
Avoiding Security Pitfalls with Functional
Programming: a Report on the Development of a

Secure XML Validator
Damien Doligez˚, Christèle Faure:, Thérèse Hardin:; and Manuel Maarek:§

˚Inria, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France
:SafeRiver, 9 bis rue Delerue, 91120 Montrouge, France

;UPMC, 4 Place Jussieu 75005 Paris, France
§Heriot-Watt University, EH14 4AS Edinburgh, UK

Abstract—While the use of XML is pervading all areas of IT,
security challenges arise when XML files are used to transfer
security data such as security policies. To tackle this issue, we
have developed a lightweight secure XML validator and have
chosen to base the development on the strongly typed functional
language OCaml.

The initial development took place as part of the LaFoSec
Study which aimed at investigating the impact of using func-
tional languages for security. We then turned the validator into
an industrial application, which was successfully evaluated at
EAL4+ level by independent assessors.

In this paper, we explain the challenges involved in processing
XML data in a critical context, we describe our choices in
designing a secure XML validator, and we detail how we used
features of functional languages to enforce security requirements.

Index Terms—Security, Software Engineering, Functional Pro-
gramming, XML Security

Preprint ICSE Software Engineering In Practice (SEIP) 2015. The definitive version was published by IEEE in the Proceedings of 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering (ICSE), DOI: 10.1109/ICSE.2015.149

I. INTRODUCTION

The XML format has reached every field of IT thanks
to its interoperable and extensible nature. But the use of
XML technologies and libraries implementing XML creates
challenges in critical systems for which security is a priority.
For instance, the extensibility features of XML are certainly
to be restricted when used in a critical context. Critical
systems using XML as a communication medium need to
secure the processing of XML data files. To address this need
we have developed a secure XML validator which allows
the processing of data files only if they are well-formed,
otherwise the processing is forbidden. We have developed this
XML validator using a strongly typed functional language as
we believe that such a language provides the software with
valuable security properties.

We chose the OCaml language for the following reasons: (a)
the language is a strongly typed functional language with high
execution efficiency, (b) the OCaml compiler is able to produce
directly native-code providing better security and efficiency,
(c) in-house expertise in the language was available.

The development of this secure XML validator was done in
two stages.

Firstly, a prototyping phase took place during the LaFoSec
Study (see below). This phase was intended to demonstrate the

security benefits of a functional language-based development.
In this paper, we name XSVGen-prototype the prototype
resulting from this first phase1.

Secondly, we launched an industrialisation phase which
specialised the initial version to fit the requirements of an
industrial customer. We name here this specialised version
XSVGen-product.

Both versions of the application have been evaluated. Dur-
ing the LaFoSec Study, XSVGen-prototype was submitted to
a vulnerability assessment by independent parties. XSVGen-
product was evaluated by independent assessors as part of an
EAL4+ system.

The LaFoSec Study

The LaFoSec Study [1] followed the JavaSec Study “Java
and security” [2] with the intention to raise awareness about
the impact on security that a programming language could
have (see [3] for more details). The LaFoSec Study investi-
gated the impact of functional languages on security. It was
funded and initiated by the French Network and Information
Security Agency (ANSSI) and conducted by a consortium
led by SafeRiver2 and composed of academic and industrial
partners. The first part of LaFoSec Study was dedicated to the
analysis of the security of three functional languages (OCaml,
F# and Scala) and an extended analysis of OCaml’s compiler
and execution mechanism. The second part was an experiment
of the development and evaluation of a functional language
application, XSVGen-prototype. The authors of this paper
were involved in both parts of LaFoSec Study.

Contributions

The contributions of the work presented in this paper can
be summarised as follows.

1) We describe the challenges, choices, outcomes of our
experience in developing a security-oriented application
in a functional language.

1The sources of XSVGen-prototype were made available by ANSSI under
the CeCILL-B licence at https://github.com/ANSSI-FR/xsvgen.

2http://www.safe-river.com/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287493703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICSE.2015.149
https://github.com/ANSSI-FR/xsvgen
http://www.safe-river.com/

2) We detail how several functional language features such
as types, pattern matching and encapsulation could be
used to enforce security requirements and to facilitate
the prototyping and specialisation of the application.

3) We explain the challenges involved in processing XML
data in a critical context and present the design choices
we made for our XML validator to protect against most
XML-based attacks.

Plan

The structure of this paper is as follows. In section II, we
present the security issues related to XML processing, the
requirements for the application and our design choices. In
section III, we detail how we used language-based features
to address security concerns. In section IV, we explain how
we used language-based features to manage the prototyping
and the specialisation of the application. In section V, we
give information about the outcome of the evaluation process
and discuss the feasibility of a comparison with other XML
validators.

II. DESIGN-LEVEL SECURITY

A system or component taking an XML file as input may
contain XML-related weaknesses and may therefore be subject
to XML-related attacks. Table I lists Common Attack Patterns3

(CAPEC) and Common Weaknesses Enumeration4 (CWE)
related to XML processing.

TABLE I
LIST OF XML-RELATED COMMON ATTACKS AND WEAKNESSES

Danger Description
CAPEC-82 Violating Implicit Assumptions Regarding XML Content

(aka XML Denial of Service (XDoS))
CAPEC-99 XML Parser Attack
CAPEC-146 XML Schema Poisoning
CAPEC-147 XML Ping of the Death
CAPEC-197 XML Entity Expansion
CAPEC-201 XML Entity Blowup
CAPEC-219 XML Routing Detour Attacks
CAPEC-221 XML External Entities
CAPEC-228 DTD Injection
CAPEC-229 XML Attribute Blowup
CAPEC-230 XML Nested Payloads
CAPEC-231 XML Oversized Payloads
CAPEC-250 XML Injection
CAPEC-484 XML Client-Side Attack
CAPEC-491 XML Quadratic Expansion
CAPEC-528 XML Flood
CWE-91 XML Injection (aka Blind XPath Injection)
CWE-112 Missing XML Validation
CWE-611 Improper Restriction of XML External Entity Reference

(’XXE’)
CWE-776 Improper Restriction of Recursive Entity References in

DTDs (’XML Entity Expansion’)
CWE-827 Improper Control of Document Type Definition

An XML attack consists in forming an XML document to
elude the security mechanisms of a system. The impacts of
such attacks on the system are:

3https://capec.mitre.org/
4https://cwe.mitre.org/

‚ Denial of Service;
‚ Information disclosure;
‚ Diversion from intended purpose.

A. XML Validator Security Role

The role of an XML validator is to protect from XML-
related attacks a critical system that makes use of XML files.
An XML validator prevents forged dangerous documents from
reaching the core function of the system. XML validators
operate at syntactic level only and could therefore only identify
syntactically dangerous documents. Documents syntactically
sane could well be dangerous and must be detected by other
tools acting at a semantic level according to the system data
processing.

In this paper, we focus on the detection of syntactic or
grammatical attacks. We define an XML validator as an XML
parser that answers “fail” if the XML file is syntactically or
grammatically dangerous or “pass” if it is not. Thus, before
using an XML file, the system uses the validator to verify that
the file is well-formed or not. If the file is well-formed, the
system processes it, otherwise the file is rejected without any
processing. This basic behaviour can be adapted to provide
more diagnostics on errors or validation.

An XML data file uses XML syntax and XML constructs
according to an XML schema (i.e. a grammar for XML data).
XML schemas are described using languages such as DTD
(Document Type Definition), XSD (XML Schema Definition)
or Relax NG (REgular LAnguage for XML Next Generation).
Thus the syntactic and grammatical dangerousness of an XML
file has three possible origins: it is ill-formed with respect to
the XML syntax; it makes use of intrinsically dangerous XML
constructs; or it is ill-formed with respect to an XML schema.

An XML data file is considered valid if it can be parsed
according to the given XML schema, the lexing step before
parsing having verified conformance to the XML syntax and
having imposed the restrictions on the XML constructs used.

It does not necessarily mean that this data is secure for the
specific domain of the system. In a critical setting, it is the duty
of the designer of the XML schema to embed as much domain-
specific constraints as possible, identify constraints that cannot
be described in the schema and delegate the verification of this
subset of constraints to another component in the system.

The validator takes two files as input: an XML schema and
an XML file and produces the validation result as output. The
output can take various forms depending on the need:

‚ A basic dual signal output (0 or 1) indicating if the data
is valid or invalid;

‚ A comprehensive result either stating that the data is valid
or giving explanatory reasons why the data is deemed
invalid;

‚ A verbose output providing details on the steps taken
by the validation process whether it resulted in the data
being considered valid or invalid, i.e. a demonstration
accompanying the validation result.

In order to ensure that the validator does not introduce any
security vulnerability, thus becoming the weakest link of the

https://capec.mitre.org/
https://cwe.mitre.org/

whole processing, it must itself be developed in conformity
with security requirements:

‚ Not be subject to false negatives. Incorrect files should
not be accepted.

‚ Limit false positives. Correct files should not be rejected.
Otherwise, the responses of the system to its inputs can
arrive too late, can become harmful if the functionality
of the system is degraded, can even produce some denial
of service.

‚ Guarantee the integrity of the input files (the input file
should not be altered by the validator since if valid, it is
processed by further components of the system).

‚ Guarantee the confidentiality of the input files. Not only
the contents of the file should remain confidential but
all information such as logging of validation activity or
diagnosis of invalidity can be exploited to attack the
system.

‚ Execute safely in reasonable time.
For XSVGen, we have chosen to describe XML schemas

using W3C’s XSD language because it is widely accepted,
it is more recent and expressive than DTD and it is more
commonly used than Relax NG.

B. Design Choices

A major design choice we made for XSVGen and which we
detail in section II-B1 is to conceive XSVGen as a generator
of XML validators. Section II-B2 details the restriction and
extensions we made when implementing XML standards in
XSVGen for improving security.

1) Developing a Generator of Validators: Contrary to most
XML validators, each XSVGen validator is specialised to one
given XML schema (expressed in XSD). Traditional XSD-
based XML validators would take as arguments XSD files
describing the schema and an XML file to be validated
according to this schema. The choice we made for XSVGen
is to generate a standalone validator for a given XML schema
(described by XSD files). XSVGen therefore takes an XSD
schema (one or more XSD files) as argument and produces
the source code of the specialised validator. Once compiled,
this validator takes as argument the file to validate. We name
such a compiled validator XSVal.

In a critical setting, the XSD file describing the schema is
provided by a trusted user (typically, a system administrator)
while there is absolutely no guarantee on the XML data
file provider (possibly an external unauthenticated user and
therefore potentially an attacker). This two-phase deployment
allows adjusting security checks to each of these input files.

Moreover, generating a specialised validator reduces the
effort of processing the XSD files: processing the XSD files is
done only once at the generation step that produces a validator.
It gains efficiency and reduces the possibility of an attack
targeting the XSD file since there is no occurrence of this
file in the executable XML validator.

However, deploying an updated version of the XSD schema
or a different XSD schema is more complex than simply
changing XSD files as it requires producing a new executable

XML validator by performing the generation and compilation
steps for the new version. As a result, XSVGen is well-
adapted to situations where the XSD schema remains un-
changed during a certain lapse of time. When the XSD files
are dynamically obtained from an untrusted user, XSVGen is
probably not suitable.

Fig. 1. XSVGen workflow
The executable XSVGen is first compiled (phase 0). An executable validator
XSVal is generated and compiled for a given XML schema described by XSD
files (phase 1). The validator is executed on each XML file to be validated
(phase 2).

Figure 1 illustrates the deployment workflow of XSVGen.
Given an XML schema (described by XSD files) as input,
XSVGen outputs the OCaml sources of a validator of XML
files according to this XML schema. These sources are com-
posed of an XML validation engine (this part is shared by
all generated validators) and a validation table produced by
XSVGen. The validation engine is composed of a set of
validation functions that are not specific to the input XML
schema. The validation table is a translation of the XML
schema into a flattened and preprocessed format ready to
be used by the validation engine. This table is composed of
values of a predefined data type. The table value is generated
into a single OCaml source file and is the only source code
effectively generated by XSVGen (first step of Phase 1 in
Figure 1). The rest of any output validator source code is
generic and could therefore be analysed and evaluated before
any deployment.5 The table value does not hold any functional

5In certain critical settings, a re-evaluation might be triggered by substantial
source code changes. While a change of the XSD schema implies a change
of the preprocessed validation table, such change does not introduce any new
executable code.

value or application of function. This means that the compila-
tion (second step of Phase 1 in Figure 1) of any validator will
result in exactly the same code part of the executable file, the
only difference will be in the data part of the executable file
which contains the preprocessed parsing table.

We use a native-code OCaml compilation (as opposed
to a bytecode OCaml compilation) to obtain a standalone
executable validator which contains the validation mechanism,
the internal representation of the XML schema and the OCaml
runtime system. A standalone executable file provides addi-
tional protection at execution time as there is no need to protect
the XSD file from alteration or access (this is particularly the
case when Phase 1 and Phase 2 are performed in different
locations).

2) Restricting XML Standards: The XML standards
(XML [4], XML Namespace [5], XSD [6], [7]) were designed
by the W3C with the intention to be general, interoperable
and extensible. Such goals leave many doors open to possible
attacks. In this section, we list the various accommodations we
made to these standards to achieve a comprehensive level of
security. These accommodations span from the management
of the XML syntax to restrictions and extensions of the XSD
language.

1) Limiting the set of XML entities. In XML, a sequence
of characters could be represented by the characters
themselves, by references to their numeric represen-
tations or by a reference to an entity. An entity is
either predefined, user-defined in the XML schema or
user-defined directly in the XML file. Considering the
possibilities of uncontrolled expansion caused by XML
entities, we have limited their use to the five predefined
XML entities and to non-ASCII characters references.
We have ruled out user-defined entities (in XSD by
the Entity construction and in XML by the DocType
preamble). This limitation is similar to the expansion
of entities for a normal form of XML as proposed in
Canonical XML [8].

2) Forbidding XML comments. The syntax of comments
is often a source of variation in interpretations of the
same file by different parsers of the same language. To
avoid such issues with XML parsing, we chose as default
behaviour for XSVGen to reject comments in XML files.

3) Forbidding document type self-declaration. The XML
syntax provides the possibility for an XML document
to contain the declaration of its own document type
in the form of an embedded or referenced DTD, or
of references to XSD files. We forbid the embedding
or reference to a DTD and choose to restrict XSD
declarations to a predefined URI.

4) Restricting XSD modularity to local XSD. An XML
schema could be obtained from various XSD files using
the modular XSD constructions of importation and in-
clusion. The XSD recommendations allow such modular
composition of XSD files to be built with XSD spanning
across the network using URIs to locate each file. In
XSVGen, we have restricted the modular composition

of XSD to local XSD files only. Files referenced by
URIs need to be provided locally for the generation
of a validator to take place. Additionally, we deemed
insecure the referencing of external content within an
XML file. It is therefore not a feature of XSVGen.

5) Complementing XSD with size controls. The XSD lan-
guage provides ways to define an XML structure. XML
is a tree representation and XSD allows defining the
content of leaves (Simple-Types [7] define textual con-
tent that could appear as attribute values or in between
elements’ tags) and the content of nodes (Complex-
Types [6] define the number, ordering and variety of
children of a node). The designer or administrator of a
system uses these XSD types to define the structure and
content of XML data to be communicated. While XSD is
an expressive language, it also offers extensive freedom
that could have security implications. By default, XSD
does not limit the nesting of some constructs which
could trigger Denial of Service attacks. The list of XSD-
valid constructs that need to be bounded in a critical
environment is as follows:

‚ Leaf data type,
‚ Number of children for a node,
‚ Loop in the definitions of Complex-Types (cyclic

references of Complex-Types),
‚ Wild-card XSD constructs:

– Setting the processing to accept trailing or re-
peated white space characters,

– Wild-card XSD construct authorising undefined
attributes,

– Wild-card XSD construct authorising any se-
quence of characters,

– Wild-card XSD construct authorising a subtree to
be populated by unknown elements from other
name-spaces.

These permissive features allow a wide range of arbi-
trary high-length data contents or high-depth XML trees.
They could be capped by setting, for instance, the XSD
maxLength and maxOccurs limits for each simple and
complex type defined or by avoiding to use the wild-
card constructs. However, making sure that an XSD
file contains the necessary restrictions in place requires
scrutiny. In XSVGen, we made the choice to extend the
user control over XML limits that could not be easily
characterised and reviewed in XSD. We created a set of
parameters for controlling the:

‚ Depth-limit: maximum element depth of the XML
tree;

‚ Contents-limit: maximum number of content chil-
dren of a single element;

‚ Length-limit: maximum byte-length of a single tex-
tual data;

‚ Attributes-limit: maximum number of attributes of
a single element.

These controls extend XSD with limits dictating the

global size and shape of a valid XML file.
Note that this list of accommodations to the XML stan-

dards are limiting XSVGen to security-oriented uses, making
XSVGen less suitable for uses without security concerns.

C. Security Improvement
The protections offered by a well-designed XML validator

to validate XML files before use are summarised in Tables II
and III. The use of XSVGen protects from most XML attacks
and weaknesses listed in public common enumerations.

TABLE II
LIST OF PROTECTIONS OFFERED BY XSVGEN

Protection Description and dangers covered
Use of XSVGen Validating XML data before processing

CAPEC-82 CAPEC-99 CAPEC-219
CAPEC-250 CAPEC-484 CWE-91 CWE-112

Design choice II-B1 Compiling a standalone specialised validator
CAPEC-146

Design choice II-B2.1 Limiting the set of XML entities
CAPEC-197 CAPEC-201 CAPEC-221
CAPEC-491 CWE-91 CWE-611

Design choice II-B2.2 Forbidding XML comments
CWE-91

Design choice II-B2.3 Forbidding document type self declaration
CAPEC-228 CWE-611 CWE-776 CWE-827

Design choice II-B2.4 Restricting XSD modularity to local XSD
CAPEC-146

Design choice II-B2.5 Complementing XSD with size controls
CAPEC-229 CAPEC-230 CAPEC-231
CAPEC-528

TABLE III
LIST OF DANGERS COVERED BY THE PROTECTIONS OFFERED BY XSVGEN

Danger Protection
CAPEC-82 Use of XSVGen
CAPEC-99 Use of XSVGen
CAPEC-146 Design choices II-B1 and II-B2.4
CAPEC-147 NA
CAPEC-197 Design choice II-B2.1
CAPEC-201 Design choice II-B2.1
CAPEC-219 Use of XSVGen
CAPEC-221 Design choice II-B2.1
CAPEC-228 Design choice II-B2.3
CAPEC-229 Design choice II-B2.5
CAPEC-230 Design choice II-B2.5
CAPEC-231 Design choice II-B2.5
CAPEC-250 Use of XSVGen and XSD design
CAPEC-484 Use of XSVGen
CAPEC-491 Design choice II-B2.1
CAPEC-528 Design choice II-B2.5
CWE-91 Use of XSVGen, design choices II-B2.1 and II-B2.2
CWE-112 Use of XSVGen
CWE-611 Design choice II-B2.1 and II-B2.3
CWE-776 Design choice II-B2.3
CWE-827 Design choice II-B2.3

III. LANGUAGE FEATURES FOR SECURITY

In this section, we present some aspects of the design and
implementation of XSVGen and more precisely how we relied
on some features of the OCaml language [9] to implement the
security features of the application. This section extends [10],
which focused on illustrating the use of the OCaml language
as a formal Integrated Development Environment (IDE).

A. Types for Traceability

During the validation of an XML file with respect to XSD
files (representing an XML schema) the various constructs of
the XSD and XML languages are explored. The validation
process is decidable but the number of XML and XSD
constructs, their combination and the number of validation
rules specified in the W3C Recommendations increase the
complexity of both the development and evaluation of the
validator. The development of our XML validator was based
on development rules elaborated by the LaFoSec Study [1,
Recommandations]. For example, the use of record and union
types and corresponding pattern-matching is strongly recom-
mended for data management as it enables automatic verifi-
cations by the compiler. Indeed we heavily relied on OCaml
union types and record types not only to encode data but also
to record the application of some W3C validation rules. We
can say that a significant portion of the task of verifying the
conformance of the validator to the W3C recommendations
was done by the OCaml compiler itself through typing and
pattern-matching. The OCaml compiler systematically verifies
that each operation defined by pattern-matching on the values
of these types covers every possible case. This alleviates
the burden of verification from the developer and improves
the robustness of the validator. Applying such development
rules provides automatic verification by the compiler of the
complete handling of:

‚ XML constructs,
‚ XSD constructs,
‚ XSD validation rules (CVC),
‚ Predefined validation and execution errors.
1) Errors and Exceptions: We have defined a union type

Error.t for which each type constructor represents a unique
predefined error. We also defined a unique OCaml exception
Error.E which takes a value of Error.t as argument.

(* file error.ml *)
type t =
| UTF8_invalid
| UTF8_overlong
| ...
| XMLL_encoding_missing
| XMLL_encoding_not_supported
exception E of t

We enforced the use of the exception in Error.E as sole
exception in the source code of XSVGen. In OCaml, while
it is possible to define a function over each constructor of a
union type by pattern matching and to have the completeness
verified by the OCaml compiler, the completeness of exception
handling is not verified by the compiler (since the type exn
of exceptions is extensible). Catching exceptions by matching
exception constructors of the type exn is not done exhaustively
since the list of values of type exn that could be raised at
a given location in the code is not known at compile time.
Since we were interested in checking the exhaustive handling
of exceptions, we have defined and used throughout the source
code of XSVGen a single exception taking as argument a value
of Error.t.

This allows to a systematic discrimination between error
cases as shown by the following example

try
...

with
| Error e ->

begin
match e with

| UTF8_invalid
| UTF8_overlong
| ... ->

exit 1
| XMLL_encoding_missing
| XMLL_encoding_not_supported
| ... ->

exit 2
end

The complete handling of error cases is therefore guaranteed
by the pattern matching verification performed by the OCaml
compiler.

2) Constraining Data and Computations with Types:
Whenever possible, we used the properties of OCaml types
to enforce constraints on the manipulated data and on their
processing.

For example, the abstract type we have defined to represent
XML trees is a record type composed of an XML declaration
and a root node. We defined an XML node as being composed
of an element and a list of contents, and a content as being
either a node or a leaf. In our program, each function returning
a value of type Xml.tree is therefore guaranteed to have
exactly one and only one root and to be a well-formed tree
with an element at each node.

(* file xml.ml *)
type ’element tree =

{ declaration : declaration ;
root : ’element node

}
and ’element node =

{ node : ’element ;
contents : ’element content list }

and ’element content =
| Node of ’element node
| Leaf of Stringdata .t

Elements’ name, namespace and attributes are identified by
the type parameter ’element. We then defined two types for
elements.

‚ The type of elements for which the namespace expansion
has not been performed: unexpanded_element is com-
posed of an un-expanded XML name (with or without
prefix) and a set of attributes with un-expanded names

‚ The type of elements for which the namespace expansion
has been performed: expanded_element is composed of
a qualified XML name (URI – name pair) and a set of
attributes with qualified XML names.

(* file xml.ml *)
type (’name ,’ attributes) element =

{ element_name : ’name;

attributes : ’attributes }

type unexpanded_name =
{ prefix : Stringdata .t option ;

local_name : Stringdata .t }

type expanded_name =
{ uri : Stringdata .t;

name : Stringdata .t }

type unexpanded_element =
(unexpanded_name , unexpanded_attributes)
element

type expanded_element =
(expanded_name , expanded_attributes)
element

We use these types to define the namespace expansion
step of the XML lexing as being a transformation from
unexpanded_element tree to expanded_element tree. The
implementation of this transformation is statically verified by
the type checker of the OCaml compiler to systematically
return a tree with qualified names.

B. Functional Approach to Control Execution Flow

As a security component, the validator is required to provide
a negative validation result when provided with a file that
does not comply with either the XML syntax or the given
XSD (absence of false negatives). It is also required to give a
positive validation result when provided with a valid file (low
rate of false positives). It is therefore important to analyse
the control flow of the validator to ensure that the application
implements correct and complete computations.

Our choice when implementing the validation functions of
XSVal was to rely solely on purely functional constructs (by
using only immutable values and avoiding exceptions and side-
effecting operations) for several reasons. First, being purely
functional means that calls to the validation function do not
depend upon the memory state. Tracing in the source code
every computation step of the validation is straightforward by
following the syntax. Second, the use of pure and typed func-
tions helps to demonstrate the termination of the validation
operation. If a function can be typed, then its execution either
ends with a result of the intended type or loops forever. This
last case has been eliminated by a simple study of recursive
calls by code inspection showing a decreasing measure of the
recursive argument call. We can therefore state that the XML
validator supplies a validation result in every case.

As OCaml is not purely functional, we identified the im-
perative constructs of the language and forbid their use within
the code composing the validation function. More precisely,
the following features were forbidden:

‚ Mutable variables as they make the data flow more
complex to follow by proofreading,

‚ Exceptions for nominal computation as they disrupt the
execution flow of the program,

‚ Non-exhaustive pattern matching as it would introduce
possible failures in the application.

To forbid such constructs, we relied on OCaml compiler
safeguards which reject programs containing non-exhaustive
pattern matching6 and we have imposed some programming
rules to follow. These rules could be verified by proofread-
ing the source code. Some of them correspond to static
verifications on the source code or on intermediate abstract
representations which could be performed by a more elab-
orate compiler. As we forbid the use of exception in the
validation function, every failure of the validation is explicitly
implemented. We defined a type for validation results which:
discriminates valid and invalid results (type constructors OK
and KO of ’a result type); references the XSD validation rule
used (in the following example, the CVC rule length valid [6,
B.1]); and locates its application in the XML input file (type
Stringdata.t option).

if length_test (length_fun sd)
then

Lib.OK [(Lxsd. CVC_length_valid ,Some sd)]
else

Lib.KO [(Lxsd. CVC_length_valid ,Some sd)]

A validation result, such as the one output by length_test,
is of type vresult.

type vresult =
((Lxsd.cvc * Stringdata .t option) list ,

(Lxsd.cvc * Stringdata .t option) list)
Lib. result

C. Encapsulation as Data Protection

To guarantee that neither the XML content to be validated
nor the XML schema used by the XML validator are mod-
ified by the application, we needed to protect their internal
data representation against alteration. In OCaml, values are
immutable by default. OCaml is a statically strongly typed
language which prevents the user from directly manipulating
the memory with pointers and pointer arithmetic. The memory
initialisation and manipulations are automatically performed
and handled by the compiler and the garbage collector (GC)
of the runtime system. This offers memory safety which is
extended by dynamic bound checking for string and array
accesses. Thus, already acquired values could not be changed
if no mutable values are used.

We therefore decided to use only immutable values. Then,
we were faced with an OCaml (mis)feature: the string values
are mutable in OCaml7. XSVGen makes intensive manip-
ulations of strings and we needed to retain the efficiency
of native strings. To benefit from the native String library
capabilities while at the same time forbidding the mutation
of these values, we have defined a safe string module, called
Stringdata, which encapsulates calls to the standard string
library. Throughout the program, we made use of this string

6Warning 8 of the OCaml compiler is concerned with identifying partial
match (missing cases in pattern-matching). It is activated by default and
triggers a compilation error with option -warn-error +8.

7Following the LaFoSec Study [1], OCaml version 4.02 (August 2014)
incorporates the -safe-string option which makes standard strings im-
mutable, this behaviour may become the default in future versions.

wrapper to safeguard the program from string alterations.
This module internally uses OCaml’s strings but does only
provide manipulation functions that do not alter the values
themselves. To guarantee that the string values manipulated
by the program are not altered we have (a) used our alter-
native version Stringdata of string, (b) encapsulated the
use of strings in the Stringdata module in an abstract type
Stringdata.t (the internal representation of Stringdata is not
accessible outside of the module itself), and (c) reinforced
this encapsulation by following coding rules which prevent
bypassing the modular encapsulation (forbidding the use of
the Obj module, forbidding exception overloading; a complete
list and explanation could be found in [1, Recommandations]).

Another important gain in using OCaml is the fact that data
and executable code are strictly separated in the native code
produced by the compiler. To reinforce this separation, we
forbid the use of dynamic code loading and the use of bytecode
execution which are the only situations when data could be
executed. As OCaml does not have pointers, the integrity of
both data and executable code are guaranteed.

IV. PROTOTYPING AND SPECIALISATION

This section reports on our experience in using features of
the OCaml language to set up a robust development process
suitable for prototyping and specialisation.

An XML validator requires various components such as a
character decoder, an XML lexer & parser, an XSD-based
validator. Reading the schema from XSD files8 also requires a
character decoder, an XML lexer & parser and in addition
an XSD transcoder (from XSD’s abstract representation to
XSVGen’s internal validation table representation).

For the development of XSVGen-prototype, we have set
up a development plan which involved several intermediate
functional prototypes. Each prototype was to implement a
set of validation functionalities. We developed in parallel
the application’s components (character decoder, XML lexer,
XML parser, XSD parser, XSD Simple-Type validator, XSD
Complex-Type validator, etc.). Each new prototype added new
features to some or all components of the previous prototype.
The first prototype of a generator/validator was only able
to implement a small set of Encoding/XML/XSD features
but was a full-fledged application for this small subset of
features. This allowed us to validate from the first prototype
the functional breakdown and component interfaces that we
had designed. Using this strategy, it was also immediately
possible to run unit, integration, component and system tests.

An alternative would have been to develop one component
at a time. This would have delayed the tool validation to the
end of the development because the XML validation feature
could not have been tested before the integration phase.

A. Support Provided by the Language

The initial step of our development consisted in setting up
the interfaces between the various components. We defined

8XSD files are themselves encoded in XML.

types representing the values that would transit between com-
ponents. These interface types also included error handling
types used to discriminate different cases of validation failure
and explicitly trace current prototype limitations.

The interface types were primarily union types where each
type constructor corresponds for instance to an XML construct,
to an XSD construct or to a positive or negative validation
result. The processing associated to each type constructor was
described by pattern matching in the source code of each
component.

At each new prototyping stage, we added new type con-
structors representing the new features to be implemented
and we removed those type constructors representing negative
validation results being deprecated because they just handle
the limitations of the previous prototype.

With this method of encoding the prototyping features
through interface types we could rely on the OCaml compiler
to verify the completeness of our implementation. The OCaml
compiler verifies that every pattern matching is complete
according to the list of type constructors defined and raises an
error locating the incomplete pattern matching and the missing
patterns9.

Relying on the standard pattern matching verification was
not enough in our case due to the possibility offered by
catch-all patterns. In pattern matching expressions, a catch-
all pattern, which is represented by the underscore symbol _,
stands for all the cases not covered by the previous patterns.
For example, in a pattern matching for a type composed of
three constructs (e.g. type t = A | B | C), a catch-all pattern
could be used to discriminate every other case but the first
one (e.g. let fragile_f = function A -> ... | _ -> ...).
When adding new type constructors to an interface type, a
matching containing a catch-all would still be seen as complete
while the new construct might need a specific processing.
Considering our previous example, the catch-all pattern might
become erroneous with the introduction of a fourth con-
struct later in the development. Indeed, nothing was known
about this fourth case at the time the pattern was written.
For instance, if case D is added to type t (we now have:
type t = A | B | C | D), the typing of fragile_f would
still hold while D did not exist when the body of function
fragile_f was written.

A matching containing a catch-all is called fragile. During
our development process we enforced the use of non-fragile
pattern matchings to guarantee that the addition of new cases
in a type imposes to reconsider each processing of values
of this type. Non-fragile patterns make an explicit matching
of each case of the user defined type. A robust version
of fragile_f can be defined by explicitly listing all cases:
let robust_f = function A -> ... | B | C -> When
later adding a new case D to type t, the OCaml compiler would
require an additional matching case | D -> ... to the function
robust_f.

9Note that by default OCaml issues a warning, an extra option
-warn-error +8 is required to turn this warning into error.

The OCaml compiler offers the possibility to raise a warn-
ing in case of fragile pattern matching with option -w +4.
Furthermore, the compiler can also be made to reject any
use of fragile patterns with the additional -warn-error +4
option. Compiling fragile_f with these options would give
the following error:

Warning 4: this pattern - matching is fragile .
It will remain exhaustive when constructors

ëare added to type t.
val fragile_f : t -> ... = <fun >
Error: Error - enabled warnings (1

ëoccurrences)

The use of OCaml types and the analysis performed by the
type system has proven decisive for systematically covering
the numerous cases of XML/XSD validation. It has also en-
abled the possibility of a reliable development by prototyping
stages and later by specialisation developments. For each new
prototype or new specialisation, the types used were either
extended to take into account the additional functionality
or modified to highlight the specialisation. The OCaml type
system would point at every location in the code that needed an
update to properly handle the new or modified functionalities.
For example, the first prototype version addressed only the
simple cases of XML patterns. The next versions added new
patterns and new rules of increasing complexity. Later on
the specialisation required a modification of the application
behaviour with regard to a specific XML construct, we altered
the name of the OCaml type constructor representing this
XML construct and, thanks to compiler message errors, we
systematically propagated this change to the entire program.
Having simply to extend or modify some data types to identify
the amendments to make in the program gave the assurance
that updating the features of the program was conservative
over the already-developed parts.

V. OUTCOMES

A. Evaluation

An important aspect to take into account in security applica-
tion development is the security evaluation process. Security
assessors investigate every aspect of the application: speci-
fication, design, implementation deployment, execution, and
maintenance.

The vulnerability of the XSVGen-prototype version of the
application was assessed by independent security experts as
part of the LaFoSec Study. This evaluation was however not a
certification, and the details of its process and results are not
publicly available. The evaluation was targeting a hypothetical
gateway system for which XSVGen was validating external
files. The evaluation has identified an issue in the handling of
command line arguments which were not properly sanitised.
The issue is not OCaml-specific and reminds of the importance
to sanitise every input. The evaluation has not been able
to identify any flaw related to the primary purpose of the
application as a validator. Nevertheless, the fact that OCaml
applications have rarely been evaluated for security meant that
tools for analysing its source code and compiled code are rare.

Commonly used binary code analysers are of little help for the
assessors who needed to rely on other methods of analysis.

The XSVGen-product version of the application was in-
tegrated into a security system that obtained a Common
Criteria EAL4+ certification. No security problem was found
on the product during the evaluation phase by the independent
experts. The Security Target of the certification, the evaluation
process and the results of the evaluation are not publicly
available.

The timescale between the initial development as part of the
LaFoSec Study and the integration as a security component in
a security system was only two years, each phase involving a
short design and development period of 5 months. Reaching
an industrial and reliable level in such a short period of time
was seen as an important achievement. We consider that the
industrial success of the development of XSVGen is due in part
to the appropriate programming language choice (augmented
by the LaFoSec development rules [1, Recommandations]), as
this paper demonstrates.

B. Compliance to W3C Recommendations

XML and XSD are complex descriptive languages which
are defined in details by the W3C. The XML Recommendation
[4] specifies the XML syntax and provides a set of constraints
characterising a well-formed XML document and a valid XML
document. Similarly, the W3C Candidate Recommendation
[6], [7] for the XSD language specifies the XSD constructs
and provides a set of Validation Rules to determine if an
XML document is valid according to a given XSD file.
Additionally, a set of Schema Representation Constraints and
Schema Component Constraints are defined to determine if an
XSD file is valid.

To trace the application of these rules by XSVGen we made
use of the values of union types representing each rule (as
we saw in Sections III-A and III-B). This practice made it
possible to identify the role each source code chunk plays in
the validation process and therefore to verify the compliance
to the W3C recommendations.

C. Comparison with Other XML Validators

There exists a number of XML validators based on one or
more languages (XSD, DTD, Relax NG, ...) to describe the
expected structure of the XML files. Most of these applications
implement the widest range of features of XML. Several works
have been made to compare and benchmark various XML
implementations [11], [12].

The first phase of the development of XSVGen (XSVGen-
prototype) was intended to test the feasibility to develop a
secure application in OCaml. A comparison with other XML-
XSD validators could be drawn but has limitation due to the
prototype nature of XSVGen-prototype. Not every XML and
XSD features is implemented in XSVGen-prototype for two
reasons. First, some features in the XML XSD specification
were explicitly ruled out or altered due to their intrinsic
insecurity (see section II-B2). Second, some other features
were ruled out to ensure the feasibility of such a development

in a short time. As a matter of priority for the project, having a
functioning application which could be evaluated with regard
to security was more important than having the whole of the
XML XSD Recommendations covered. We made a choice to
keep the XSD XML features that are most widely used in
well-established XSD-defined formats. As a result, a reliable
comparison with other XML validators was not possible. We
nevertheless used the W3C XML Test Suites [13] and W3C
XSD Test Suite [14] to test XSVGen-prototype. The results of
these tests showed a 100% success for XML tests (limited to
the XML subset we presented in section II-B2). We grouped
the XSD tests by language constructs and selected some
74000 tests that matched the XSD constructs implemented
by XSVGen-prototype. The results showed 92% success for
the handling of XSD files (between 50% and 100% for
individual groups) and 99% success for the handling of XML
files (between 82% and 100% for individual groups). The
lower figure for the handling of XSD files is due to the
fact that the validation of the input XSD files was not a
requirement of XSVGen-prototype. We conducted a review of
some 5000 XSD tests which indicated that the range of results
per individual groups is mostly due to difficulties in reducing
the discrepancy between the XSVGen-prototype requirements
and the test selected among the tests of the W3C XSD Test
Suite.

For the industrial specialisation XSVGen-product, the strict
compliance with the W3C Recommendations was not anymore
a requirement. As a result this later development bears limited
specification in common with compliant XML-XSD valida-
tors. For this reason, a strict comparison would not produce
significant results.

VI. CONCLUSION

The experience we share in this paper is the development
of XSVGen: a secure XML validator implemented in OCaml.
While this paper has a security focus on the one hand and a
functional programming focus on the other, the two aspects
are related because we made extensive use of the semantics
of OCaml’s language features to fit the security requirements
of XSVGen. Such demonstrated semantical properties enforce
software robustness and security at the source level (no format
string attack, no null pointer, no uninitialised variable, no
memory leak, no double free), at the compilation level (no im-
proper accesses to values, no non-conform data processing, no
break in data and code confinement, no partial declarations),
and at execution level (no buffer overflows). The addition
of design and coding rules to these intrinsic protections
eliminates many residual safety and security dangers. We also
described how these features could deliver valuable feedback
for a reliable incremental development (from prototyping to
specialisation). Finally, this experience demonstrated the in-
dustrial relevance of a functional language such as OCaml with
strong typing, a powerful module system, automatic memory
management and a direct compilation to binary code instead
of bytecode.

REFERENCES

[1] ANSSI, “LaFoSec: Sécurité et langages fonctionnels,”
ANSSI, the French Network and Information Security
Agency, Tech. Rep., 2013, documents available in French at
http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques/
autres-publications/lafosec-securite-et-langages-fonctionnels.html.

[2] ——, “JavaSec: Sécurité et langage Java,” ANSSI, the French Network
and Information Security Agency, Tech. Rep., 2010, documents
available in French at http://www.ssi.gouv.fr/fr/anssi/publications/
publications-scientifiques/autres-publications/securite-et-langage-java.
html.

[3] É. Jaeger, O. Levillain, and P. Chifflier, “Mind your Language (s) – A
discussion about languages and security (Long Version),” in LangSec,
2014.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau,
and J. Cowan, “Extensible Markup Language (XML) 1.1 (Sec-
ond Edition),” W3C Recommendation, http://www.w3.org/TR/2006/
REC-xml11-20060816, Aug. 16 2006.

[5] T. Bray, D. Hollander, A. Layman, R. Tobin, and H. S. Thomp-
son, “Namespaces in XML 1.0 (Third Edition),” W3C Recommenda-
tion, http://www.w3.org/TR/2009/REC-xml-names-20091208/, Dec. 08
2009.

[6] S. Gao, C. M. Sperberg-McQueen, and H. S. Thompson, “W3C XML
Schema Definition Language (XSD) 1.1 Part 1: Structures,” W3C
Candidate Recommendation, Jul. 21 2011, disponible en ligne http:
//www.w3.org/TR/2011/CR-xmlschema11-1-20110721/.

[7] D. Peterson, S. Gao, A. Malhotra, C. M. Sperberg-McQueen, and H. S.
Thompson, “W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes,” W3C Candidate Recommendation, Jul. 21 2011, disponible
en ligne http://www.w3.org/TR/2011/CR-xmlschema11-2-20110721/.

[8] J. Boyer, “Canonical (XML) 1.0,” W3C Recommendation, http://www.
w3.org/TR/xml-c14n, Mar. 15 2001.

[9] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon,
“The Objective Caml system release 3.12 – Documentation and user’s
manual,” INRIA, Jun. 2010.

[10] D. Doligez, C. Faure, T. Hardin, and M. Maarek, “Experience in using a
typed functional language for the development of a security application,”
in F-IDE, ser. EPTCS, C. Dubois, D. Giannakopoulou, and D. Méry,
Eds., vol. 149, 2014, pp. 58–63.

[11] D. Barbosa, I. Manolescu, and J. X. Yu, “XML benchmarks,” in Ency-
clopedia of Database Systems, L. Liu and M. T. Özsu, Eds. Springer
US, 2009, pp. 3576–3579.

[12] S. Chilingaryan, “The XMLBench Project: Comparison of Fast, Multi-
platform XML libraries,” in Database Systems for Advanced Appli-
cations, DASFAA 2009 International Workshops: BenchmarX, MCIS,
WDPP, PPDA, MBC, PhD, Brisbane, Australia, April 20-23, 2009, ser.
Lecture Notes in Computer Science, L. Chen, C. Liu, Q. Liu, and
K. Deng, Eds., vol. 5667. Springer, 2009, pp. 21–34.

[13] W3C XML Core Working Group and OASIS XML Conformance
Technical Committee, “W3C XML Test Suites,” W3C Conformance Test
Suites, http://www.w3.org/XML/Test/, Aug. 2008.

[14] W3C member organizations, “XML Schema Test Suite,”
W3C Conformance Test Suites, http://www.w3.org/XML/2004/
xml-schema-test-suite/index.html, Jul. 2011.

http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques/autres-publications/lafosec-securite-et-langages-fonctionnels.html
http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques/autres-publications/lafosec-securite-et-langages-fonctionnels.html
http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques/autres-publications/securite-et-langage-java.html
http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques/autres-publications/securite-et-langage-java.html
http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques/autres-publications/securite-et-langage-java.html
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/
http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/
http://www.w3.org/TR/2011/CR-xmlschema11-2-20110721/
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-c14n
http://www.w3.org/XML/Test/
http://www.w3.org/XML/2004/xml-schema-test-suite/index.html
http://www.w3.org/XML/2004/xml-schema-test-suite/index.html

	Introduction
	Design-level Security
	XML Validator Security Role
	Design Choices
	Developing a Generator of Validators
	Restricting XML Standards

	Security Improvement

	Language Features for Security
	Types for Traceability
	Errors and Exceptions
	Constraining Data and Computations with Types

	Functional Approach to Control Execution Flow
	Encapsulation as Data Protection

	Prototyping and Specialisation
	Support Provided by the Language

	Outcomes
	Evaluation
	Compliance to W3C Recommendations
	Comparison with Other XML Validators

	Conclusion
	References

