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Abstract— Human Robot Collaboration has great potential
for the manufacturing domain. A necessary precondition for
this type of Joint Action is however the human’s acceptance
of their robotic co-worker. Recent research indicates that this
acceptance is heavily influenced by the flexibility granted to the
worker and the efficiency of the collaboration. Current systems
aim for efficiency but neglect the spatial constraints of the
collaboration. Furthermore they restrict the worker’s flexibility.
This paper presents an approach that extends prior art by
considering spatial constraints and granting more flexibility to
the worker. It thus facilitates a more efficient collaboration and
a higher worker acceptance in manufacturing environments.
The application of the approach to the workshop example is
sketched.

I. INTRODUCTION

Mobile assistive robots have great potential for manu-
facturing industry [1]. Compared to e.g. a domestic envi-
ronment, the environments in focus are characterized by a
higher level of structure, proceduralization and regulation.
Locations of relevant tools and parts are organized according
to ergonomic and economic aspects and are thus fixed. The
tasks of the workers are time-constrained, embedded in the
overall production process and may be very repetitive. In
order to provide the timings, detailed task descriptions are
created and consequently available. The actual task execution
is regulated with respect to applying legal, health and safety
terms, and the workers behavior is thus more predictable.
These special conditions can ease problems which are hard
to deal with in domestic environments.

Focusing on such environments, the potential of mobile
robots grows as close physical collaboration with the human
worker comes in reach. Of most importance for Human
Robot Collaboration (HRC), and the resulting Joint Action,
is the human’s acceptance of the robot. With acceptance
comes the willingness for collaboration, which is a neces-
sary precondition for the success of the team. In a recent
study on coordinating human-robot teams [2], an efficient
collaboration that allows human flexibility regarding the task
allocation achieved the highest satisfaction rating by the
participants. Efficiency refers to the time required by the
team to complete the task objective. Granting the humans
flexibility requires the robot to adapt its behavior during the
task execution according to the human co-worker. Conse-
quently a dynamic task allocation and scheduling mechanism
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is required. Current approaches rely on a temporal formalism
to realize such mechanisms. The temporal formalism enables
the robot to reason about the temporal consequences of
its actions. The second criterion for acceptance besides
flexibility, the efficiency of the collaboration, can be achieved
by formulating a scheduling policy for the robot actions,
which is also enabled by the temporal formalism.

What current approaches neglect however, are the spatial
constraints of such a close physical collaboration. Each
adaptation of the task allocation or the schedule implies a
different motion pattern of the team in the shared workspace.
The result is changed spatial constraints for the robot, which
effect the execution duration and thus the efficiency of the
collaboration. Furthermore current approaches restrict the
human flexibility by assuming the humans act only according
to temporal “feasible” plans. Humans thus are supposed to
have complete knowledge about the temporal consequences
of their actions at each time of the collaboration. In order
to overcome these shortcomings, this paper presents an
approach that extends the prior art by integrating the spatial
constraints in the task allocation and scheduling. Therefore
the motion patterns in the shared workspace, implied by a
concrete plan for collaborative task execution, are considered
explicitly. As a consequence of the richer contextual descrip-
tion, a more robust and correct prediction of the temporal
consequences of the robot actions is allowed. The improved
predictions enable a more efficient behavior of the robot and
thus a more efficient collaboration. Furthermore, the granted
human flexibility is increased since the restrictions regarding
the task allocation are eased.

The remainder of this paper is organized as follows.
Section II describes related work. In section III basic con-
cepts are reviewed, which are relevant to the presented
approach. The workshop example and required modifications
are presented in Section IV. The approach itself is described
in section V before the paper is concluded by a discussion
in Section VI.

II. RELATED WORK

Whenever robots act in physical proximity to humans, the
human behavior is influenced by the robot. The research area
of Human Robot Proxemics (HRP) studies this phenomenon.
Of special interest is the distance between human and robot
in different situations. Especially for mobile robots meant to
interact with the human the “proxemic behaviour” of the
robot “can make it socially acceptable and efficient” [3].
In [4] a planning framework and a planner are presented,
generating such “social acceptable motions”. HRP is however

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287493322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


not in focus of the presented approach. Due to the man-
ufacturing environment and the instructed workforce, only
minimal robot influence on the human behavior is assumed
if the robot maintains a certain distance. This distance is
ensured by the applied robot motion planning and can be
adapted to newer findings.

Current systems realize HRC primarily in a turn-taking
fashion, where each action of the robot is explicitly com-
manded by the human. The result is a stop-and-go collabora-
tion, which cannot compete with a human team that fluently
meshes the actions of the operators.

In [5] an “anticipatory action selection mechanism” was
identified as key to this fluency. The presented mechanism
allows the robot to control the timing of its actions. However,
due to the fixed task assignment between the agents no
significant difference in overall task efficiency could be
measured. In [6], [7] an approach was presented that goes one
step further and enables the robot to decide its next action
as well as the timing. Inspired by human teaming behavior,
the robot should be able to adapt to its human co-worker. In
terms of adaptation, Human-Human Collaboration serves as
a role model for Hoffman et al., Shah et al. and the approach
presented here.

In order to ensure a valid and efficient action selection
and scheduling, Shah et al. developed an Executive System
(ES) called “Chaski” to control the robot. Chaski can operate
in two different modes: “Equal partners” and “Leader &
Assistant”. In the Equal Partners mode both agents can freely
choose their next action and its duration. In the Leader &
Assistant mode only the leader has this freedom while the
assistant tries to not constrain the leader. In both modes
the agents are assumed to have complete knowledge about
the temporal consequence of their choices, regarding the
overall plan, and act only according to “feasible” plans.
Feasible plans thereby refer to plans satisfying encoded
temporal constraints as e.g. deadlines. In contrast, the ap-
proach presented here assumes that teams might execute
non-feasible plans as well, resulting from the granted human
flexibility. Consequently the execution of non-feasible plans
is supported in order to increase the human flexibility.

The input of Chaski is a “multi-agent temporal plan”.
It specifies the number of agents, the actions to perform,
the capabilities of the agents regarding doable actions and
execution duration as well as a set of temporal and logical
constraints relating the actions. The logical constraints are
used to model precedence relations between actions. They
can also be used to encode resource constraints and thus
allow modeling spatial aspects. If the spatial issues that arise
in shared workspace HRC, can be considered effectively,
if modeled as logical constraints, remains unclear. Efforts
towards applying Chaski in this direction have not been
reported.

In [8] the multi-agent scheduling algorithm “Tercio” is
presented. It enables dynamic task assignment and schedul-
ing during runtime while respecting temporal as well as
spatial constraints. Formulating a multi-agent task for Tercio
includes setting an “allowable spatial proximity between

agents”. Similar to the approach presented here, each action
of the task comes with a fixed location, where it has to be
performed. By pairing these locations a set of pairings can be
identified violating the allowable agent distance if performed
simultaneously by the agents. Forbidding these pairings
during the dynamic scheduling thus ensures the compliance
with the allowable distance during action execution. While
moving between the action locations this compliance is
however not guaranteed. Furthermore the time required to
move between action locations is not considered in the
scheduling and thus endangers the temporal constraints.

III. BACKGROUND

General problems of plan execution in the real world are
uncertainties and disturbances. Temporal plans have been
identified as a solution to robust and efficient execution.
A temporal plan specifies “a partial order of actions with
time information” [9]. It thus encodes a set of possible
behaviours and enables an execution component to choose
among them according to the actual execution conditions
[10]. This type of dynamic scheduling is called dispatchable
execution. Compared to a fixed time schedule, a “temporal
plan allows the execution component to adjust to delays
and fluctuations of action durations” [9]. This flexibility
comes at the cost of constant adjustments of the plan during
execution. The component choosing a concrete behaviour
and performing the adjustments is called Dispatcher. In order
minimize the time required in real-time for adjustments a
second component, known as Compiler, transforms the initial
temporal plan into an optimized form ahead of execution.
The Compiler and Dispatcher together form an Executive or
Executive System.

The time information of a temporal plan can be repre-
sented as temporal network. The simplest form of a temporal
network is the Simple Temporal Network (STN) [11]. Each
node in the STN represents an event or timepoint. The con-
necting edges represent constraints on the durations between
the timepoints and are called links henceforth. Each link is
associated with an interval describing the minimum and the
maximum allowed time difference between the occurrences
of the two connected timepoints. By interpreting the upper
and lower bound of each interval as an individual edge, a
STN can be transformed into a Distance Graph (DG) [11].
A STN is called consistent if the corresponding DG does not
have any negative cycles. In the context of task scheduling,
the consistency of a STN states that there is at least one
schedule fulfilling all temporal constraints encoded in the
underlying temporal plan. There is thus at least one way to
execute the plan successfully. An exemple STN and its DG
are shown in figure 1.

Also relevant to this work is the Simple Temporal Network
with Uncertainty (STNU) [12]. The idea behind a STNU is
the need in some domains to cope with external processes
of uncontrollable, uncertain durations. In order to model
this circumstance a STN is extended by further link and
node types, called contingent links and contingent timepoints.



Fig. 1. Left: Exemple STN, Right: corresponding DG

Regular STN links are called requirement links in the STNU
context. An example STNU is depicted in figure 2.

Fig. 2. Example STNU

Contingent links, like requirement links, are defined by
an interval. Thus, though uncontrollable, the duration has
to be specified by a lower and upper bound. Contingent
links end in a contingent timepoint, which is “controlled by
Nature1 and subject to the limits imposed by the bounds
on the contingent link” [13]. The remaining nodes are
called executable timepoints and are under control of the
executing entity. Regarding the execution of a STNU the
property in question is controllability instead of consistency.
By ignoring the semantic difference between the two link
types, a STNU can be checked for consistency similar to a
STN. Consistency however, is not sufficient to guarantee a
successful execution as this would imply full control over
all link values. Instead it has to be determined whether there
exists a value selection strategy for only the requirement
links, ensuring successful execution of the plan regardless of
the Nature-chosen contingent link values. If such a strategy
exists the STNU is considered controllable. Different levels
of controllability have been identified. The relevant one for
this work is called Dynamic Controllability (DC). If a STNU
is DC, there exists a value selection strategy for only the
requirement links ensuring a successful execution of the plan
and, just as important, this strategy can be determined during
execution.

IV. WORKSHOP EXAMPLE

The workshop organizers proposed the following exam-
ple2: “A human and a robot have the goal to build a pile
with 4 cubes and put a triangle at the top. One after the
other, they should stack bricks in the expected order. Each

1Nature refers here to the real world and subsumes external processes not
under control of the network executor.
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agent has a number of cubes accessible in front of him and
would participate to the task by placing its cubes on the pile.
At the end, one of the agents should place a triangle at the
top of the pile.” The available actions for each agent are:
take an object on the table, take an object from the pile,
put an object on the pile, give an object to the other agent
and support the pile. Object refers to either a cube or the
triangle. Furthermore, each agent is able to infer the state
of the world so it knows: where each object is, if an object
is reachable for itself and if an object is reachable for the
other one. Moreover, it’s assumed that each agent is able to
observe the activity of the other.

Since the presented approach focuses on tasks with tem-
poral constraints and mobile systems, the example has to
be modified slightly to apply the approach. First of all the
cubes and the triangle are no longer available at the assembly
table, but have to be fetched from different storages. This
modification adds the path planning aspect of mobile sys-
tems. Furthermore each agent has access to all objects. The
action ‘give an object to the other agent’ is thus superfluous.
As a consequence the sub-actions of the piling step, ‘take
an object on the table’ and ‘put an object on the pile’,
can be merged to a single action ‘fetch and put object on
the pile’. Since each object has a different storage location,
an individual action is required for each object. The used
method of temporal planning requires an action sequence
without loops. Hence agents are not allowed to remove
objects from the pile; the action ‘take an object from the pile’
has to be dropped. Moreover, the approach was designed to
cope explicitly with situations in that one agent is temporarily
unavailable. Thus actions requiring both agents for execution
are not in focus in the current state, although they are relevant
and will be added in future work. As a consequence the
action ’support the pile’, which only makes sense if both
agents work in parallel, cannot be considered at the moment.
The new set of actions is:

1) fetch and put cube 1 on the pile
2) fetch and put cube 2 on the pile
3) fetch and put cube 3 on the pile
4) fetch and put cube 4 on the pile
5) fetch and put triangle on the pile

In order to apply the introduced approach to the example,
additional information regarding the task is required. This
information includes: a map of the workspace, action loca-
tions and durations as well as a total makespan deadline.
For the missing information plausible data is added by the
author. The resulting task description is pictured in the next
section.

V. APPROACH

The presented approach is framed as an ES in the sense
of [9], preparing the task offline and steering the execution
online. The approach is thus split up into a Compiler and a
Dispatcher.



A. Compiler

The compiler takes a task as input and computes a set
of HRC schedules, each describing a possible way that the
human and robot could execute the task collaboratively. The
task is specified by a task description, visualized for the
workshop example in figure 3. The task graph as first element
specifies precedence relations between the actions that have
to be performed in order to complete the task. Due to the
strict precedence relations set in the example, the resulting
task graph is plain action sequence. The second element in
the task description is a set of action descriptions that holds
information about all actions involved in the task graph,
as e.g. action locations and execution durations. The third
element of the task description is the map that specifies the
shared workspace for the HRC task. The sketched map shows
a possible workshop setup. The numbers indicate the action
locations of the five actions. ‘H’ and ‘R’ mark the initial
human and robot position while ‘T’ represents the assembly
table. The task description is completed by a set of temporal
constraints, which further specify temporal relations between
actions as e.g. deadlines. For the example a total makespan
deadline, connecting the first and the last action, is pictured.
For the environments in focus, the task description informa-
tion should be available in the production planning system.
Minor effort might be required for extracting and formatting
the information. An overview of the compiling process is
given in figure 4.
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Fig. 3. Task Description: a) Task Graph, b) Action Descriptions, c)
Workspace Map, d) Temporal Constraints

The first step performed in the compiler is called Plan
Generation. It computes all plans describing a feasible way
that the task could be executed collaboratively. A plan refers
to a sequence of actions for each team member, satisfying the
precedence constraints implied by the task graph. In order
to obtain these plans all action allocations are computed in
the first place. Subsequently for each allocation all valid
sequences are calculated. The sum of all allocations and their
valid sequences resembles the resulting set of plans.

As each action has to be performed on a specific location,
each plan implies a motion pattern of the co-workers in the
shared workspace. The durations of these motions vary from

plan to plan as the co-workers influence each other: e.g. in a
particular plan one worker might block the other’s way and
cause a detour. Obtaining these motion durations is done in
the second step of the compiler called Motion Acquisition.
The durations can be learned from observing human robot
teams in the particular workspace or approximated by apply-
ing human and robot motion planners.
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Fig. 4. Compiler: Input, computation, Output

The last step in the compiler is the construction of a
HRC schedule for each plan. The schedules are encoded as
STNUs and the module performing the encoding is called
Temporal Net Creator. The reason for using the STNU
formalism to represent the schedules is that the human is
not under the control of the robot. Actions performed by
the human thus are considered as external processes and
consequently modeled as contingent links. The concrete
duration of a human action is decided by the human, although
it is assumed to be within the specified lower and upper
bound. Robot actions are modeled as requirement links as
their values are under control of the robot. The start and end
node of a link represent the start and end timepoint of the
action.

B. Dispatcher

The task of the Dispatcher is making real-time decisions
regarding the robot’s next action. The decisions are based
on the offline computed set of HRC schedules. They are



influenced by the behavior of the human co-worker during
task execution, which is determined by the Human Action
Detector. An action chosen by the Dispatcher is forwarded
to the Robot Controller for execution. The completion of the
action is acknowledged with a timestamp afterwards. The
overall online process is shown in figure 5.

The Human Action Detector determines the human action
choice and the execution timing. A lean implementation
could rely on buttons or verbal commands, allowing the
human to explicitly communicate the information. Implicit
communication could be realized by applying a Hidden-
Markov-Model, using the human position as observation and
representing the human action as hidden state [14], [15]. The
Dispatcher is cyclically updated by a message stating the
currently performed and the predicted next action.
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Fig. 5. Online Process

The set of HRC schedules computed offline provides
the instructions for the collaborative task execution. Which
concrete schedule the execution will follow depends on both
agents. As the human has the freedom of choice regarding
their actions3, the determination of the concrete schedule
in the Dispatcher is an iterative refinement process. The
iterations are triggered by choice and accomplishment of
human and robot actions. During each cycle the set of
candidate HRC schedules is first updated, then validated and
subsequently ranked.

The Set Validation module checks the validity of the
current set of HRC schedules by matching the observed
action allocation and sequence. Each schedule that does not
match the observation is dropped since it does not represent
the shared mental model of the team. Important to notice

3Regarding the human’s next action decision a non-preemptive behavior
is assumed: a next action choice is not reverted and the action is performed
until completion.

is that the observed timing of the actions is not considered
in the validation step. While in the Chaski system of Shah
et al. plans violating temporal constraints are not added to
the solution set, they represent possible solutions in this
approach. The reason is the flexibility granted to the human
on the one hand and the goal to complete the task on
the other hand. As a consequence of the human’s choice
the task completion might violate temporal constraints. This
particular choice is encoded in a particular plan, which is
non-feasible due to the violated constraints. Dropping the
plan however would mean dropping the instructions for
this particular choice. The robot thus would not be able to
complete the task, which is even worse than not complying
with the deadline.

The timing of the observed actions is however not ne-
glected. Instead of using it for the validation, it is used
for a ranking of the schedules in the Set Ranking module.
After updating the available schedules by the observed
timing, they are verified according to the specified temporal
constraints. The verification is thereby focused on the two
central properties introduced in section III: Dynamic Con-
trollability (DC) and Consistency. The schedules are encoded
as STNUs. A property of great importance for executing a
STNU is DC [13], [16]. In the context of this work the DC
property of an STNU states that there exists an execution
strategy for the robot, which ensures task completion while
satisfying the temporal constraints. Consequently, as long
as the human performs their activities within the specified
bounds, successful task completion can be ensured solely by
the robot for a DC schedule. A schedule however can also
be interpreted as STN. The semantic meaning of this inter-
pretation is that human and robot as a team are responsible
for the execution. Together they have full control, making
the distinction between contingent and requirement links to
represent controllable and uncontrollable durations irrelevant.
Interpreting the schedule as STN makes the Consistency
property the relevant one. A STN is called consistent if it has
at least one solution. In the context of this work Consistency
states that there is at least one strategy for the human-
robot-team, which ensures task completion while satisfying
the constraints. Ensuring successful task completion of a
consistent schedule thus cannot be done by the robot alone
but relies also on the human behavior.

The ranking of the schedules is based on three categories
and the introduced properties. The highest ranked schedules
are the dynamic controllable ones as the robot can ensure a
successful execution. The next category holds the consistent
schedules, depending additionally on the human choices, re-
garding a successful execution. The lowest ranked schedules
are the inconsistent ones that can only be executed success-
fully if activities are performed faster than assumed by the
lower bounds. Within each category additional metrics, as
e.g. total duration (makespan) of the schedule or human
and/or robot idle time, can be applied to refine the ranking.
The best ranked schedule of the highest non-empty category
determines the next action for the robot.



VI. DISCUSSION
We have presented an approach that extends the prior art

regarding task allocation and scheduling for close physical
collaboration of human and mobile robot in manufacturing
environments. The approach integrates spatial constraints
inherent in this type of collaboration. This allows the robot
a more robust and correct prediction of the temporal conse-
quences of its actions, which enables a more efficient robot
behavior and lastly a better acceptance of the collaboration
by the human. Furthermore, the flexibility granted to the
human regarding the task allocation is increased. This is
achieved by also considering allocations, and resulting sched-
ules, that potentially violate temporal constraints. Since task
completion is regarded as most important, the violation of
temporal constraints is tolerated if task completion is endan-
gered. The resulting increase of allowed human flexibility
enables a better acceptance of the collaboration by the human
as well. The central hypotheses underlying the approach are
twofold. The first one is the positive influence of considering
the spatial constraints on the overall efficiency. The second
one is a higher human satisfaction in the collaboration due
to the increased allowed human flexibility. Both will be
evaluated in future work.

Applying the approach to the workshop example requires
several modifications due to different underlying assump-
tions. The presented approach was developed for determinis-
tic, durative actions in a dynamic environment. The example
description however rather implies non-deterministic, instan-
taneous actions in a static environment. As consequence
of these differences incorrect behavior of an agent, failing
actions or collapsing piles cannot be handled by the presented
approach. A negotiation phase is not considered in the
approach since granting flexibility to the human is an explicit
goal. Thus the robot adapts its behavior in case of conflict-
ing intensions, while considering the temporal constraints.
Similarly situations of inactiveness are dealt with: flexibility
is granted to the human and the robot acts with respect to
the temporal constraints. In case the human is temporarily
unavailable, the robot is meant to continue the task on its
own.
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