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Abstract—With the advent of the next-generation
radio-interferometric telescopes like the Square Kilo-
metre Array, novel signal processing methods are
needed to provide the expected imaging resolution and
sensitivity from extreme amounts of hyper-spectral
data. In this context, we propose a generic non-
parametric low-rank and joint-sparsity image model for
the regularisation of the associated wide-band inverse
problem. We pose a convex optimisation problem and
propose the use of an efficient algorithmic solver. The
proposed optimisation task requires only one tuning
parameter, namely the relative weight between the low-
rank and joint-sparsity constraints. Our preliminary
simulations suggest superior performance of the model
with respect to separate single band imaging, as well as
to other recently promoted non-parametric wide-band
models leveraging convex optimisation.

Index Terms—hyper-spectral image processing,
radio-interferometry

I. Introduction
The next-generation of radio-interferometric (RI) tele-

scopes like the Square Kilometre Array will be able to
survey the radio sky at an unprecedented wide range of
frequencies. New regimes of radio emission will be probed
improving our knowledge in cosmology and astrophysics.
To take advantage of such powerful instruments, revolu-
tionary developments in wide-band imaging techniques are
needed both in terms of imaging quality and scalability of
the underlying algorithmic structures to handle large data.

Radio wide-band synthesis has been exploited for
decades to achieve better Fourier sampling of the sky
brightness on narrow bandwidths. This assumes a flat
spectral behaviour and overcomes the need of increasing
the number of antennas. When this assumption does not
hold, particularly for wide-band data, each band is imaged
separately without using any inter-band information.

In the context of wide-band imaging, two types of
approaches have been proposed recently for the joint
recovery of the hyper-spectral image cube. The first family
is a parametric approach, where the imaging problem
reduces to the joint estimation of the model parameters
and the sky surface brightness at a reference frequency.
The spectral behaviour is modelled as a low-order poly-
nomial expansion in the logarithm of the frequency, the
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coefficients of which have to be mapped. The first order
coefficient is known as spectral index [1]. The standard
first order expansion in the field simply corresponds to a
power law model for the spectral signature. The multi-
frequency version of the standard RI imaging algorithm
CLEAN builds on this parametric approach. Bayesian
inference techniques have also been proposed in [2] to
map the surface brightness and the spectral index. These
methods have shown to be relevant for radio emissions
with continuous spectra such as the synchrotron emission.
They remain non-generic, especially given the new regimes
to be unravelled by the new telescopes, with expected
complex spectral behaviour. The second type of methods
exploit the full hyper-spectral data cube with no explicit
parametric model of the spectral behaviour. The hyper-
spectral imaging problem is defined as a convex optimi-
sation problem including different regularisation priors.
First applications of compressive sensing (CS) techniques
imposing spatial and spectral sparsity priors on the hyper-
spectral cube in wavelet dictionaries and taking into ac-
count the smooth spectral variation of the radio emission
have shown promising results in recovering wide-band RI
data [3], [4]. These non-parametric approaches offer the
important advantage of being more generic.
The work herein fits into the second category. We

investigate a low-rank and joint-sparsity priors for wide-
band RI imaging in the context of CS. The approach
was shown to produce good reconstruction performance
on both simulated data and satellite observation of the
Earth [5], [6] which motivates the present study for RI
imaging. We also propose the use of an efficient solver for
the resulting convex optimisation minimisation task.
The contents of the paper are presented as follows. In

Section, II we present the wide-band RI problem and
review some of the existing image reconstruction methods.
Section III details the low-rank and joint-sparsity convex
optimisation problem that we propose for wide-band RI.
A sketch of the algorithmic solver is presented in Section
IV. Simulation and results are presented in Section V.

II. wide-band imaging in radio-interferometry
Aperture synthesis in radio-interferometry consists in

combining the electromagnetic signal coming from distant
sources in the sky and sensed by a collection of antennas,



hence simulating a single dish telescope with a diameter
corresponding to the largest distance separating a pair
of antennas. Under the assumptions of a small field of
view and a planar array with respect to the direction
of observation, for a monochromatic radio emission at a
frequency ν, the radio measurements y(·, ν) relates to the
sky surface brightness x(·, ν) as [7] follows:

y(u, ν) = S(u, ν)
∫
D(l,u, ν) x(l, ν) e−2iπu·l dl2, (1)

where u = (u, v) are the coordinates of the vectorial
distance separating each antenna pair in units of the
wavelength in the plane perpendicular to the direction
of the observation and l = (l,m) are the coordinates
in a parallel plane of the observed region of the radio
sky. S(u, ν) is the sampling function that is equal to 1
for a measured u point and 0 otherwise, and is defined
by the array configuration and the observation time. The
collection of the measured (u, v) points is usually termed
by the uv-coverage. D(l,u, ν) are the so-called direction
dependent effects which can be of geometrical nature
representing the diffraction of the radio emission due to
the non-coplanar array or perturbations introduced by the
receivers and the propagation medium. These effects are
usually corrected for during calibration and will be ignored
in the present paper. The radio measurements y(·, ν) at a
given frequency ν reduce to Fourier samples of the sky
surface brightness x(·, ν).
Considering L frequency bands and sketching the inten-

sity images at each band νl=1,..L as vectors, the discrete
version of the measurement model associated with the ill-
posed inverse problem reads:

yl = Φlxl + nl, (2)

where xl ∈ RN+ are the intensity model images, yl ∈ CM
are the complex measurements, and nl ∈ CM are ad-
ditive white Gaussian noise on each band νl. Φl is the
measurement operator at the frequency νl and is given by
Φl = GlFZ, where Gl ∈ CM×N contains on the rows
convolutional kernels to model the non-uniform sampling
in the Fourier domain of the measurements, and Z is
an oversampling operator by a factor of 2, also taking
into account the possible imperfections due to the non-
uniform re-sampling from the discrete Fourier coefficients
provided by F. The hyper-spectral data cube is defined in
a matrix form as Y = (y1, ..,yL) ∈ CM×L, the hyper-
spectral image cube as X = (x1, ..,xL) ∈ RN×L+ , and
the additive noise as N = (n1, ..,nL) ∈ CM×L. The
linear operator Φ, for all the bands, is defined such that
Φ(X) = ([Φlxl]l=1:L). Under these notations, the hyper-
spectral data model reduces to

Y = Φ(X) + N. (3)

In the context of convex optimisation for hyper-spectral
imaging for RI, to the best of our knowledge two methods
promoting sparsity have been proposed [3], [4]. In the

literature, sparsity is promoted within two frameworks.
Synthesis problems solve explicitly for the sparsity coef-
ficients, while analysis problems solve for the signal itself,
imposing sparsity in the adequate transform domain. The
approaches are equivalent for orthonormal sparsity bases.
The analysis problem is usually superior for redundant
sparsity dictionaries [8], [9].
In [3], authors propose an unconstrained inverse prob-

lem promoting sparsity by synthesis. The method allows
for non-smooth features in the spectral domain with
`1 penalisation on such components, a second prior is
also adopted promoting joint-sparsity by synthesis of the
hyper-spectral cube through an `∞,1 norm. Similarly,
[10] presents an unconstrained inverse problem promoting
sparsity by analysis on both the spectral information using
the DCT dictionary W and the spatial information using
the wavelet dictionary Ψ introduced in the SARA algo-
rithm [9]. This dictionary promotes average sparsity over
multiple orthonormal transforms. Finally, in addition to
the positivity, a prior promoting smoothness of the hyper-
spectral cube is adopted through the Frobenius norm of
X. The minimisation problem is as follows:

min
X

1
2‖Y−ΦX‖2+µ1

2 ‖X‖
2
F + µ2‖Ψ†X‖1

+ µ3‖XW‖1 + ιRN×L
+

(X),
(4)

where ιRN×L
+

is the indicator function1 of the convex set
RN×L+ enforcing positivity of the hyper-spectral cube. The
appearance of multiple arbitrary parameters (µ1, µ2, µ3)
representing here the trade off between the different priors,
is usually problematic for the final reconstruction quality.

III. Sparsity and low-rank model
We propose a minimisation problem promoting simul-

taneous low-rank solution and joint-sparsity on the hyper-
spectral cube. This is based on the assumption that hyper-
spectral images in RI can be decomposed into a few sources
ρ, each with a distinct spectral signature. We adopt the
linear mixture model X = SH† proposed by [5], where the
columns of the matrix S ∈ CN×ρ represent the sources
present in the sky images and the columns of the matrix
H ∈ Cρ×L are their corresponding spectral signatures.
This model is motivated in RI by the understanding that
the image results from a limited number of independent
physical sources. The model actually implies the low-
rankness of X, as the rank is given by ρ. It also implies
joint-sparsity over the spectral bands: if none of the
sources is active at a given spatial point, a full spectral line
of X will be automatically equal to zero. Solving for S and
H would explicitly imply a non-linear non-convex problem.
Instead, one can easily impose low-rankness by resorting
to a convex nuclear norm relaxation prior. Joint-sparsity
in some adequate sparsity basis Ψ can be encapsulated in

1The indicator function of a convex set C is: ιC(Z) ∆=
{

0 Z ∈ C
+∞ Z /∈ C.



an analysis `2,1 prior. A similar hyper-spectral imaging
problem was proposed in [5]. We therefore define the
following analysis convex minimisation problem:

min
X
‖X‖∗ + µ‖Ψ†X‖`2,1 s.t.

{
‖Y−Φ(X)‖F ≤ ε,
X ∈ RN×L+ .

(5)

The notation ‖Ψ†X‖`2,1 stands for the component-wise
`2,1 norm. It promotes not only joint-sparsity in Ψ, but
also smoothness of the spectral lines. The dictionary Ψ is
a concatenation of 9 orthogonal basis, the identity basis
and the eight first Daubechies wavelet dictionaries. It
was proven to be very efficient in promoting sparsity for
narrow-band radio-interferometric image reconstruction
problem [9], [11], [12]. The notation ‖X‖∗ stands for the
nuclear norm and represents the `1 norm of the vector
of its singular values. Note that the problem defined in
(5) is a constrained minimisation problem, where the data
fidelity term is defined as a bound on the Frobenius norm
of the residual Y−Φ(X), ε is derived from the noise statis-
tics which are usually known [9]. We will refer to this as
the `2 ball constraint. This constrained problem approach
enables to reduce the number of arbitrary parameters. One
such parameter remains in the form of µ, which sets the
trade off between the two priors.

The minimisation problem (5) can be redefined as

min
X

f(X) + µg1(Ψ†X) + g2(X) + g3
(
Φ(X)

)
(6)

with the functions involved, defined as

f(Z) = ιD(Z), D = RN×L+ ,

g1(Z) = ‖Z‖`2,1 , g2(Z) = ‖Z‖∗,
g3(Z) = ιB(Z), B = {Z ∈ CM : ‖Z−Y‖F ≤ ε}.

(7)

We use the indicator function ιC of a convex set C to
impose the same constraints on the solution as in (5). This
approach is completely equivalent and allows for the use
of specialised convex optimisation solvers.

IV. The primal-dual forward-backward solver
We propose the use of a primal-dual PD algorithm using

forward-backward iterations [13], [14] as a solver for the
minimisation problem (6). The same algorithmic structure
was recently proposed in the context of single-band RI
imaging [12]. It is able to achieve the full splitting of the
terms involved in the minimisation problem and has a
highly parallelisable structure. The details are presented
in Algorithm 1. We use a rescaled version of PD where, by
using the Moreau decomposition, we express the algorith-
mic steps directly with respect to the proximity operator
proxh(Z) ∆= argminZ̄ h(Z̄) + 1

2‖Z − Z̄‖2F of the different
terms f and gi, i ∈ {1, 2, 3}, from (6).
The algorithms performs in parallel forward-backward

iterations to update all the dual variables V1, V2 and V3
in steps 4–6. Firstly, a forward gradient step is performed.
It is followed by the incorporation into the algorithmic
structure of the non-smooth functions gi through the

Algorithm 1 PD with forward-backward iterations.

1: given X(0), X̃(0)
,V(0)

1 ,V(0)
2 ,V(0)

3 , µ, τ, σ1, σ2, σ3
2: repeat for t = 1, . . .
3: do in parallel
4: V(t)

1 =V (t−1)
1 +Ψ†X̃(t−1)−S`2,1

µ/σ1

(
V(t−1)

1 +Ψ†X̃(t−1)
)

5: V(t)
2 =V(t−1)

2 + X̃(t−1) − S∗1/σ2

(
V(t−1)

2 + X̃(t−1)
)

6: V(t)
3 =V(t−1)

3 +Φ
(
X̃(t−1))−PB

(
V(t−1)

3 +Φ
(
X̃(t−1)))

7: end
8: X(t) =PC

(
X(t−1)−τ

(
σ1ΨV(t)

1 +σ2V(t)
2 +σ3Φ†

(
V(t)

3
)))

9: X̃(t) =2X(t) −X(t−1)

10: until convergence

application of their proximity operator. This produces a
backward, implicit sub-gradient-like step. The proximity
operator of the sparsity prior introduced by g1 resolves to
a soft-thresholding operation, defined for row k,(

S`2,1
α (Z)

)
k,:

∆=

 z̄
‖z̄‖`2 − α
‖z̄‖`2

‖z̄‖`2 > α

0 ‖z̄‖`2 ≤ α
∀k. (8)

where we denote by z̄ = zk,: the row k of the input
matrix Z. The proximity operator to the nuclear norm
from g2 requires the computation of the singular value
decomposition Z = U1ΣU†2 and is defined as

S∗α(Z) ∆= U1 S`1
α

(
Σ
)
U†2. (9)

Since Σ is diagonal, this results in the soft-thresholding
of the eigenvalues of the matrix Z via an operator S`1

α

defined similarly to (8) [9]. Data fidelity is enforced by
performing the projection on the `2 ball of size ε defined
by the concatenation of the residuals from all frequency
bands. This is expressed in an equivalent formulation as

PB(Z) ∆=

 ε
Z−Y
‖Z−Y‖F

+ Y ‖Z−Y‖F > ε

Z ‖Z−Y‖F ≤ ε.
(10)

After their update, all the dual variables are used in
step 8 to update the primal variable, the hyper-spectral
images of interest. This is performed through a similar
forward-backward step. The updated dual variables are
incorporated through the use of the updates steps τ and
σi, i ∈ {1, 2, 3}. The proximity operator to the indicator
of the positive orthant is defined as the projection(

PD(Z)
)
k,j

∆=
{
<(zk,j) <(zk,j) > 0

0 <(zk,j) ≤ 0 ∀k, j. (11)

The convergence of the algorithm is achieved if the update
parameters satisfy τ

(
σ1‖Ψ†‖2S + σ2 + σ3‖Φ‖2S

)
< 1 [14].

The configuration parameter µ needs to be positive.
Compared to the other convex optimisation solvers

proposed for RI imaging, such as the alternating direction
method of multipliers (ADMM) [12] and the simultane-
ous direction method of multipliers (SDMM) [11], the



PD method is more flexible and has great parallelisation
capabilities with limited overhead. ADMM is limited to
only two functions in the minimisation problem. For our
minimisation task it requires sub-iterations and, given the
computational cost of the priors, especially of the nuclear
norm, such approach is unfeasible. SDMM suffers from
the need to compute the solution to a linear system of
equations of the same size as X which, for hyper-spectral
imaging, can easily become an important bottleneck.

The PD structure, with the full splitting of the operators
and functions does not have these drawbacks. It can scale
to any number of functions and more parallelism may
be exploited. Redefining the minimisation problem (6)
with one `2 ball per band will take full advantage of this
functionality. Randomised updates are also supported such
that only some of the terms defining the minimisation
problem are activated per iteration. This lowers the infras-
tructure requirements and makes the algorithmic structure
extremely scalable, at the cost of increasing the number of
iterations for convergence. The heaviest prior, the nuclear
norm, is a heavy computational burden for any solver. It
involves the estimation of the SVD through an iterative
QR factorisation. The use of randomisation, which the
PD algorithmic framework fully supports, can be partially
alleviated this. Performing an inexact SVD could also be
feasible. We leave all these approaches for a further study.

V. Simulations and results
In this section, results are given for simulations using a

radio emission map from an HII region in the M31 galaxy.
The image is of size N = 256×256 pixels and is considerd
as the original sky image x0 at the reference frequency
ν0 = 1.4GHz (Fig. 2, second row; left panel). The hyper-
spectral cube is simulated using the basic power-law model
xν = x0 ( νν0

)α, where α is the vector of spectral indices of
size N [1]. In order to ensure a spatial correlation in the
spectral index map, the latter is generated in an ad hoc
manner, similarly to [2], [4], that is a linear combination of
the reference sky image smoothed with a Gaussian kernel
of size 3×3 at FWHM, and a random Gaussian field. The
hyper-spectral data cube is simulated using a non-uniform
random sampling in Fourier with a Gaussian density
profile at the reference frequency ν0. In the aim to mimic
radio-interferometric uv-coverages, holes are introduced in
the sampling function through an inverse Gaussian profile,
placing the missing Fourier content predominantly in the
high spatial frequencies (Fig. 2, top row; left panel). For
each band ν, its corresponding uv-coverage is obtained
by scaling the reference uv-coverage with ν, this is in-
trinsic to radio-interferometric wide-band acquisition. The
coordinates u defining the uv-coverages correspond to
the vectorial distance in units of the wavelength. Wide-
band data cubes are generated within the range [1.4, 2.8]
GHz, with uniformly sampled bands. Tests are carried
out on three data cubes with a total number of bands
L = {16, 32, 64}, and varying the sampling rate, that is
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Fig. 1: Reconstruction results for the different methods on the
data cubes with L ∈ {16, 32, 64}: LWJS (red), WDCT (blue)
and single-band recovery (green). The average SNR of the
estimated hyper-spectral cubes (y-axis) is plotted as a function
of the sampling rate (x-axis). Each point corresponds to the
mean value of 10 noise realizations on the data cube.

the ratio between the total number of measurements and
the size of the cube, ranging from 0.01 to 1.
The adopted metric to assess the reconstruction qual-

ity of the different methods is the signal to noise ra-
tio, for a single band νl, it is defined by SNRl =
20 log10

(
‖Xl‖2/‖Xl − X̂l‖2

)
, and for the hyper-spectral

cube the average SNR is adopted, SNR = (1/L)
∑
l SNRl.

The performance of the proposed algorithm, denoted by
LWJS, is compared with that of the approach proposed in
[4], denoted by WDCT, and to the single reconstruction
of each band. The two benchmark methods are also imple-
mented using the PD algorithm [13]. For the reconstruc-
tion, the optimal value of the regularisation parameter in
LWJS is found to be µ = 10−4, this means more weight is
given to the nuclear norm prior with respect to the `2,1.
The optimal values for the three parameters of WDCT are
found to be µ1 = 10−3, µ2 = 102 and µ3 = 2 · 102, giving
more emphasis to the `1 components in coherence with [4].

Reconstruction results of the hyper-spectral cubes are
shown in Fig. 1. They clearly demonstrate a significantly
higher performance of the proposed approach, compared
to the benchmark methods, for different sampling rates
and number of bands. This suggests that the LRJS reg-
ularisation model is significantly superior to both the
WDCT regularisation model and the purely spatial model
of the single-band approach. Although, only sampling
rates below 0.3 are plotted, the same behaviour is obtained
with larger rates. It is also noticeable that for regimes
with sampling rates above 0.01, increasing the number
of bands enhances significantly the recovery of the LWJS
approach. In fact, a gain of almost 2dB on the average
SNR of the cube is achieved when doubling its size, which
shows the power of the nuclear norm prior in recovering
the low-rank hyper-spectral cube. This is not the case for
the benchmark methods. While it is expected for single
band reconstruction, since no inter-band information is
exploited, the WDCT approach presents a small loss in
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Fig. 2: Simulations and results for the data cube Y ∈ C0.1N×64,
left: first band ν1 = 1.4GHz, right: last band ν64 = 2.8GHz.
From top to bottom: uv-coverages, original sky images, re-
constructed model images for the LWJS (SNRν1 = 28.5dB,
SNRν64 = 28.9dB), WDCT (SNRν1 = 21.3dB, SNRν64 =
21.9dB) and single-band (SNRν1 = 20.4dB, SNRν64 = 21.3dB).

the average SNR when doubling the number of bands.
The visual inspection of the reconstructed images in

Fig. 2, for a data cube with 64 bands and a sampling
rate equal to 0.1N , confirms the higher efficiency of the
proposed method. It is worth mentioning that for regimes
with sampling rate below 0.01, the increase of the number
of bands results in worse recovery of the hyper-spectral

cube for the three methods, yet surprisingly the proposed
approach reaches an average SNR that is almost 7dB
higher than the benchmark methods.

VI. Conclusions
We studied a generic non-parametric low-rank and joint-

sparsity image model for the regularisation of the ill-posed
inverse problem occurring in wide-band RI. Compared to
the unconstrained WDCT approach our LRJS minimisa-
tion problem only requires one tuning hyper-parameter.
Expressed as a convex optimisation task, the problem was
solved using a PD algorithm that shows promise to scale to
the large data sizes expected from future radio telescopes.
The preliminary simulations suggest superior performance
of the LRJS model with respect to separate single band
imaging, as well as to WDCT.
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