Potassium based sorbents from fly ash for high temperature CO₂ capture

3 Aimaro Sanna^{1*}, M. Mercedes Maroto-Valer¹

- 5 ¹ Centre for Innovation in Carbon Capture and Storage (CICCS), School of Engineering and Physical Sciences,
- 6 Heriot-Watt University, Edinburgh EH14 4AS, UK.
- 7 * Corresponding author: Aimaro Sanna, 3.04 Nasmyth Building, School of Engineering and Physical Sciences,
- 8 Heriot-Watt University, Edinburgh, EH14 4AS. E-mail: <u>A.Sanna@hw.ac.uk</u>

10 Abstract

1

2

4

9

- Potassium-fly ash (K-FA) sorbents were investigated for high temperature CO₂ sorption. K-
- 12 FAs were synthetised using coal fly ash as source of silica and aluminium. The synthetised
- materials were also mixed with Li₂CO₃ and Ca(OH)₂ to evaluate their effect on CO₂ capture.
- Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO₂
- uptake of 1.45 mmol CO₂/g sorbent for K-FA 1:1 at 700°C. The CO₂ sorption was enhanced
- by the presence of Li₂CO₃ (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO₂/g sorbent
- at 700°C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA
- 18 (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10% Li₂CO₃ also
- 19 accelerated sorption and desorption. The results suggest that the increased uptake of CO₂ and
- 20 faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic
- 21 phase, which favours the diffusion of potassium and CO₂ in the material matrix. The cyclic
- 22 experiments showed that the K-FA materials maintained stable CO₂ uptake and reaction rates
- over 10 cycles.

2425

Keywords: Absorption, CO₂ sorbents, Fly ash, Potassium, CCS

2627

Introduction

- The requirement for mitigating climate change is supporting the development of CO_2 capture
- 29 technologies. At the state of the art, CO₂ absorption by liquid organic amines is the most
- 30 advanced technology (Leung at al., 2014). However, amine degradation in both absorption
- and stripping steps and the potential emission of harmful compounds need to be addressed for
- a widespread commercialisation of this technology (Manzoor et al., 2014; Vega et al., 2015).
- 33 The incorporation of amines into porous support has been proposed as alternative approach,
- but the low amine utilization ratio and the loss of amine compounds in the regeneration step
- required the development of new sorbents (Zhao et al., 2014).
- A suitable sorbent for CO₂ capture from flue gas should satisfy several important criteria to
- 37 compete with the present technologies, including high sorption capacity, adequate
- 38 sorption/desorption kinetics and stability, mechanical strength etc. (Sabouni et al., 2014). A

- 39 large number of physical adsorbent materials have been considered for low temperature (<
- 40 150°C) CO₂ capture such as activated carbon, zeolites and metal organic frameworks (MOFs)
- 41 (Samanta et al., 2012).
- 42 CO₂ capture at high temperatures (> 400°C) using solid sorbents with high selectivity and
- regenerability has also been proposed as an alternative to low-temperature CO₂ capture due to
- reduced efficiency penalties (Olivares-Marín et al., 2010). Due to their high decomposition
- 45 temperature (T > 800°C), alkaline ceramics, mainly lithium containing compounds have been
- 46 tested as CO₂ sorbents at high temperature (Rodríguez and Pfeiffer, 2008; Olivares-Marín et
- al., 2010). The CO₂ sorption on ceramics starts with the carbonation of the sorbents surface
- and continues with the diffusion of CO₂ through the carbonate external layer to react with the
- 49 alkaline core (Rodríguez and Pfeiffer, 2008). So far, potassium has been mainly investigated
- as CO₂ sorption promoter associated to other ceramics such as Li- or Na- based sorbents,
- zeolites and alumina based CO₂ sorbents (Seggiani et al., 2013; Zhao et al., 2014; Olivares-
- 52 Marín et al., 2010; Sanna et al., 2014; Sanna et al., 2015).
- Amongst the wide range of materials tested, lithium silicate (Li₄SiO₄) and aluminate
- 54 (Li₅AlO₄) have shown the largest CO₂ sorption capacity and the fastest CO₂ sorption rate
- over a wide range of temperatures and CO₂ concentrations (Olivares-Marín et al., 2010; Kato
- et al., 2005, Flores-Martínez and Pfeiffer, 2015). It has been reported that the presence of 40
- 57 mol% K₂CO₃ at 600°C affects the CO₂ sorption capacity for Li-based sorbents (Li-FA)
- prepared from fly ashes (FA), with a sorption capacity of 2.43 mmol CO₂/g sorbent
- 59 (Olivares-Marín et al., 2010). Recently, sodium-fly ash (Na-FA) sorbents have also been
- proposed as high temperature CO₂ sorbents. Maximum CO₂ uptake of Na-FA sorbent was
- found to be 2 mmol CO₂/g sorbent in presence of 20% Li₂CO₃ additive (Sanna et al., 2014;
- 62 Sanna at al., 2015). Even if lithium based materials present very good CO₂ uptake
- performance, it should be noted that lithium is considered a rare element in comparison to
- sodium and potassium. It has been assessed that demand for lithium is growing at a fast rate
- and that this rate exceeds projected availability by 25% (The Financialist, 2014). Therefore,
- 66 K-based sorbents can be considered not rare compared to lithium based materials.
- The use of potassium carbonate, in addition to other alkali-metal materials was firstly studied
- by NASA for space applications (Onischak et al, 1978). Also, potassium has been previously
- 69 identified as a good candidate for low temperature CO₂ sorption while utilizing an activated
- carbon as support (Hayashi et al., 1998). In addition, silver carbonate in combination with

alkali metal silicate (including potassium), alkali metal carbonate (potassium and/or sodium)
have been evaluated as CO₂ sorbent (Nalette et al., 1992).

Thermodynamic analysis including enthalpy and free energy changes have been calculated for both K-silicate sorption and regeneration reactions (Hoffman and Pennline, 2001). Results for alkali-based sorbents are generally favourable in that the forward (CO₂ absorption)

reaction rate is typically much larger than the reverse reaction. Potassium carbonate was found to be suitable for CO₂ capture at low absorption temperatures (less than 145°C), while

is a second to be suitable for CO_2 capture at low absorption temperatures (less than 1.15 C), while

calcium oxide is more suitable for high absorption temperatures (less than 860°C) (Hoffman

and Pennline, 2001). For this reason, potassium-based sorbents have been proposed as

80 effective ambient temperature CO_2 sorbent in confined spaces (Zhao et al., 2014). The CO_2

sorption capacities were calculated as 0.87, 1.18, 0.34, 0.53, and 0.15 mmol CO₂/g for

82 K₂CO₃/Activate carbon, K₂CO₃/Al₂O₃, K₂CO₃/zeolite-5A and K₂CO₃/13X-zeolite,

83 respectively.

76

77

78

79

81

91

92

94

95

96

97

98

99

100

101

103

Despite the fact that potassium carbonate has been widely tested as CO₂ capture promoter (Olivares-Marín et al., 2010; Seggiani et al, 2011; Flores-Martínez and Pfeiffer, 2015; Sanna et al, 2015), there is a lack of works on the potential use of K-silicates derived from fly ash as high temperature CO₂ sorbents and their behaviour when used in presence of CO₂ sorption promoters. Moreover, previous studies have only examined the CO₂ capture behaviours of alkali metal-based sorbents under conditions of 50–100°C, 5–20% CO₂ and 5–20% H₂O (Zhao et al, 2011; Zhao et al, 2013; Zhao et al, 2014). It is unclear whether CO₂ sorption

capacity changes at higher temperatures. The aim of the present work was to produce pure

and Li-doped aluminosilicates from fly ash and assess their CO2 sorption capacity under

93 different conditions.

Experimental

Fly ashes (FA) have been used as SiO₂ source and collected from a cyclone filter. The parent sample was characterised by particles size distribution and XRF in previous work (A. Sanna et al, 2015). The potassium based CO₂ sorbents were synthetised by mixing the FA with K₂CO₃ (Acros Organics) at different K₂CO₃:SiO₂ (from FA) molar ratios (2:1 and 1:1) by using an agate mortar and pestle. The mixed powders were calcined in a muffle furnace at 800°C for 8 hours. The sorbent synthesis is described as follow:

102 $K_2CO_3 + SiO_2$ (from fly ash) $\rightarrow K_2SiO_3 + CO_2$ (1)

After calcination, the materials were homogenised using a Mortar Grinder (Pulverisette 2, Fritsch) for 60 seconds to eliminate any potential agglomeration. Ca(OH)₂ and Li₂CO₃ were also used as CO₂ sorption promoters (10 mol%) by addition after the calcination step.

The resulting sorbents were grinded and characterized by different techniques, including powder X-ray diffraction (XRD), thermo-gravimetric analysis (TGA) and Fourier Transformed Infrared (FTIR). A Bruker Nonius X8-Apex2 CCD diffractometer equipped with an Oxford Cryosystems Cryostream, typically operating at 100 K was used for the XRD analysis. A PerkinElmer Frontier infrared spectrometer was used to gain additional information on the crystal structure of the synthetised sorbents before and after the CO₂ absorption experiments.

The CO_2 capture capacity of the resultant samples was measured by using a TGA (TA Q500). About 15 mg of sample was loaded in the TGA pan for each experiment. Prior to CO_2 sorption testing, the samples were dried in N_2 flow (95 mL/min) for 1 hr at the same temperature used for the CO_2 sorption (600,700 °C). The heating rate used to rise the temperature to 600 or 700°C (before holding it for 1hr) was 25 °C/min. Then, the CO_2 absorption tests were performed by flowing 100% CO_2 gas at the desired temperature. The weight increase due to CO_2 sorption (mmol CO_2 /g sorbent) was measured as a function of time at a constant temperature (600, 700 °C) and constant concentration of CO_2 or flue gas (95 mL/min) at atmospheric pressure. CO_2 uptake was calculated based on dry sorbents weight (after drying step). Triplicate measurements were conducted to estimate the % error in the experimental work. The measurements error (calculated as the standard deviation of triplicates) resulted lower than 5%. The CO_2 desorption step was carried out at the same sorption temperature by switching the furnace atmosphere from CO_2 to N_2 for 1hr. Finally, ten (five for the sorbent with 10% Li_2CO_3 additive) regeneration cycles were used to ascertain the stability for selected sorbents.

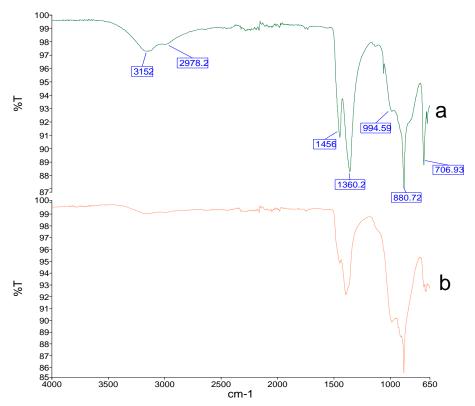
Results & Discussion

Sorbents characterisation

The CO_2 capture reaction in presence of potassium silicate is described by the equation:

133
$$K_2SiO_3 + CO_2 \rightarrow K_2CO_3 + SiO_2$$
 (2)

The reaction thermodynamics (Table 1) indicate that the capture reaction is overall spontaneous ($\Delta G < 0$), and at temperatures $< 100^{\circ}$ C ΔS and ΔH are negative, indicating exothermic reaction. However, similarly to other alkali silicates, this experimental work clearly indicates that CO_2 capture is favoured at high temperature (Sanna et al., 2014).


Table 1. Thermodynamics of CO₂ capture by K-FA in gas phase at different temperatures.

T, °C	deltaH, kJ	deltaS, J/°K	deltaG, kJ	K	Log(K)
0	-1409.8	-165.2	-1364.7	1.E+261	261.0
100	-1397.1	-125.7	-1350.2	1.E+189	189.0
200	-1382.4	-90.9	-1339.4	8.E+147	147.9
300	-1365.9	-59.4	-1331.9	2.E+121	121.4
400	-1347.6	-30.0	-1327.4	1.E+103	103.0
500	-1327.3	-1.7	-1326.0	4.E+89	89.6
600	-1307.9	21.9	-1327.0	2.E+79	79.4
700	-1289.2	42.2	-1330.2	3.E+71	71.4
800	-1269.8	61.1	-1335.4	1.E+65	65.0
900	-1220.1	104.5	-1342.6	6.E+59	59.8
1000	-1198.0	122.5	-1353.9	4.E+55	55.6

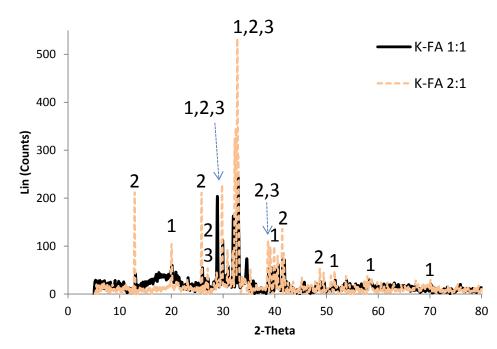

The major chemical bonds present in the synthetised alkali metals silicate were identified by FTIR spectra, as shown in Fig. 1. The characteristic absorption band from deformation of M⁺OH become Si-O-M⁺ are shown at 880 and 994 cm⁻¹ (Hindryawati et al, 2014), while the predominant absorbance peak at 1360 cm⁻¹ is due to siloxane bonds (Si-O-Si) (Thuadaij et al, 2008). The peak at 1427 cm⁻¹ can be attributed to CO₃²⁻ anion originating from the potassium carbonate. As reported in previous work, the broadband between 2800 and 3500 cm⁻¹ is attributed to silanol OH groups and adsorbed water (Kalapathy et al, 2000). The FTIR spectra show formation of silicate structure.

Figure 2 shows the XRD patterns of the synthetised K-FA. It was found that the X-ray diffraction patterns of the two materials contain identical peaks but with different intensities. The major peaks were identified and compared to potassium metasilicate (K_2SiO_3), potassium aluminium silicate ($K_1.25Al_{1.25}Si_{0.75}O_4$) and potassium carbonate (K_2CO_3) using XRD database and previous publication (N. Hindryawati et al, 2014). It was found that K-FA 1:1 structure presented a less defined crystal structure (see theta region between 15 and 25) and with the increase of K_2CO_3 used in the K_2CO_3 :FA mixture (2:1), the materials structure become more crystalline. The intense diffraction sharp peaks from 12 to 43 are associated to potassium metasilicate and potassium aluminium metasilicate, while the sharp diffraction peaks at 12 and 26 are solely attributed to K_2SiO_3 . As can be seen in Figure 1, K-FA 2:1

presents more intense peaks (1456 cm⁻¹) related to K₂CO₃. This indicates a not complete reaction during synthesis, probably due to poor contacts between K₂CO₃ and SiO₂ from FA.

Figure 1. FTIR of (a) K-FA 2:1 (b) K-FA 1:1.

Figure 2. XRD patterns of K-FA 1:1 and K-FA 2:1. Mineral phases identified: 1 Potassium aluminium silicate; 2 Potassium carbonate; 3 Potassium metasiilicate.

CO₂ capture studies

CO₂ capture experiments were carried out using the synthetized K-sorbents shown in Table 2. The K-FA sorbents capacity was compared to those of Li-based and Li/Na-based fly ash sorbents previously developed by our group (Olivares-Marin et al, 2010; Sanna et al, 2015). The sorption experiment at 500°C was used to compare the K-FA sorbent prepared here to the Li-FA sorbent, while the sorption at 600°C was used to evaluate the differences with the Li-Na-FA sorbents. Table 2 shows that the K-Fa 1:1 CO₂ sorption capacity was three times higher than that of Li-FA under the same conditions, while K-FA 2:1 possesses a CO₂ sorption capacity double than that of Li-FA. The K-FA materials had however a lower capacity compared to the Li-Na-FA sorbent at both 500 and 600°C.

Table 2 also shows a clear difference in the CO_2 sorption capacity when different K_2CO_3 :FA molar ratio were used. The K-FA sorbent shows better performance at molar ratios 1:1 (0.32, 0.36 and 1.45 mmol CO_2 / g sorbent at 500, 600 and 700°C, respectively), while a K-FA ratio of 2:1 was able to chemisorb only 0.23, 0.36, 0.82 mmol CO_2 / g sorbent at the same temperatures. This can be related to the different distribution of mineral phases formed during the sorbent synthesis (see Figure 2), and a large presence of unreacted K_2CO_3 is present in the K-FA 2:1 (see Figure 1).

Table 2. Summary of the CO₂ capture experiments in presence of 100%CO₂. 1:1 represents the K₂CO₃:SiO₂ (FA) molar ratio.

			CO ₂ sorption capacity		
		_	mmol CO ₂ / g sorbent		
		Additive			
Sample	Temp., °C	(mol%)	1 h	2h	
Olivares-Marín et al., 2010					
$FA\text{-}Li_4SiO_4\ (1\ SiO_2: 2\ Li_2CO_3)$	500		< 0.11	na	
FA-Li ₄ SiO ₄ (1 : 2)	600	10% K ₂ CO ₃	0.59	na	
FA-Li ₄ SiO ₄ (1 : 2)	600	20% K ₂ CO ₃	1.27	na	
FA-Li ₄ SiO ₄ (1 : 2)	650	10% K ₂ CO ₃	0.48	na	
Sanna et al., 2015					
Li/Na-FA (0.5:0.5:1)	500		0.48		
Li/Na-FA (1:1:1)	600		0.86	1	
This work					
K-FA 1:1	500		0.32	0.34	
K-FA 1:1	600		0.36	0.39	
K-FA 2:1	500		0.23	0.27	
K-FA 2:1	600		0.36	0.45	
K-FA 2:1	700		0.82	0.86	
K-FA 1:1	700		1.45	1.50	

Effect of temperature and CO₂ promoters

- Figures 3 and 4 show the effect of temperature on the CO₂ capacity. The initial weight 193 decrease was obtained in presence of N₂ flow, and represents desorption of absorbed water. 194 The CO₂ sorption experiments indicate that K-FA 1:1 and 2:1 increase their CO₂ sorption 195 capacity with temperature, with maximum sorption taking place at 700°C. This trend did not 196 differ from that previously found in presence of Li- and Li-Na- silicate sorbents (Sanna et al, 197 2015). As shown in Table 2, the K-Fa 2:1 CO₂ uptake (0.82 mmol CO₂/g sorbent after 1 hour 198 at 700°C) is about half compared to the CO₂ absorbed by using K-FA 1:1 at the same 199 200 temperature (1.45 mmol CO₂/g sorbent). Not only the CO₂ sorption capacity was higher at 700°C, but also the sorption rate was faster as indicated by the slope of the sorption profiles 201 in Figures 3 and 4. However, full desorption was not achieved under the studied conditions, 202 as CO₂ desorption did not occur with both K-FA 1:1 and 2:1 and even in presence of K-FA 203 doped with Ca(OH)2. Also, sorption took longer to achieve maximum capacity compared to 204 using Li-FA sorbents under the same conditions, which results too long for industrial 205 applications (Sanna et al, 2015; Olivares-Marín et al, 2010). 206 Since the pure K-FA silicates failed to desorb the CO₂, a series of experiments were carried 207 out to establish if the desorption could be improved by the presence of additives. Since 208 209 previous works indicated that Li⁺ provides the highest CO₂ capture capacity among all the univalent cations, if provided in the same amount in the ceramic (Walton et al, 2006; Ridha 210 211 et al, 2009), was selected Li₂CO₃ as sorbent promoter and Na₂CO₃ and Ca(OH)₂ for comparison. 212
- Figure 3 compares the CO₂ working capacity of K-FA 2:1 with and without Ca(OH)₂ at 213 700°C. The pure K-FA 2:1 sample captured 0.82 mmol CO₂/g. The CO₂ captured increased 214 to 1.04 mmol/g in presence of 10% Ca(OH)₂. Despite this, the Ca-additive was not able to 215 promote CO₂ desorption, indicating the formation of a products layer (carbonates and 216 oxides), which prevents CO₂ desorption. The addition of 10% Li₂CO₃ to K-FA 2:1, further 217 increased the CO₂ sorption to 2.25 mmol CO₂/g as can be seen in Figure 6-a. Therefore, the 218 219 presence of Li₂CO₃ promoted the CO₂ uptake and also the CO₂ sorption rate, as can be seen comparing the slopes in the sorption profiles in Figures 3 and 6-a. 220
- Different additives were tested in the weight ratio of 10% using the K-FA 1:1 sorbent at 700°C, as presented in Figure 5. Figure 5-c indicates that the initial desorption of absorbed water in N₂ required longer time, so that the real CO₂ working capacity is larger than shown in Figure 6-b. Both Na₂CO₃ and Li₂CO₃ were successful in desorbing all the CO₂ previously

absorbed. The CO₂ loading capacity was also enhanced to 2.39 mmol CO₂/g sorbent form 1.45 mmol/g in presence of Li₂CO₃. Moreover, fast sorption and desorption in presence of 10% Li₂CO₃ were achieved, requiring only minutes to fully uptake the CO₂ and about 20 minutes to desorbing it. The synergic effect of adding 10% Li₂CO₃ can be explained with full activation of the Li-K eutectic melt at around 700°C, which increased CO2 capacity and sorption rate (Sanna et al, 2015; Flores-Martínez and Pfeiffer, 2015). The CO₂ sorption capacities in presence of K-FA 1:1 and 2:1 were comparable to those shown by Li-FA sorbents (0.48 mmol CO₂/g sorbent) in presence of 10% K₂CO₃ additive at 650°C (Olivares-Marín et al, 2010). In the same study, 40% K₂CO₃ was required (at 600°C) to absorb 2.43 mmol CO₂/g sorbent. Based on our observations and previous works (Ortiz-Landeros et al, 2012; Sanna et al, 2015; Flores-Martínez and Pfeiffer, 2015), the different CO₂ sorption capacities and rates observed at 500, 600 and 700°C can be explained by surface chemisorption limited by the formation of external shell containing an KAlO₂ secondary phase and Li₂CO₃ product at temperatures up to 500°C. Between 500 and 600°C, partial molten generated by eutectic phases starts to promote diffusion processes and then, at about 700°C, the CO₂ chemisorption is kinetically controlled by diffusion processes (Flores-Martínez and Pfeiffer, 2015; Sanna et al, 2015). Moreover, it has been indicated that the binary compound K₂O·Al₂O₃ (KAlO₂) shows that at ambient pressure, KAlO₂ consists of tetragonal crystals between 1350 and 600°C (γ-KAlO₂) and orthorhombic crystals below 600°C (β-KAlO₂), with the structural re-arrangement comparable with that of NaAlO₂ and LiAlO₂ (de Kroon et al, 2001). Even if isolated silicates present melting points well above 700°C, compounds with the composition Na_{1.55}K_{0.45}Si₂O₅

have eutectic decomposition temperature at 696°C (Yazhenskikh et al, 2008). The Li cations

can decrease the melting point of the sorbent enhancing the diffusion of the species on the

sorption/desorption rates. Moreover, the formed eutectic phases in presence of Li₂CO₃ clearly

increase the carbonate decomposition processes by enhancing the diffusion of cations and

which results in enhanced CO₂ sorption capacity and CO₂

252 CO₂, enabling the recyclability of the material, as shown in Figure 5 (Flores-Martínez and Pfeiffer, 2015).

sorbent surface,

256

254

255

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

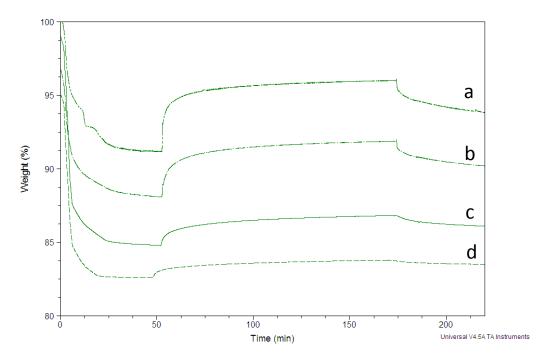
241

242

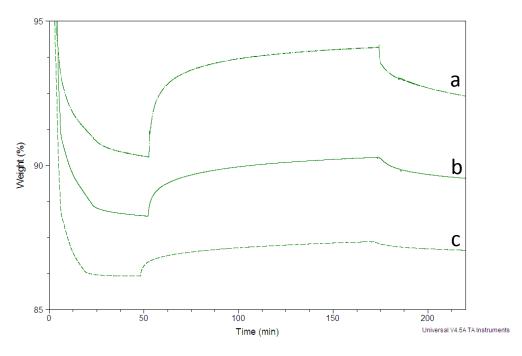
243

244

245


246

247


248

249

250

Figure 3. TGA of (a) K-FA 2:1 700°C+10% $Ca(OH)_2$; (b) K-FA 2:1700°C; (c) K-FA 2:1 600°C; (d) K-FA 2:1 500°C.

Figure 4. TGA of (a) K-FA 1:1 700°C; (b) K-FA 1:1 600°C; (c) K-FA 1:1 500°C.

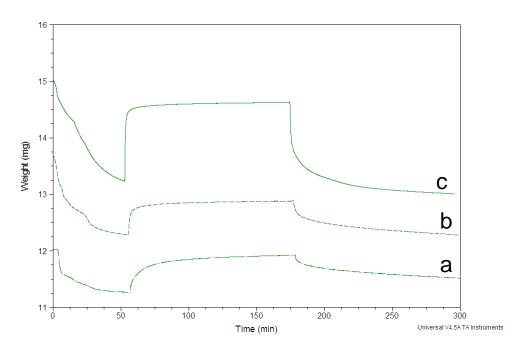


Figure 5. TGA of (a) K-FA 1:1; (b) K-FA 1:1+10% Na₂CO₃; (c) K-FA 1:1+10% Li₂CO₃.

Sorbents regeneration

Figure 6 shows 10 and 6 CO₂ sorption/desorption cycles for the Na-FA sorbent with K₂CO₂:SiO₂ molar rations of 2:1 and 1:1 in presence of 10% Li₂CO₃. Both K-FA 2:1 and 1:1 were able to maintain 100% CO₂ sorption capacity at 700°C, respectively after 10 and 6 cycles. K-FA 1:1 showed a slightly increase of the CO₂ sorption cycle after cycle, which could be ascribed to the not completed initial desorption under N₂ atmosphere before the cyclic CO₂ sorption/desorption. K-FA presented superior cyclic stability compared to other high temperature absorbents, such as hydrotalcites, where the capacity of the latter decrease after a number of cycles (Maroño et al, 2014).

K-Fa 1:1 with 10% Li₂CO₃ after 6 sorption/desorption cycles was analyzed by XRD to establish any structural change in relation to the increased CO₂ uptake capacity shown after 6 cycles. The XRD patterns of the starting K-FA 1:1 and the K-FA after 6 cycles are shown in Figure 7, which indicates that, the sorption/desorption cycles affects the mineral composition of these materials. In fact, there was an increase of sodium aluminium silicate phase and a decrease of the abundance of metasilicate phases. This behavior was already observed in our previous work using Li-Na-FA silicates (Sanna et al, 2015). Both TGA and XRD data suggest that the crystals structure modification improves the CO₂ sorption, which may be

related to enhanced K species diffusion due phase change (from solid to liquid-like) of eutectic Na-meta-silicates phases in presence of impurities such as K, Ca and Mg oxides (from fly ash) as indicated in previous work (Sanna et al, 2015; Flores-Martínez and Pfeiffer, 2015).

284

285

286

287

288

289 290

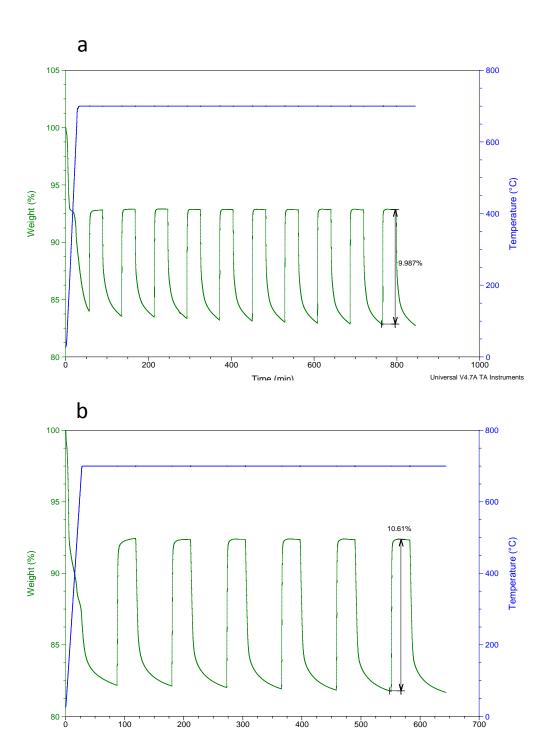
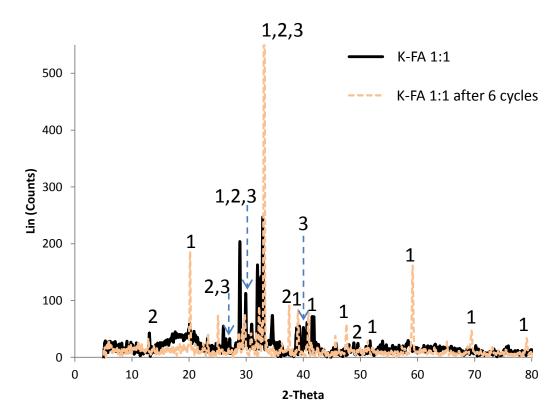


Figure 6. Cyclic stability at 700°C of a) K-FA 2:1 and b) K-FA 1:1 under 100%CO₂ atmosphere and in presence of 10% Li₂CO₃. Temperature profile shown in y2-axes.

400

Time (min)

500


600

100

200

| 0

Universal V4.5A TA Instruments

Figure 7. XRD pattern of raw K-FA and K-FA after 6 absorption/desorption cycles. 1 Potassium aluminium silicate $(K_{1.25}Al_{1.25}Si_{0.75}O_4)$; 2 Potassium carbonate; 3 Potassium metasiilicate.

Presence of diluted CO₂ and potential scale up

The use of solid sorbents for CO_2 capture implies that the selected materials present rapid CO_2 sorption/desorption rates and high CO_2 sorption capacity. This is required due to the diluted CO_2 in flue gas, which results in large volumes to be treated.

The effectiveness of the K-FA sorbents in capturing CO_2 from a diluted stream was investigated. Figures 8 and 9 show the variation of the CO_2 working capacity for the K-FA 2:1 and K-FA 1:1 in presence or absence of 10% Li_2CO_3 . The CO_2 uptake with diluted CO_2 (14%) were lower than those obtained in presence of pure CO_2 at 500°C, similar at 600°C and somehow higher at 700°C (1.08 mmol CO_2 / g sorbent vs 0.82 for K-FA 2:1 and 1.50 vs 1.45 for K-FA 1:1) indicating that the eutectic melt favours CO_2 diffusion in/out from the sorbent surface. However, the slopes of the sorption and desorption profiles suggest lower reaction rates compared with those in presence of pure CO_2 stream and also, desorption was not completed in reasonable times. Diluted CO_2 resulted in a lower CO_2 sorption when the K-FA 1:1 was tested in presence of 10% Li_2CO_3 (1.84 mmol CO_2 / g sorbent vs 2.39), but reactions

occurred faster and desorption was completed, compared to the tests carried out in absence of additive.

A 500 MW coal-fired power plant with 90% CO_2 capture (~419,000 kg CO_2 /h) was considered to evaluate the potential industrial scale application of the developed sorbent.

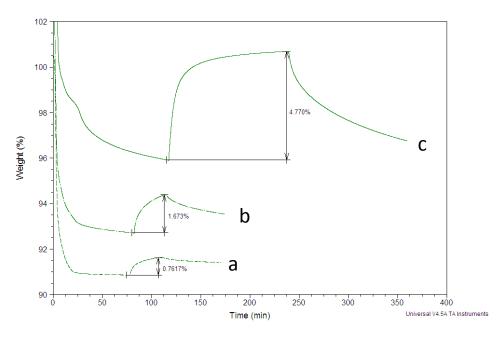
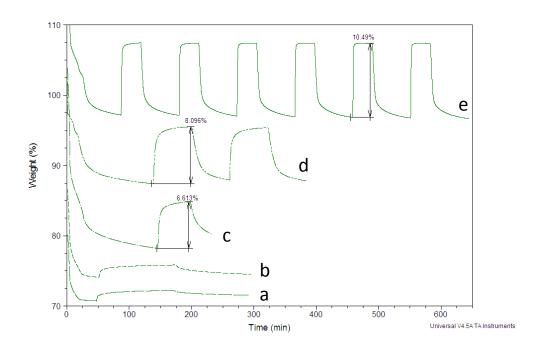



Figure 8. K-FA 2:1 CO₂ sorption at a) 500°C, b) 600°C and c) 700°C in presence of 14%CO₂.

Figure 9. CO₂ sorption of K-FA 1:1. a) 100%CO₂ at 500°C; b) 100%CO₂ at 600°C; c) 100%CO₂ at 700°C; d) 14%CO₂ at 700°C in presence of 10% Li₂CO₃; e) 100%CO₂ at 700°C in presence of 10% Li₂CO₃.

The capture plant was sized considering fix bed units able to load a total of 28000 kg of sorbent, as in previous work, to evaluate the feasibility of the developed sorbents (Quinn et al, 2012).

K-FA 1:1 - 10% Li₂CO₃ was selected for the calculations due to its high total CO₂ capacity of 2.4 mmol CO₂/g sorbent after 1 hour at 700°C, as can be seen in Table 3. Also, a flue gas containing 14%CO₂ (balanced with N₂) was considered.

Four hypothetical cases were considered with adsorption taking place in 60, 30, 15 and 5 minutes to show how uptake time affects the hypothetical plant footprint. The number of reactors required to capture 90% of the CO₂ emitted in a 500 MW coal power plant is summarised in Table 3. Since the calculated number of vessels based on 60 minutes were very large (3.9 mmol CO₂/g sorbent for a total of 140 vessels), they were not reported in the table. However, taking advantage of the rapid sorption and desorption rates of the K-FA sorbent in presence of the Li₂CO₃ sorption promoter (10 wt%), the process became feasible at 5 minutes sorption time in presence of pure CO₂ stream, with only 12 vessels in parallel required for the CO₂ uptake, which would result in reduced capital costs. As expected, the CO₂ sorption capacity in presence of diluted CO₂ stream (14% CO₂ balanced with N₂) is lower than in presence of pure CO₂ and this affects the foot-print of the hypothetical CO₂ capture plant, where 20 reactors would be required.

Table 3. CO_2 sorption capacity at different times and number of reactors required to capture 90% of CO_2 from a 500 MW coal-fired power plant with 90% CO_2 capture (~ 419,000 kg CO_2 /h). na: non available.

	CO ₂ sorption, mmol CO ₂ /g sorbent				
Time, min	5	10	15	30	
K-FA 1:1	2.38	2.4	2.4	2.4	
K-FA 2:1	1.44	1.58	1.67	1.78	
	Reactors required for CO ₂ sorption				
K-FA 1:1 - 100%CO ₂	12	24	35	71	
K-FA 1:1 - 14%CO ₂	20	51	na	na	

Amount of sorbents can be lowered by employing rapid thermal swing chemisorption (RTSC) process that utilizes shell and tube type vessels to minimize heating and cooling time (Lee and Sircar, 2008). Calculations indicated a 24% reduction in capital cost and a 78%

reduction in operating cost relative to conventional MEA technology may be achievable (Quinn et al, 2012). For example, the K-FA sorbent able to load 2.38 mmol CO₂/g sorbent would result in 0.37 t to be loaded in the RTSC. Further works are required to evaluate the potential use of these sorbents with rapid sorption/desorption processes in presence of moisture.

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

345

346

347

348

349

Conclusions

Potassium-fly ash (K-FA) CO₂ chemisorption at high temperature was evaluated using isothermal and cyclic thermo-gravimetric analyses in presence of 100% and 14% CO₂. Lithium carbonate and calcium hydroxide were also evaluated as CO₂ sorption promoters. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO₂ uptake of 1.45 mmol CO₂/g sorbent for K-FA 1:1 at 700°C. The CO₂ sorption was enhanced by the presence of lithium carbonate (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO₂/g sorbent at 700°C in 5 minutes. The presence of 10% Li₂CO₃ also accelerated sorption and desorption. The results suggest that the increased uptake of CO₂ and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO₂ in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO₂ uptake and reaction rates over 10 cycles. Thanks to the rapid CO₂ sorption/desorption of the K-FA sorbent with Li₂CO₃ (10 wt%), the process would require only 12 fix bed units for the sorption of 90% of the CO₂ emitted in a 500 MW coal power plant. As expected, the CO₂ sorption capacity in presence of 14% CO₂ affects the foot-print of the hypothetical CO2 capture plant, where 20 reactors would be required.

368

369

Acknowledgements

The authors thank the Centre for Innovation in Carbon Capture and Storage, Heriot-Watt University (EPSRC Grant No. EP/F012098/2) for support and logistics.

372

373

References

de Kroon AP, Schäfer GW, Aldinger F (2001), Crystallography of potassium aluminate K₂O·Al₂O₃, Journal of Alloys and Compounds, 314;1-2:147-153.

- Flores-Martínez MT, Pfeiffer H (2015), CO₂ chemisorption and cyclability analyses
- in α-Li₅AlO₄: effects of Na₂CO₃ and K₂CO₃ addition, Greenhouse Gas Sci Technol.
- 378 5:1–11.
- Hayashi, H.; Taniuchi, J.; Furuyashiki, N; Sugiyama, S.; Hirano, S.; Shigemoto, N.;
- and T Nonaka (1998). Efficient Recovery of Carbon Dioxide from Flue Gases of
- Coal-Fired Power Plants by Cyclic Fixed-Bed Operations over K₂CO₃-on-Carbon.
- 382 Ind. Eng. Chem. Res., 37, 185-191, 1998.
- Hindryawati N, Maniam GP, Karim Md.R., Chong K.kF. (2014), Transesterification
- of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as
- potential solid base catalyst, Engineering Science and Technology, an International
- 386 Journal, 17, 95-103.
- Hoffman JS, Pennline HW (2001), Study of Regenerable Sorbents for CO₂ Capture
- National Energy Technology Laboratory, DOE,
- http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/3b2.pdf
- 390 Kalapathy U, Proctor A, Shultz J (2000), A simple method for production of pure
- silica from rice hull ash, Bioresour. Technol. 73;257-262.
- 392 Kato M, Nakagawa K, Essaki K, Maezawa Y, Takeda Sh, Kogo R, Hagiwara Y
- 393 (2005) Novel CO₂ absorbents using lithium containing oxide Int J Appl Ceram
- 394 Technol 2:467–475.
- Lee K.B., Sircar S. (2008), Removal and recovery of compressed CO₂ from flue gas
- by a novel thermal swing chemisorption process. AIChE J.;54:2293-2302.
- Leung D.Y.C., Caramanna G., Maroto-Valer M.M. (2014), An overview of current
- status of carbon dioxide capture and storage technologies, Renewable and Sustainable
- 399 Energy Reviews; 39:426-443.
- 400 Manzoor S., A. Korre, S. Durucan, A. Simperler (2014), Atmospheric Chemistry
- 401 Modelling of Amine Emissions from Post Combustion CO₂ Capture Technology,
- 402 Energy Procedia, 63, 822–829.
- 403 Maroño M, Torreiro Y, Montenegro L, Sánchez J (2014). Lab-scale tests of different
- materials for the selection of suitable sorbents for CO₂ capture with H₂ production in
- 405 IGCC processes, Fuel 116; 861-870.
- 406 Nalette, T., Bibara, P., Aylward J (1992). Preparation of high capacity unsupported
- regenerable CO2 sorbent. US Patent No. 5,079,209.

- 408 Olivares-Marín M, Drage TC, Maroto-Valer MM (2010) Novel lithium-based
- sorbents from fly ashes for CO₂ capture at high temperatures Int J Greenh Gas Con
- 4:623–629.
- 411 Onischak, J.; and B. Baker (1978). Development of a Prototype Regenerable Carbon
- Dioxide Absorber for Portable Life Support Systems. J. Eng. Ind., 100(3), 383-385,
- 413 1978.
- Ortiz-Landeros J , Ávalos-Rendón TL , Gómez-Yáñez C, Pfeiffer H (2012), Analysis
- and perspectives concerning CO₂ chemisorption on lithium ceramics using thermal
- analysis. J Therm Anal Calorim 108:647–655.
- 417 Quinn R, Kitzhoffer R.J., Hufton J.R., Golden T.C. (2012), Ind.Eng.Chem.Res., 51,
- 418 9320-9327.
- 419 Rana Sabouni, Hossein Kazemian, Sohrab Rohani (2014), Carbon dioxide capturing
- 420 technologies: A review focusing on metal organic framework materials (MOFs),
- 421 Environ Sci Pollut Res 21:5427–5449
- 422 Ridha FN, Yang YX, Webley PA (2009), Adsorption characteristics of a fully
- exchanged potassium chabazite zeolite prepared from decomposition of zeolite Y,
- 424 Microporous Mesoporous Mater., 117, 497.
- Rodríguez MT, Pfeiffer H (2008) Sodium metasilicate (Na₂SiO₃): A thermo-kinetic
- analysis of its CO₂ chemical sorption. Thermochim Acta 473:92–95.
- Samanta A., Zhao A.N., Shimizu G.K.H, Sarkar P., Gupta R. (2012), Post-
- 428 Combustion CO₂ Capture Using Solid Sorbents: A Review, Ind. Eng. Chem. Res.;
- 429 51,(4):1438-1463.
- Sanna A, Ramli I, Maroto-Valer MM (2014) Novel Na-silicates CO₂ sorbents from
- 431 fly ash, Energy Procedia, 63, 739-744.
- Sanna A, Ramli I, Maroto-Valer MM (2015), Development of sodium/lithium/fly ash
- sorbents for high temperature post-combustion CO₂ capture, Appl Energy, 156, 197-
- 434 206.
- Seggiani M, Puccini M and Vitolo S (2011), High-temperature and low concentration
- 436 CO₂ sorption on Li₄SiO₄ based sorbents: Study of the used silica and doping method
- effects . Int J Greenhouse Gas Control 5: 741–748.
- Seggiani M, Puccini M, Vitolo S (2013) Int J Greenh Gas Con 17:25–31.
- The Financialist, The Precious Mobile Metal (2014). Credit Suisse. 9 June 2014.

Thuadaij N, Nuntiya A (2008), Preparation of nanosilica powder from rice husk ash 440 by precipitation method, Chiang Mai J. Sci. 35; 206-211 441 Vega F., Sanna A., Cortés V., Navarrete B., Maroto-Valer M.M. (2014), Degradation 442 of amine-based solvents in CO₂ capture process by chemical absorption. Greenhouse 443 Gases: Science and Technology, 4, 6, 707-733. 444 Walton KS, Abney MB, LeVan MD (2006), CO₂ adsorption in Y and X zeolites 445 modified by alkali metal cation exchange, Microporous Mesoporous Mater, 91, 78. 446 Yazhenskikh E, Hack K, Müller M (2008), Critical Thermodynamic Evaluation of 447 Oxide Systems Relevant to Fuel Ashes and Slags, Part 4: Sodium Oxide - Potassium 448 Oxide – Silica, Calphad 32:506-513. 449 Zhao C, Chen X, Anthony EJ, Jiang X, Duan L, Wu Y, et al. (2013). Capturing CO₂ 450 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metalbased 451 sorbent. Prog Energy Combust Sci 3;39(6):515–34. 452 Zhao C, Guo Y, Li C, Lu S (2014), Removal of low concentration CO₂ at ambient 453 temperature using several potassium-based sorbents, Applied Energy 124; 241–247. 454 Zhao CW, Chen XP, Zhao CS, (2011). Carbonation and active-component-455 distribution behaviors of several potassium-based sorbents. Ind Eng Chem Res; 456 50(8):4464-70. 457 458