×Γ

e−2σt(Wψ) ∂tΨ dt dsx =

∫
R+×Γ

e−2σtg ∂tΨ dt dsx . (2.8)

Because of the coercivity in Theorem 2.1b), the Galerkin scheme (2.8) admits a

unique solution and is stable in the norm of the space H0
σ(R+, H̃

1
2 (Γ)).

2.2. Discretization

We consider dimensions d = 2 and 3. If Γ is not polygonal we approximate it by

a piecewise polygonal curve resp. surface and write Γ again for the approximation.

For simplicity, when d = 3 we will use here a surface composed of N triangular

facets Γi such that Γ = ∪N
i=1Γi. When d = 2, we assume Γ = ∪N

i=1Γi is composed

of line segments Γi. In each case, the elements Γi are closed with int(Γi) ̸= ∅, and
for distinct Γi, Γj ⊂ Γ the intersection int(Γi) ∩ int(Γj) = ∅.

For the time discretization we consider a uniform decomposition of the time

interval R+ into subintervals In = (tn−1, tn] with time step |In| = ∆t, such that

tn = n∆t (n = 0, 1, . . . ).

Let Pp be the space of polynomials of degree at most p. We choose a basis

φp
1, · · · , φ

p
Ns

of the space

V p
h = {ϕ : Γ → R : ϕ|Γi ∈ Pp ∀i (and ϕ continuous and ϕ|∂Γ = 0 if p ≥ 1)}

of piecewise polynomials in space and a basis β1,q, · · · , βNt,q of the space

V q
∆t = {ϕ : R+ → R : ϕ|In ∈ Pq ∀n (and ϕ continuous and ϕ(0) = 0 if q ≥ 1)}

of piecewise polynomials in time.

Let TS = {T1, · · · , TNs} be the spatial mesh for Γ and TT = {[0, t1), [t1, t2), · · · ,
[tNt−1, T )} the time mesh for a finite subinterval [0, T ).

We consider the tensor product of the approximation spaces in space and time, V p
h

and V q
∆t, associated to the space–time mesh TS,T = TS × TT , and we write

V p,q
h,∆t = V p

h ⊗ V q
∆t . (2.9)

These approximation spaces lead to Galerkin formulations for (2.7) and (2.8).

They are given in terms of the discretized right hand sides gh,∆t, resp. (∂tg)h,∆t as:
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Find φh,∆t ∈ V p,q
h,∆t such that for all test functions Ψh,∆t ∈ V p,q

h,∆t there holds:∫
R+×Γ

e−2σt(−I +K ′)φh,∆t Ψh,∆t dt dsx =

∫
R+×Γ

e−2σtgh,∆t Ψh,∆t dt dsx .

(2.10)

Find ψh,∆t ∈ V p,q
h,∆t such that for all test functions Ψh,∆t ∈ V p,q

h,∆t there holds:∫
R+×Γ

e−2σt(Wψh,∆t) ∂tΨh,∆t dt dsx =

∫
R+×Γ

e−2σtgh,∆t ∂tΨh,∆t dt dsx . (2.11)

3. Error estimates for the hypersingular integral equation

3.1. An a priori error estimate

Our first error estimate proves the convergence of the Galerkin method (2.11) if

the exact solution is sufficiently smooth and the discretization is based on piecewise

polynomials of sufficiently high order. In the numerical experiments in Section 5,

we shall observe convergence for more practical discretizations. See also [12], p. 182,

Thm. 3, for a similar statement for closed manifolds Γ ⊂ Rd without proof.

As ingredient, we require an inverse estimate like (3.182) in [11], namely

∥ϕh,∆t∥1, 12 ,Γ,∗ . 1

∆t
∥ϕh,∆t∥0, 12 ,Γ,∗ , (3.1)

provided ϕh,∆t ∈ V p,q
h,∆t, the space of piecewise polynomials defined in (2.9).

Theorem 3.1. Let ψ ∈ H1
σ(R+, H̃

1
2 (Γ)) be the solution of (2.8), ψh,∆t ∈ V p,q

h,∆t the

solution of (2.11). Then there holds:

∥ψ − ψh,∆t∥0, 12 ,Γ,∗ . ||gh,∆t − g||1,− 1
2 ,Γ

+ (1 + (∆t)−1) inf
ϕh,∆t∈V p,q

h,∆t

∥ψ − ϕh,∆t||1, 12 ,Γ,∗ .

Proof. We start with the coercivity estimate, Theorem 2.1b), applied to ψh,∆t−
ϕh,∆t ∈ H1

σ(R+,H
1
2 (Γ)), where ϕh,∆t ∈ V p,q

h,∆t is arbitrary:

∥ψh,∆t − ϕh,∆t∥20, 12 ,Γ,∗ .
∫
R+×Γ

e−2σt(W (ψh,∆t − ϕh,∆t))∂t(ψh,∆t − ϕh,∆t) dt dsx

=

∫
R+×Γ

e−2σt(W (ψh,∆t − ψ))∂t(ψh,∆t − ϕh,∆t) dt dsx

+

∫
R+×Γ

e−2σt(W (ψ − ϕh,∆t))∂t(ψh,∆t − ϕh,∆t) dt dsx .

In the second line we have added and subtracted the term with ψ. For the first term

we obtain using the discretized weak form (2.11) and the continuity of the duality

pairing: ∫
R+×Γ

e−2σt(W (ψh,∆t − ψ))∂t(ψh,∆t − ϕh,∆t) dt dsx

=

∫
R+×Γ

e−2σt(gh,∆t − g)∂t(ψh,∆t − ϕh,∆t) dt dsx

≤ ∥gh,∆t − g∥1,− 1
2 ,Γ

∥∂t(ψh,∆t − ϕh,∆t)∥−1, 12 ,Γ,∗
.
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For the second term the continuity of duality pairing and the mapping properties

of W in Theorem 2.1a) show:∫
R+×Γ

e−2σt(W (ψ − ϕh,∆t))∂t(ψh,∆t − ϕh,∆t) dt dsx

≤ ∥W (ψ − ϕh,∆t)∥0,− 1
2 ,Γ

∥∂t(ψh,∆t − ϕh,∆t)∥0, 12 ,Γ,∗
. ∥ψ − ϕh,∆t∥1, 12 ,Γ,∗∥ψh,∆t − ϕh,∆t∥1, 12 ,Γ,∗ .

We use the inverse inequality (3.1) in the time variable to estimate second factor:

∥ψh,∆t − ϕh,∆t∥1, 12 ,Γ,∗ . 1

∆t
∥ψh,∆t − ϕh,∆t∥0, 12 ,Γ,∗.

Therefore we obtain

∥ψh,∆t − ϕh,∆t∥0, 12 ,Γ,∗ . ||gh,∆t − g||1,− 1
2 ,Γ

+ (∆t)−1∥ψ − ϕh,∆t||1, 12 ,Γ,∗ .

With the triangle inequality, one concludes

∥ψ − ψh,∆t∥0, 12 ,Γ,∗ ≤ ∥ψ − ϕh,∆t∥0, 12 ,Γ,∗ + ∥ψh,∆t − ϕh,∆t∥0, 12 ,Γ,∗
. ||gh,∆t − g||1,− 1

2 ,Γ

+ ∥ψ − ϕh,∆t||0, 12 ,Γ,∗ + (∆t)−1∥ψ − ϕh,∆t||1, 12 ,Γ,∗ .

The a priori estimate follows.

3.2. An a posteriori error estimate

In this section we derive a simple computable error estimate, which can be used

to steer adaptive mesh refinements based on the four steps

SOLVE −→ ESTIMATE −→ MARK −→ REFINE ,

as shown for the single layer potential in [8, 10, 11]. Because in practical computa-

tions we set σ = 0, we derive the estimate on finite time intervals [0, T ], but as in

these sources also R+ could be considered. Also, for simplicity we assume g = gh,∆t.

The weak formulation on [0, T ] reads as:

Find ψ ∈ H1
0 ([0, T ], H̃

1
2 (Γ)) such that for all Ψ ∈ H1

0 ([0, T ], H̃
1
2 (Γ)) there holds:∫

[0,T ]×Γ

(Wψ) ∂tΨ dt dsx =

∫
[0,T ]×Γ

g ∂tΨ dt dsx . (3.2)

Its Galerkin discretization is given by:

Find ψh,∆t ∈ V p,q
h,∆t such that for all test functions Ψh,∆t ∈ V p,q

h,∆t there holds:∫
[0,T ]×Γ

(Wψh,∆t) ∂tΨh,∆t dt dsx =

∫
[0,T ]×Γ

g ∂tΨh,∆t dt dsx . (3.3)

Instead of the coercivity estimate in Theorem 2.1b, the analysis of the scheme may

be directly based on considerations of the energy

E(u, t) =
1

2

∫
Ωi∪Ωe

{
(∂tu)

2 + |∇u|2
}
dx .

Following Ha Duong [13], if u satisfies the wave equation outside Γ, the represen-

tation formula and Green’s identity may be used to express the energy at time t in
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terms of the hypersingular operator and u|Γ+ − u|Γ− = φ, where u|Γ± denote the

upper, resp. lower, side of Γ:

E(u, t) =

∫
[0,t]×Γ

(Wφ)φ̇ dsx dt .

The time dependent version of the trace theorem for functions of finite energy [13],

∥u|Γ±∥20, 12 ,Γ,∗ .T

∫ T

0

E(u, t) dt ,

therefore results in:

Proposition 3.1. For every φ ∈ H1
0 ([0, T ], H̃

1
2 (Γ)) there holds:

∥φ∥20, 12 ,Γ,∗ .T

∫ T

0

∫
[0,t]×Γ

(Wφ)φ̇ dsx dτ dt .

We may now derive an a posteriori error estimate.

Theorem 3.2. Let ψ ∈ H1
0 ([0, T ], H̃

1
2 (Γ)) be the solution of (3.2), ψh,∆t ∈ V p,q

h,∆t

the solution of (3.3). Assume that R = g −Wψh,∆t ∈ H1([0, T ], H̃−1/2(Γ)). Then

there holds:

∥ψ − ψh,∆t∥0, 12 ,Γ,∗ . ∥R∥1,− 1
2 ,Γ

.

Proof. From Proposition 3.1 we first note that

∥ψ − ψh,∆t∥20, 12 ,Γ,∗ .T

∫ T

0

∫ t

0

∫
Γ

(W (ψ − ψh,∆t))∂t(ψ − ψh,∆t) dsx dτ dt .

Using the continuous weak formulation (2.8), then its discretization (2.11), we have

for all Ψh,∆t ∈ V p,q
h,∆t:∫ T

0

∫ t

0

∫
Γ

(W (ψ − ψh,∆t))∂t(ψ − ψh,∆t) dsx dτ dt

=

∫ T

0

∫ t

0

∫
Γ

g ∂t(ψ − ψh,∆t) dsx dτ dt−
∫ T

0

∫ t

0

∫
Γ

(Wψh,∆t)∂t(ψ − ψh,∆t) dsx dτ dt

=

∫ T

0

∫ t

0

∫
Γ

g ∂t(ψ −Ψh,∆t) dsx dτ dt−
∫ T

0

∫ t

0

∫
Γ

(Wψh,∆t)∂t(ψ −Ψh,∆t) dsx dτ dt

=

∫ T

0

∫ t

0

∫
Γ

(g −Wψh,∆t)∂t(ψ −Ψh,∆t) dsx dτ dt .

The last term may be estimated by interchanging the time integrals and duality:∫ T

0

∫ t

0

∫
Γ

(g −Wψh,∆t)∂t(ψ −Ψh,∆t) dsx dτ dt

=

∫ T

0

(T − t)

∫
Γ

(g −Wψh,∆t)∂t(ψ −Ψh,∆t) dsx dt

≤ T ∥R∥1,− 1
2 ,Γ

∥ψ −Ψh,∆t∥0, 12 ,Γ,∗ .

We use Ψh,∆t = ψh,∆t to obtain the estimate.
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4. Algorithmic considerations

4.1. Implementation of W

We set τ = t−|x−y| and use σ = 0. Citing a formula forW from Ha-Duong [12],

Lemma 4b), we have:∫
R+×Γ

(Wψ) ∂tΨ dt dsx =
1

2π

∫ ∞

0

∫
Γ×Γ

{−nx · ny
|x− y|

ψ̇(τ, y)Ψ̈(t, x) (4.1)

+
(curlΓ ψ)(τ, y) · (curlΓ Ψ̇)(t, x)

|x− y|

}
dsy dsx dt

We use piecewise linear ansatz functions φ1
i (x)β

m,1(t) from the space V 1,1
h,∆t (see

(2.9)) in space and time:

ψh,∆t(t, x) =

Nt∑
m=1

Ns∑
i=1

cmi φ
1
i (x)β

m,1(t) , (4.2)

where βm,1(t) = (∆t)−1
(
(t− tm−1)γ

m(t)− (t− tm+1)γ
m+1(t)

)
and γj(t) = βj,0 is

the characteristic function of (tj−1, tj ]. For algorithmic reasons, to obtain the time-

stepping scheme below, we choose test functions Ψ̇h,∆t(t, x) =φ
1
j (x)γ

n(t), which are

piecewise constant in time and piecewise linear in space. Expanding (4.1) for ansatz

functions ψh,∆t of the form (4.2) results in:∫
R+×Γ

Wψh,∆t(t, x) ∂tΨh,∆t(t, x) dt dsx = A−B ,

with

A =

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

1

|x− y|

∫ ∞

0

βm,1(τ) curlΓ φ
1
i (y) γ

n(t) curlΓ φ
1
j (x) dt dsy dsx

and

B =
1

2π

∫ ∞

0

∫
Γ×Γ

nx · ny
|x− y|

(
Nt∑

m=1

Ns∑
i=1

cmi β̇
m,1(τ)φ1

i (y)

)
γ̇n(t)φ1

j (x) dsy dsx dt

=

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

nx · ny
|x− y|

φ1
i (y)φ

1
j (x)

(∫ ∞

0

β̇m,1(τ)γ̇n(t) dt

)
dsy dsx .

Using, in particular, that the derivative γ̇n = δtn−1 − δtn is a difference of Dirac

distributions, we first compute∫ ∞

0

β̇m,1(τ)γ̇n(t)dt = (∆t)−1
(
2(H(tn−m − |x− y|)−H(tn−m−1 − |x− y|))

−H(tn−m+1 − |x− y|) +H(tn−m − |x− y|)

−H(tn−m−1 − |x− y|) +H(tn−m−2 − |x− y|)
)

= −(∆t)−1
(
χEn−m(x, y)− 2χEn−m−1(x, y) + χEn−m−2

)
.

Here, for l ∈ N0 we define the light cone El = {(x, y) ∈ Γ×Γ : tl ≤ |x−y| ≤ tl+1} ⊂
Γ × Γ, and χEl

(x, y) = 1 if (x, y) ∈ El, and = 0 otherwise. The second equality is
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verified by calculating both sides for (x, y) ∈ El. To conclude:

B =

Nt∑
m=1

Ns∑
i=1

cmi

[
−

∫
En−m

(nx · ny)(∆t)−1φ1
i (y)φ

1
j (x)

2π|x− y|
dsy dsx

+ 2

∫
En−m−1

(nx · ny)(∆t)−1φ1
i (y)φ

1
j (x)

2π|x− y|
dsy dsx

−
∫

En−m−2

(nx · ny)(∆t)−1φ1
i (y)φ

1
j (x)

2π|x− y|
dsy dsx

]
.

We now consider A:

A =

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

1

|x− y|

∫ ∞

0

βm,1(τ)curlΓ φ
1
i (y) γ

n(t)curlΓ φ
1
j (x) dt dsy dsx

=

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

1

|x− y|
curlΓ φ

1
i (y)curlΓ φ

1
j (x)

∫ ∞

0

βm,1(τ)γn(t) dt dsy dsx .

An explicit calculation of the integral shows∫ ∞

0

βm,1(τ)γn(t) dt

=

∫ ∞

0

(∆t)−1
(
(t− |x− y| − tm)γm(t− |x− y|)− (t− |x− y| − tm+1)γ

m+1(t− |x− y|)
)
γn(t) dt

= (∆t)−1

∫ ∞

0

(t− |x− y| − tm)γm(t− |x− y|)γn(t) dt

− (∆t)−1

∫ ∞

0

(t− |x− y| − tm+1)γ
m+1(t− |x− y|)γn(t) dt

= (2∆t)−1(|x− y|2 − 2|x− y|tn−m+1 + t2n−m+1)χEn−m(x, y)

+ (2∆t)−1(|x− y|2 − 2|x− y|tn−m−2 + t2n−m−2)χEn−m−2(x, y)

+ (2∆t)−1(−2|x− y|2 + 2|x− y|(tn−m + tn−m−1)− (t2n−m + t2n−m−1) + 2(∆t)2)χEn−m−1(x, y)

=: Υn−m(x, y) .

Here we use the definition of El from above. Therefore

A =

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

1

|x− y|
curlΓ φ

1
i (y)curlΓ φ

1
j (x) Υ

n−m(x, y) dsy dsx .

4.2. Marching-on-in-time scheme

In terms of the coefficients cmi with respect to the basis functions we note from

the formulas for A and B in Section 4.1 that∫
R+×Γ

Wψh,∆t(t, x) ∂tΨh,∆t(t, x) dt dsx =

Nt∑
m=1

Wn−mcm .

Here Wn−m is a matrix which has A−B as entries.

Similarly we have for the right hand side

gh,∆t(t, x) =

Nt∑
m=1

Ns∑
i=1

gmi β
m,1(t)φ1

i (x) .
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In matrix-vector notation we obtain using the stiffness matrix Ii,j =
∫
Γ
ξi(x)ξj(x) dsx:

Nt∑
m=1

Wn−mcm =
∆t

2
I(gn−1 + gn),

i.e. an explicit time stepping scheme, known as the marching-on-in-time (MOT)

algorithm:

W 0cn =
∆t

2
I(gn−1 + gn)−

n−1∑
m=1

Wn−mcm .

4.3. Leading contribution of absorbing boundary conditions to K ′

To consider the leading contribution of an absorbing half-space, we show that

the leading part of the new term Σ in the fundamental solution (2.1) for the absorb-

ing half-space can be implemented as a minor modification of the pure Neumann

problem, α = Σ = 0. For this, let y′ = (y1, y2,−y3) the reflection of y on the

y3 = 0-plane, ϑ = x3 + y3 and R2 = (x1 − y1)
2 + (x2 − y2)

2. We compute that the

contribution of Σ to the operator K ′ as in (2.4),

⟨K ′
3φ,Ψ⟩ := 2

∫
R+×Γ

∫
R+×Γ

∂Σ

∂nx
(t− τ, x, y) φ(τ, y) Ψ(t, x)dτ dsy dt dsx ,

is given by

α

π

∫
R+×Γ

∫
R+×Γ

∂

∂nx

(
∂

∂τ
[

H(t− τ − |x− y′|)√
(t− τ + αϑ3)2 + (α2 − 1)R2

]φ(τ, y)

)
Ψ(t, x) dsy dτ dsx dt .

If we define

A(t, τ) :=
√
(t− τ + αϑ3)2 + (α2 − 1)R2,

an integration by parts in τ shows that

⟨K ′
3φ,Ψ⟩ = −α

π

∫
R+×Γ

∫
R+×Γ

∂

∂nx

(
[
H(t− τ − |x− y′|)

A(t, τ)
]φ̇(τ, y)

)
Ψ(t, x) dsy dsx dτ dt .

In a physically motivated approximation, we neglect the x-derivative of A:

∂

∂nx
[
H(t− τ − |x− y′|)

A(t, τ)
] = − n⃗x · (x− y′)

|x− y′|A(t, τ)
δ(t− τ − |x− y′|) + . . .

With piecewise constant ansatz and test functions in space and time, we obtain

⟨K ′
3φh,∆t,Ψh,∆t⟩ ≃

α

π

∫
Γ×Γ

φ0
i (x)φ

0
j (y)

(
γm(tn−1 + |x− y′|)− γm(tn + |x− y′|)

)
×

· · · × nx · (x− y′)

|x− y′|A(tn−1 + |x− y′|, tn−1)
dsx dsy .

This term is easily included in the contributions of the first two terms of the fun-

damental solution, see [2].
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5. Numerical results

5.1. Neumann problem exterior to the sphere

In the following, we present numerical results for the Neumann problem (1.1),

using the time domain boundary element formulations of the first, resp. second kind,

(2.8) and (2.7).

In the special case where Γ = S2 = {x ∈ R3 : |x| = 1} is the unit sphere, for

simple right hand sides exact solutions for the densities may be found in [20]. We

recall that for the hypersingular equation Wψ = g with g(t, x) = g(t), the solution

has the following form [20]:

ψ(t, x) = ψ(t) = −
∫ t

0

g(t− τ) cosh(τ)dτ (5.1)

+

⌊t/2⌋∑
k=1

k∑
l=1

(−1)k+1

∫ t

2k

ck,l(τ − 2k)k−l+1eτ−2kġ(t− τ)dτ .

Here

ck,l :=

(
k − 1

l − 1

)
2k−l

(k − l + 1)!
.

For the corresponding equation of the second kind, (−Id+K ′)φ = g, again with

g(t, x) = g(t), the exact solution is given by

φ(t, x) = −
⌊t/2⌋∑
k=0

g(t− 2k) +

⌊t/2⌋∑
k=0

∫ t

2k

e−(τ−2k)g(t− τ) dτ . (5.2)

As φ is independent of x, the L2(Γ) norm turns out to be ∥φ(t)∥L2(Γ) = 2
√
π|φ(t)|,

and similarly for ψ.

Example 1: In the first numerical experiment, we look for solutions to Wψ = g,

resp. (−Id+K ′)φ = g with g(t, x) = g(t) = sin ( t
2

8 ) cos (t
2) on Γ = S2 for the

time interval [0, 12]. We use the time domain boundary element formulations (2.8)

and (2.7) and compare the numerical solutions with the exact solutions from (5.1),

resp. (5.2). For the discretization, we use the discretized tensor product spaces V p,q
h,∆t

from (2.9) and follow Section 4. In particular, we use piecewise linear ansatz func-

tions V 1,1
h,∆t for (2.8), resp. piecewise constant ansatz functions V 0,0

h,∆t for (2.7). The

choice of test functions allows us to solve the discretised space time equations using

the marching-on-in-time scheme from Section 4.2. To approximate the sphere, we

start from a regular icosahedron with 20 faces. In each refinement step, we divide

both the time step ∆t and mesh size h by 2 and project the new nodes back onto

S2. The ratio ∆t/h ≈ 0.6 remains approximately constant.

Figure 5.1 depicts ∥ψh,∆t∥L2(Γh) for the numerical solution as a function of t for

meshes with 320, 1280, 5120, resp. 20480 triangles and compares it to ∥ψ(t)∥L2(Γ).

In Figure 5.2 we show that the absolute value of the difference ∥ψh,∆t∥L2(Γh) −
∥ψ∥L2(Γ) remains uniformly bounded as a function of time. When the number of

degrees of freedom is increased, this error tends to 0 uniformly over the whole time

interval, as is expected for a space-time Galerkin method.
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For comparison, in Figure 5.3 we plot ∥φh,∆t∥L2(Γh) for the numerical solution of

the discretized equation of the second kind. Figure 5.6 compares the L2([0, T ]×Γ)–

norm of the error for the resulting densities φ (pink) resp. ψ (blue) vs. the number

of degrees of freedom, i.e. the number of time steps times spatial degrees of freedom.

The rate of convergence for the Galerkin solutions of the hypersingular equation is

approximately 1.0 in terms of degrees of freedom, or 3.0 in terms of h, compared to

a rate 0.65 in degrees of freedom, 1.96 in h, for the Galerkin solutions of the integral

equation of the second kind. Even for the coarsest discretization with 320 triangles

and 60 time steps (19200 DOF for (2.7), 9720 DOF for (2.8)) the Galerkin error in

L2([0, T ]×Γ) for the density ψ is significantly lower for the hypersingular equation

(2.8).

Example 2: We complement Example 1 with a second experiment in the same geom-

etry, where g(t, x) = t4e−2t. In this case, the exact solution ψ to the hypersingular

equation is approximately linear in the time interval [2, 12], see Figure 5.4. Figure

5.6 shows a correspondingly higher rate of convergence 1.6 in degrees of freedom,

4.8 in h (light blue curve), down to L2–errors of 10−8. Even though the solution to

the equation of the second kind (Figure 5.5) is far from linear, the rate of conver-

gence 1.34 in degrees of freedom, 4.1 in h, from Figure 5.6 similarly indicates higher

regularity of the solution compared to Example 1.

In both examples, the rates of convergence go beyond what our a priori esti-

mates from Section 3 would indicate even for discretizations with higher polynomial

degrees, for a general geometry.

5.2. Acoustic boundary conditions in a half-space

In a further numerical experiment, we include the leading contribution of an

acoustic half-space R3
+ in our computations. The additional complications of the

singular horn geometry between the emitter Γ and R2 × {0} are crucial for appli-

cations in traffic noise, and there is particular interest in properly modeling the

reflectivity α of the street [2]. The Neumann and Dirichlet problems correspond to

a reflectivity of α = 0 resp. α = ∞, or physically hard vs. soft scattering.

Example 3: Again we consider the model geometry of the unit sphere, but now

centered in (0, 0, 1.63) in the half space R3
+ with acoustic boundary conditions

∂u

∂n
− α

∂u

∂t
= 0

on R2 × {0}. We implement the Green’s function corresponding to these boundary

conditions in the half-space with an approximate third term, as described in Section

4.3. On Γ Neumann conditions are imposed, ∂u
∂n = 1

2g.

We use the exact solution

u(t, x) =
r+ − t

2r+

[
1 + cos

(
π(r+ − t)

R

)]
H(R− |r+ − t|)

+
r− − t

2r−

[
1 + cos

(
π(r− − t)

R

)]
H(R− |r− − t|)
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of the Neumann problem with α = 0 to prescribe g on Γ:

1

2
g =

[
t

2r2+

(
1 + cos

(
π(r+ − t)

R

))
− π

R

r+ − t

2r+
sin

(
π(r+ − t)

R

)]
H(R− |r+ − t|)

+
x2 + y2 + z2 − 1.632

r+r−

([
t

2r2−

(
1 + cos

(
π(r− − t)

R

))
− π

R

r− − t

2r−
sin

(
π(r− − t)

R

)]
H(R− |r− − t|)

)
.

Here, H(t) denotes the Heaviside function, r+ = ∥x1, x2, x3 − 1.63∥ and r− =

∥x1, x2, x3 + 1.63∥ and R = 0.9. While for Neumann boundary conditions (α = 0)

a single pulse is emitted from Γ and reflected on R2 ×{0}, the exact solution is not

known for acoustic boundary conditions with reflectivity α ∈ (0,∞) or Dirichlet

boundary conditions, α = ∞.

This acoustic problem is solved using the integral equation (2.7) of the second

kind, where K ′ is defined from the modified Green’s function as in Section 4.3. We

use tensor products V 0,0
h,∆t of piecewise constant ansatz and test functions in space

and time on a fixed uniform mesh of 1280 triangles and ∆t = 0.1. Figure 5.7 shows

the sound pressure uh,∆t(t, x) in the point x = ( 1√
2
, 0, 1√

2
) as a function of t for

different values of the coefficient α. We note that the solution is independent of the

boundary condition until the first reflected wave arrives in the point x. Increasing

α from the Neumann problem α = 0 (blue) via α = 0.1, 0.5, 5, 10, 1000 to

the Dirichlet problem α = +∞ (brown), we obtain a family of solutions which

interpolates monotonously between these boundary conditions.

Depending on the reflectivity, we observe strong interference between the direct

and reflected waves. Similar effects due to the singular horn geometry between the

emitter and R2 × {0} are observed in the sound emission of tires [2].

In the case of traffic noise, the resulting dependence on the reflectivity of the

street will be crucial to take into account. This application is the content of our

final example.

Example 4: For a problem in traffic noise, we illustrate the influence of the boundary

conditions on the solution for the extreme cases of Dirichlet and Neumann conditions

on the street. In this case Γ is given by the mesh in Figure 5.9 with 6027 nodes

of a grown slick 205/55R16 passenger car tyre, of diameter around 60cm, at 2 bar

pressure and subject to 3415N axle load at 50 km/h on a street with an ISO 10844

surface [6]. The right hand side g is obtained from simulations of the particle

velocity ∂u
∂t on Γ, as supplied by the work group of W. Kropp at the Chalmers

University in Gothenburg within the LeiStra3 cooperation and then converted from

frequency to the time domain, see [2] for details.

In this experiment we consider the tire centered above x = y = 0, elevated 2.1cm

above the street. In our units with the speed of sound c = 1, we choose ∆t = 0.01,

so that ∆t/h ≈ 0.2 and solve the integral equation (2.7) of the second kind for

both Dirichlet and Neumann boundary conditions on ∂R3
+. The density is plotted

in snapshots at the time steps 100, 200 and 300 in Figure 5.10 (for the Dirichlet

problem). See [2, 8] for similar density profiles for the Neumann problem. Figure

5.8 shows the resulting sound pressure in the point (2.8m, 0, 1.0m). The influence

of the boundary conditions is clearly observed once the reflected wave has reached
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the point of observation, especially in the transient dynamics for short times. For

long times, the Dirichlet conditions show a persistent oscillation of period around

7∆t. Figure 5.11 shows the absolute value of the Fourier transform of the sound

pressure from Figure 5.8 for times ≥ 5.145. The oscillations in time for the Dirich-

let problem clearly manifest themselves as a broad peak around frequency 4800Hz,

in physical units. For the Neumann problem a smaller resonance may be noticed

around 1000Hz. In [2] we showed that such broad-band frequency results agree and

are competitive with direct computations in frequency domain for passenger car

and truck tires 1mm above the street over a sound-hard street; they qualitatively

agree with experiments.

In practice, it is often average characteristics and the human perception of the

sound emission that are of interest. Figure 5.12 depicts an average over 321 points

on the hemisphere {x ∈ R3
+ : ∥x∥2 = 2} of emission spectra like in Figure 5.11, also

averaged over bands of frequencies. Here the A-weighted sound pressure level is

plotted for frequencies up to 2000Hz, which provides an approximation to the hu-

man perception of noise. We observe that Dirichlet and Neumann conditions lead

to similar average noise emission for frequencies between 300 and 800Hz. For higher

frequencies, the noise level is significantly higher in the Neumann case, reflecting

the resonance already observed in Figure 5.11. The possibility of such analyses gives

time-domain boundary element methods a role in the study of traffic noise.
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Fig. 5.1. L2(Γh)-norm of the solution to the hypersingular equation (2.8) for Example 1.
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Fig. 5.2. Absolute error ∥ψh,∆t∥L2(Γh)−∥ψ∥L2(Γ) as a function of time for the hypersingular

equation (2.8), Example 1.
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Fig. 5.3. L2(Γh)-norm of the solution to the integral equation (2.7) for Example 1.
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Fig. 5.4. L2(Γh)-norm of the solution to the hypersingular equation (2.8) for Example 2.



TDBEM for the Neumann problem 19

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

L2
−

N
or

m
 in

 S
pa

ce

 

 

exact solution
320 triangles, ∆t=0.2
1280 triangles, ∆t=0.1
5120 triangles, ∆t=0.05
20480 triangles, ∆t=0.025

Fig. 5.5. L2(Γh)-norm of the solution to the integral equation (2.7) for Example 2.
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Fig. 5.6. L2([0, T ]×Γ) error vs. degrees of freedom of the space-time mesh in Examples 1

and 2, for the integral equations (2.7) resp. (2.8).
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Fig. 5.7. Sound pressure at ( 1√
2
, 0, 1√

2
) in R3

+ as a function of the reflectivity α.
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Fig. 5.8. Sound pressure at (2.8m, 0, 1.0m) as emitted by a car tire, Dirichlet or Neumann

boundary conditions on the street.
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Fig. 5.9. Mesh of the passenger car tire, Example 4.
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Fig. 5.10. Visualization of the density for ∆t = 0.01, time step: 100 (a), 200 (b), 300 (c).
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Fig. 5.11. Sound pressure at (2.8m, 0, 1.0m) in frequency domain, as emitted by a car tire.
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Fig. 5.12. A-weighted sound pressure for Dirichlet and Neumann conditions, averaged over

321 points.


