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A method is developed to analytically and consistently implement cubic equations of state into the recently
proposed multipseudopotential interaction (MPI) scheme in the class of two-phase lattice Boltzmann (LB) models
[S. Khajepor, J. Wen, and B. Chen, Phys. Rev. E 91, 023301 (2015)]. An MPI forcing term is applied to reduce
the constraints on the mathematical shape of the thermodynamically consistent pseudopotentials; this allows
the parameters of the MPI forces to be determined analytically without the need of curve fitting or trial and
error methods. Attraction and repulsion parts of equations of state (EOSs), representing underlying molecular
interactions, are modeled by individual pseudopotentials. Four EOSs, van der Waals, Carnahan-Starling, Peng-
Robinson, and Soave-Redlich-Kwong, are investigated and the results show that the developed MPI-LB system
can satisfactorily recover the thermodynamic states of interest. The phase interface is predicted analytically and
controlled via EOS parameters independently and its effect on the vapor-liquid equilibrium system is studied. The
scheme is highly stable to very high density ratios and the accuracy of the results can be enhanced by increasing
the interface resolution. The MPI drop is evaluated with regard to surface tension, spurious velocities, isotropy,
dynamic behavior, and the stability dependence on the relaxation time.
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I. INTRODUCTION

The lattice Boltzmann method has emerged from the
kinetic-theory approach and successfully found many appli-
cations in various aspects of computational fluid dynamics
(CFD) such as turbulence [1], flows in porous media [2,3],
blood rheology [4,5], and biopolymer translocation [6,7] while
having the capability of being combined with the traditional
CFD methods [8,9]. Filling the gap between continuum and
molecular levels, the LB method facilitates incorporating
mesoscale interaction potentials. An outstanding outcome of
that feature is the capability of modeling two-phase flows,
which has always been a cutting edge area of study for
scientists and engineers, without the necessity of paying the
computational price of interface tracking or capturing methods
which are applied in traditional CFD methods.

Various ideas of modeling vapor-liquid equilibrium (VLE)
systems such as the color-gradient model [10], pseudopotential
model [11,12], and free-energy model [13,14] had been
introduced into the LB equation since its development as
the successor of lattice-gas cellular automata (LGCA) [15].
Among them, the pseudopotential model draws much attention
due largely to its straightforward definition of particle interac-
tions and ease of implementation. The original pseudopotential
or Shan-Chen (SC) model has several shortcomings, such as
being unstable at high density ratios (limited to density ratios
of the order of 10) [12], being thermodynamically inconsistent
with practical equations of state (EOSs) [16], VLE densities
are dependent on viscosity [17], and interface thickness and
interface tension cannot be tuned independently. Addressing
such issues is the core motive for many researchers in the LB
community.

Recent studies showed that surface tension can be con-
trolled either by considering next-nearest interactions on the
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lattice [18,19] or incorporating an additional interaction force,
or source term that affects only the interface region [20,21].
Packing a practical EOS in a single interaction pseudopo-
tential, which is a way of reaching high density ratios, was
examined [16] for several cubic EOSs, and showed that the
Carnahan-Starling (CS) EOS and Peng-Robinson (PR) EOS
can enhance the stability of the model and reach the density
ratio of the order of 1000. Nonetheless, all of the EOSs show
thermodynamic inconsistency to different extents since only
one specific pseudopotential is consistent [22,23].

As a workaround, it is found that the different forcing
schemes (the ways in which the SC force is inserted in the LB
equation) affect pressure tensor, thermodynamic consistency,
and stability of the simulated system differently [17,24,25].
These studies, adopting the CS EOS, showed that the forcing
schemes proposed by Guo et al. [26] and He et al. [27]
can similarly recover Navier-Stokes equations to the second
order and they reproduce the predicted interface tensions well.
Moreover, these forcing schemes [26,27] and exact difference
method (EDM) [21] could effectively separate VLE densities
from the change of viscosity. However, while EDM can reach
to the density ratio of about 1000, the forcing schemes of
Refs. [26,27] can reach density ratio of about 100. Wagner [28]
compared the two methods of simulating nonideal fluids:
the force method [29] and the pressure method [30]. After
successfully identifying spurious interfacial terms with the
aid of Taylor expansion to fifth order and removing them
from the pressure tensor in the force method, both pressure
method and force method showed similar consistent results.
Li et al. [31] showed that the forcing scheme proposed by
Wagner [28] is identical to the one proposed by Guo et al. [26].
Li et al. [24] successfully identified the effective part of EDM,
which improves the instability, and implemented it into the
forcing scheme proposed by Guo et al. [26] to reach higher
density ratios (with the aid of the CS EOS), and then used a free
parameter to approximately fit the mechanical stability on the
solution of the Maxwell equal area. They further combined
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the scheme with multi-relaxation-time LB to improve the
numerical stability [32]. The study showed that the interface
thickness can be controlled by the attraction parameter of the
CS EOS. Lycett-Brown and Luo [33] analyzed the LB with
a general forcing scheme with the aid of Taylor expansion to
the third order and used the third-order errors to counteract
the thermodynamic inconsistency. They concluded that the
scheme can simulate arbitrary density ratios and increasing
interface width can improve the thermodynamic consistency.
However, it is inevitable for the methods to fit mechanical
stability on the Maxwell construction for the entire coexistence
curve or a particular thermodynamic state.

In a previous paper [34], we have shown that using single
pseudopotential to recover practical EOSs can cause non-
physical interactions to happen in the simulation domain and,
moreover, mechanical stability of the system is significantly
affected by the lattice scaling and type and parameters of
EOSs. Such a behavior can be found in Ref. [33], where they
increase the attraction parameter of the EOS while favoring
shortening the interface width; the vapor equilibrium density
is considerably affected even at relatively low density ratios.
Furthermore, we have introduced a multipseudopotential
scheme which is thermodynamically consistent and can be
initialized with the desired VLE state, independent of lattice
spacing and the type of EOSs being recovered at least at low
density ratios.

In this study, we propose a multipseudopotential scheme
to incorporate most of the popular cubic EOSs into the LB
equation consistently. While in the previous work multipseu-
dopotential interaction (MPI) forces are determined to achieve
a specific thermodynamic coexistence of interest, in this study
they are analytically set to represent cubic equations of state
including van der Waals (VW), CS, PR, and Soave-Redlich-
Kwong (SRK) in a wide range of temperatures. It is shown that
the scheme is numerically stable and high density ratios are
achievable. Assigning each part of the EOSs (attraction and
repulsion) to the consistent pseudopotentials is discussed. The
EOS parameters that govern the interface width are identified
and applied to improve the accuracy of VLE simulations at
very high density ratios. The simulation results are supported
by theoretical analysis which helps present them in reduced
formats and link them to real world thermodynamic systems.

II. METHODOLOGY

The Bhatnagar–Gross–Krook lattice Boltzmann equation
(LBE) for simulation of a flow field with a general forcing
term is defined as

fi(x + ei�t,t + �t) − fi(x,t)

= − 1

τ

[
fi(x,t) − f

eq

i (x,t)
] + �tFi, (1)

where fi are particle distribution functions at position x and
time t , i = 0 · · · q − 1 the indexes of neighboring nodes,
ei the discrete microscopic velocity vectors to neighboring
nodes, τ is the nondimensional relaxation time, f

eq

i the local
equilibrium distribution function obtained from the Chapman-
Enskog expansion of the Maxwellian to the second order at
constant temperature [15,35], and Fi the forcing term to be
defined in Sec. II C. Most of the lattice Boltzmann models are

developed based on Hermite quadratures [35] to reproduce
the integrals of the equilibrium distribution function over
the whole momentum space. However, the Gauss-Laguerre
quadrature method can be employed to accurately calculate
the integral of the equilibrium distribution function over the
octant of the momentum space which helps to implement
diffuse reflection boundary conditions at microscopic scales,
i.e., high Knudsen numbers Kn � 0.1 (for more details refer
to [36–38]). For a flow field near its equilibrium state without
internal or external forces, the momentum flux tensor can be
obtained by employing the equilibrium distribution function
and considering its isotropy on the lattice,

q−1∑
i=0

eα
i e

β

i fi ≈
q−1∑
i=0

eα
i e

β

i f
eq

i = ρθδαβ + ρuαuβ, (2)

where α and β are Cartesian coordinates, θ lattice temperature,
and u velocity. The lattice temperature depends on the
underlying lattice structure. For the case of the D2Q9 lattice,
the discrete velocities are e0 = 0, and e1 = (ς,0), e2 = (0,ς ),
e3 = (−ς,0), e4 = (0,−ς ), e5 = (ς,ς ), e6 = (−ς,ς ), e7 =
(−ς,−ς ), e8 = (ς,−ς ), where ς = �x/�t is microvelocity
and �x is lattice spacing. This choice of lattice sets the lattice
temperature as

θ = ς2/3, (3)

It can be found from Eq. (2) that such a system is governed
by the ideal gas pressure. To model nonideal fluids and two-
phase systems, Shan and Chen [11] introduced a lattice force
into the LBE,

F = −Gψ(x,t)
N∑

i=1

w(|ci |2)ψ(x + ci ,t)ci , (4)

to describe the interaction potentials (pseudopotentials) be-
tween the fluid particles, where G is the amplitude of the force,
N the number of neighboring nodes that interact with the node
of interest, ci the vectors linking to those neighbors, and w the
weight function that makes the interaction force dependent on
the distance. The distance to the nearest neighbor is c, whose
magnitude is equal to ς if the time step is set as �t = 1. The
SC force can be incorporated into the LBE through the forcing
term and equilibrium distribution functions.

A. Multipseudopotential interaction scheme

The authors introduced the concept of the multipseudopo-
tential interaction (MPI), in comparison with the single-
pseudopotential interaction (SPI), as the pair interactions
scheme to describe the hydrodynamic properties of real
fluids, under the condition that each potential satisfies the
thermodynamic requirement [34,39]

Ftotal = F(1) + F(2) + · · · + F(n)

=
n∑

j=1

−Gjψj (x,t)
N∑

i=1

w(|ci |2)ψj (x + ci ,t)ci , (5)

where n is the number of pseudopotentials, Gj the amplitude,
and ψj the consistent pseudopotential of the j th part of the
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force

ψj (ρ) =
(

ρ

λjε + Cjρ

)1/ε

, (6)

where Cj is a constant and ε = (6e4 − 2)/(6e4 + 1) in which
e4 is the parameter can be obtained from fourth-order isotropy
of the force on the lattice [22],

e4 = w(1)

2
+ 2w(2) + 8w(4) + 25w(5) + 32w(8) + · · · .

(7)

For example, in the case of nearest-node interactions
w(|ci |2) = 0 for |ci |2 > 2 and from fourth-order isotropy of the
force on the lattice w(1) = 1/3, w(2) = 1/12, and e4 = 1/3.
Weights for |ci |2 > 2 come into effect when a higher order of
isotropy is needed (for more details refer to [18,40]).

Here, the interparticle potential is presented with the
contributions from different interactions. Therefore, the
interaction force between a considered node and its neighbors
is composed of a set of subforces at various potentials, which
are functions of particle densities, i.e., the inverse of the mean
free path of particles. All interactions of the MPI are at the
same range of the lattice, for example, the range to the nearest
neighbors is selected in the simulations of this study. It is
noteworthy that the concept and physics of multipseudopo-
tential interactions are different to those of the multirange
interaction (or pseudopotential with midrange interactions)
model proposed by Sbragaglia et al. [18] and Falcucci
et al. [19] in which different sets of forces are introduced
to the scheme with different ranges (or cutoff radii) linking
to the neighborhood nodes. Such a multirange interaction
model provides capabilities for the pseudopotential models,
such as flexibility of setting surface tension independent
of EOS [18], achieving stable spraylike fluid [41,42], and
increasing numerical stability [19,43]. However, it has to be
noted that the multirange interaction model [18] does not
take the thermodynamic consistency into consideration, as
all of its ranges utilize the same inconsistent pseudopotential
ψ(ρ) = √

ρ0[1 − exp(−ρ/ρ0)] where ρ0 is a constant.

B. Analysis of MPI

It has been shown that the MPI scheme is intrinsically
consistent with thermodynamics to the second order of spatial
derivatives [34]. The pressure tensor of the MPI system can
be exactly expressed by the MPI force on a discrete lattice for
the nearest and next-nearest interactions. In the case of D2Q9
lattice and continuum limit where all gradients are in the x

direction, the contribution of all potentials of the MPI force to
the normal component of the pressure tensor can be found in
the x − y plane (to the second order) [34],

Pxx =
n∑

j=1

Gjc
2

2
ψ2

j + Gjc
4

12

[
a1

(
dψj

dx

)2

+ a2ψj

d2ψj

dx2

]
,

(8)

where a1 = 1 − 3e4, a2 = 1 + 6e4, and ε = −2a1/a2. The
system results in bulk pressure of

p = ρθ +
n∑

j=1

Gjc
2

2

(
ρ

λjε + Cjρ

)2/ε

. (9)

In this equation of consistent pressure, Gj , λj , Cj are free
parameters; however, ε is constrained by the order of isotropy
of the interaction force on the lattice [see Eqs. (6) and (7)].
Therefore, as discussed in the previous study [34] the functions
in the formats, such as ρh and [ρ/(1 + Cρ)]h, where h is an
arbitrary number, are not accepted in the MPI EOS while they
are the necessary parts of well-known cubic equations of state
including the VW, CS, SRK, and PR. In order to eliminate
this constraint, in the following section the forcing scheme is
modified to make ε flexible.

C. A more flexible MPI scheme

To incorporate the lattice force, shifting the particles’
momentums in the equilibrium distribution functions was
proposed by Shan and Chen [11]. However, Guo et al. [26]
demonstrated that the following forcing term is necessary to
consider the discrete effects of the lattice:

Fi = 3wi�t

[Bαeiα

c2
+ Cαβ(3eiαeiβ − δαβc2)

2c4

]
, (10)

where the Einstein summation convention is adopted. This
equation gives rise to the stress tensor in the continuum limit,
as follows:

σαβ = c2

3

(
τ − 1

2

)
�tρ(δαvβ + δβvα)

+�t

[(
τ − 1

2

)
(vαFβ + vβFα) − τ

2
(Cαβ + Cβα)

]
,

(11)

where v is the actual fluid velocity, applied in the equilibrium
distribution function, and defined as vα = uα + Fα�t/2ρ

(uα = ∑
i fieiα/ρ). If Bα = (1 − 1

2τ
)Fα , and Cαβ is set at

CNS
αβ = (1 − 1

2τ
)(2vβFα), Navier-stokes stress tensor is recov-

ered [26] as,

σNS
αβ = c2

3

(
τ − 1

2

)
�tρ(δαvβ + δβvα). (12)

Li et al. [24] showed that considering the additional term
FαFβ/ψ2 to the stress tensor can effectively modify ε which
appears in the thermodynamic consistency condition (6). The
leading term of FαFβ/ψ2 is [24]

FαFβ

ψ2
= −G2c4∂αψ ∂βψ + O(∂4). (13)

Here, for the MPI, we use a similar term and set tensor Cαβ

as

CMPI
αβ =

(
1 − 1

2τ

)(
2vβF total

α

) +
n∑
j

sjF
(j )
α F

(j )
β

τψ2
j

, (14)

where sj are arbitrary constants. Substituting (14) into (10),
we obtain

Fi = 3wi�t

(
1 − 1

2τ

)[
eiα − vα

c2
+ 3vβeiβeiα

c4

]
F total

α

+ 3wi�t

2c4

n∑
j

[
sj

τψ2
j

(
3F (j )

α F
(j )
β eiαeiβ − c2F (j )

α F (j )
α

)]
.

(15)
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As a result, the macroscopic approximation of the MPI-LB
equation leads to

∂t (ρvβ ) + ∂α(ρvαvβ)

= −∂βp + ∂ασNS
αβ + Fβ − �t∂α

n∑
j

sjF
(j )
α F

(j )
β

ψ2
j

, (16)

where p is the ideal gas pressure. The excess terms on the
right-hand side of (16) can be considered a part of the pressure
tensor,

Pαβ = P
original
αβ + �tc4

n∑
j=1

sjG
2
j ∂αψ∂βψ, (17)

where Eq. (13) is used. For the case of a one-dimensional
planar interface, the component of the pressure tensor which
is normal to the interface now takes the form [compare with
Eq. (8)]

Pxx =
n∑

j=1

Gjc
2

2
ψ2

j + Gjc
4

12

[
(a1 + 12�tsjGj )

(
dψj

dx

)2

+ a2ψj

d2ψj

dx2

]
. (18)

Therefore, ε in Eq. (6) now becomes

ψj (ρ) =
(

ρ

λjεj + Cjρ

)1/εj

, (19)

εj = −2(a1 + 12�tsjGj )/a2, (20)

which is the relation derived to release the constraint of the
MPI, as by which {εj : j = 1,2, . . . ,n} become flexible and
independent of each other in the pseudopotentials of the MPI.
The MPI EOS is, therefore, defined as

p = ρθ +
n∑

j=1

Gjc
2

2

(
ρ

λjεj + Cjρ

)2/εj

. (21)

As expected, in comparison with (9), the additional term
in (14) modifies the thermodynamic condition only through εj

and the rest stays intact. In other words, εj is a function of the
free parameter sj . To obtain the interface shape, the equation
(15) of our previous paper [34] becomes

(c∂xρ)2 a2

12ρ4

n∑
j=1

λjψ
εj

j

Gjc
2ψ2

j

2

=
∫ ρ

ρv

⎛
⎝p0 − ρθ −

n∑
j=1

Gjc
2

2
ψ2

j

⎞
⎠dρ

ρ2
. (22)

The surface tension of the two-phase MPI system can be
presented by the mechanical route definition; in the case of a
planar interface, it is calculated from σ = ∫ +∞

−∞ (pN − pT )dx,
where pN is the local pressure normal to the interface and pT

the local pressure tangential to the interface,

σ = c4

12

n∑
j=1

∫ ρl

ρv

GjKj (ψ ′
j )2(∂xρ)dρ, (23)

where Kj = −6e4 + 12�tGjsj and ∂xρ is solved by (22).
Considering Eq. (20), we have

Kj = −εj

(
3e4 + 1

2

) − 3e4 − 1. (24)

D. Mapping cubic equations of state onto the MPI scheme

Here we show how the cubic equations of state such as the
VW, CS, SRK, and PR can be implemented analytically and
consistently into the MPI-LB system.

For the VW, the EOS,

p = ρT

1 − bρ
− aρ2, (25)

exists as the basis of many other EOSs of real fluids. The fluid’s
critical point (critical density ρc = 1/3b, critical temperature
Tc = 8a/27b, and critical pressure pc = a/27b2) is deemed
to be the reference point for normalization.

According to (21), the functions such as ρh or
[ρ/(1 + Cρ)]h are thermodynamically consistent as pseudopo-
tentials, and the parameters of pseudopotentials of the MPI can
be adjusted; in a sense, the MPI EOS matches the VW EOS.
We describe the procedures step by step as follows by means
of three pseudopotentials (n = 3). Considering (21), firstly we
remove the lattice ideal pressure (ρθ ) from the MPI EOS;
therefore, the first pseudopotential (j = 1) is assigned to it:

G1c
2

2

(
ρ

λ1ε1 + C1ρ

)2/ε1

= −ρθ. (26)

From this equality we find G1 = −2/3, C1 = 0, ε1 = 2,
and λ1 = 1/2. The second pseudopotential (j = 2) represents
the repulsion term of the VW EOS,

G2c
2

2

(
ρ

λ2ε2 + C2ρ

)2/ε2

= ρT

1 − bρ
, (27)

from which we obtain G2 = 2T/c2, C2 = −b, ε2 = 2, and
λ2 = 1/2. The third pseudopotential (j = 3) demonstrates the
attraction term of the VW EOS,

G3c
2

2

(
ρ

λ3ε3 + C3ρ

)2/ε3

= −aρ2; (28)

then we find G3 = −2a/c2, C3 = 0, ε3 = 1, and λ3 = 1.
It should be noted that sj can be found from (20) and
applied in Eq. (15). Consequently, it can be seen that each
pseudopotential is assigned to the physics; one describes the
dynamics of individual molecule, the second creates solely
short range repulsion interactions, and the third mimics the
long range attraction of particles. All parameters are listed in
Table I for reference. Because the procedure of determining the
MPI forces parameters for the VW EOS, conditions (26)–(28),
is mostly the same as those to be used for the other EOSs, no
details will be given in the following discussions.

The Carnahan-Starling (CS) EOS,

p = ρT
1 + η + η2 − η3

(1 − η)3 − aρ2, (29)

which modifies the hard sphere repulsion part of the VW
equation, is an EOS widely used in the pseudopotential LB
community. Here η = bρ/4, a = �aT

2
c /Pc, b = �bTc/Pc,
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TABLE I. The MPI forces parameters which reproduce the
selected EOSs in the LB system.

EOS j th pseudopotential Gj εj λj Cj

VW 1 − 2
3 2 1

2 0

2 T 2
c2 2 1

2 −b

3 −a 2
c2 1 1 0

CS 1 − 2
3 + 2T

c2 2 1
2 0

2 bT 2
c2 1 1 − b

4

3 b2T

8
2
c2

2
3

3
2 − b

4

4 −a 2
c2 1 1 0

SRK 1 − 2
3 − αa

b

2
c2 2 1

2 0

2 T 2
c2 2 1

2 −b

3 αa

b

2
c2 2 1

2 b

PR 1 − 2
3 2 1

2 0

2 T 2
c2 2 1

2 −b

3 (αa/2b
√

2) 2
c2 2 1

2 b(1 + √
2)

4 −(αa/2b
√

2) 2
c2 2 1

2 b(1 − √
2)

bρc/4 = �c, �a = 0.496 388, �b = 0.187 295, �c =
0.130 444. The reduced form of the CS EOS is

pR = (4�c/�b)ρRTR

1 + (�cρR) + (�cρR)2 − (�cρR)3

(1 − �cρR)3

−�a(4�c/�b)2ρ2
R. (30)

The CS EOS can be rewritten as

p = ρT + bT
ρ2

(1 − (b/4)ρ)2 + b2T

8

ρ3

(1 − (b/4)ρ)3 − aρ2.

(31)

Therefore, the CS EOS is in accordance with the MPI EOS.
The relevant parameters of the MPI EOS are listed in Table I.
It should be noted that the first pseudopotential has two parts:
The first part is utilized to remove the lattice ideal pressure
(ρθ ) while the second part exerts the CS fluid ideal pressure
(ρT ).

The Soave-Redlich-Kwong (SRK) EOS is the well-known
two-parameter cubic equation of state and the first modern
EOS which is widely applied to he design of hydrocarbon-
treatment plants [44]. The SRK is the significant modification
of RK EOS proposed by Soave [45]:

p = ρT

1 − bρ
− αaρ2

1 + bρ
, (32)

where a = �aT
2
c /Pc, b = �bTc/Pc, ρcTc/Pc = 3,

√
α =

1 + m(1 − √
TR), �a = 0.427 480, �b = 0.086 640, m =

(0.480 + 1.574ω − 0.176ω2), and ω is Pitzer’s acentric factor.
α is determined from experimental vapor pressures of nonpolar
substances. The properties of the critical point can be found
from the fact that the first and second derivatives of pressure
with respect to density at the critical point are zero. In contrast
to RK EOS, the reduced format of the SRK depends on the
acentric factor ω, which helps to treat nonpolar substances

[pR = 3ρRTR/(1 − 3�bρR) − 9�aαρ2
R/(1 + 3�bρR)]. By

decomposing the second term of the SRK EOS, we obtain

p = ρT

1 − bρ
− αa

b
ρ + αa

b

ρ

(1 + bρ)
. (33)

Now, the SRK EOS is well consistent with the MPI
EOS. The relevant parameters of pseudopotentials of the MPI
scheme are listed in Table I.

The Peng-Robinson (PR) EOS [46] is devised to over-
come the weakness of the SRK in predicting liquid phase
density [47]:

p = ρT

1 − bρ
− αaρ2

1 + 2bρ − b2ρ2
, (34)

where a = �aT
2
c /Pc, b = �bTc/Pc, bρc = �c, �a =

0.457 236, �b = 0.077 796, �c = 0.253 077, and α is similar
to that in the SRK equation but m is correlated with the aid of
vapor-pressure data from normal boiling point to critical point:

m = 0.374 64 + 1.542 26ω − 0.269 92ω2. (35)

The reduced form of the PR EOS is

pR =
(

�c

�b

)
ρRTR

1 − �cρR

− αρ2
R

1 + 2�cρR − �2
cρ

2
R

�a

(
�c

�b

)2

.

(36)

The PR EOS can be rearranged into the following shape:

p = ρT

1 − bρ
+

(
αa

2b
√

2

)
ρ

1 + b(1 + √
2)ρ

−
(

αa

2b
√

2

)
ρ

1 + b(1 − √
2)ρ

. (37)

Therefore, each term of the PR EOS now is in agreement
with the MPI EOS. The corresponding pseudopotential param-
eters are listed in Table I.

It is worth mentioning that in contrast to many other
studies [17,21,24,33], where thermodynamic consistency is
sought by trial and error methods, curve fitting, or solving a
nonlinear equation, the consistent MPI forces proposed here
exactly represent the selected EOSs. Moreover, for the sake
of brevity only the above-mentioned cubic EOSs are focused
on, but the principle of the method is not limited to, the cubic
EOSs; it is applicable to the EOSs in other function formats,
such as polynomial and virial functions, and the versions of
EOSs developed based on them (see Appendix A).

Using the MPI scheme, the interaction force between two
nodes is calculated by summation of n (number of pseu-
dopotentials) subforces. For the case of the two-dimensional
nearest-node interactions, a node experiences 8n interactions.
Therefore, increasing the number of pseudopotentials, we
expect more computational costs. For example, the MPI
code running the SRK or VW EOSs is faster than the one
implementing the PR or CS EOS (see Table I); however, it is
slower than a nonmodified SPI code [16] running the SRK,
VW, PR, or CS.

III. RESULTS AND DISCUSSION

To verify the theoretical derivations and demonstrate how
the proposed method works, simulations of planar interfaces
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are carried out. In Sec. III A the parameters and details of
simulations are described. The thermodynamic consistency
and interface shape are discussed in Sec. III B, and the
mechanism of the scheme in controlling the interface width
is studied in Sec. III C. The capability of the method in
reproducing Maxwell construction curves is investigated in
Sec. III D. The MPI droplet is thoroughly studied in Sec. III E.

A. Simulation setup

All simulations are run on a two-dimensional square lattice
including nine velocities (D2Q9). The computational domain
for one-dimensional planar interfaces contains 1 × 500 nodes
and for two-dimensional cases contains 300 × 300 in most
of the simulations, while, for the simulations of very wide
interfaces a larger number of lattice nodes is utilized, for
which the details will be given individually. The nondimen-
sional relaxation time is set to unity τ = 1 unless otherwise
stated. The nearest-node interactions are considered which set
w(1) = 1/3, w(2) = 1/12, a1 = 0, a2 = 3. The MPI forces are
calculated by use of Eqs. (5) and (19) whose parameters, for
the selected EOSs, can be found in Table I. The internal forces
are embedded in the LBE using Eq. (15), which reproduces
Navier-Stokes equations to the second order. For the case of

the planar interface, half of the domain is filled with liquid
and the other half with the vapor. The periodic condition is
applied at all boundaries. ρl and ρv (the densities of liquid and
vapor) are initially set, in a sense, to ensure that the system is
in the saturation state. To avoid an initial instability, a diffuse
interface should be adopted at the beginning of simulations.
We utilize the suggestion of Ref. [17],

ρ(r) = ρl + ρv

2
− ρl − ρv

2
tanh

(
r − R

W

)
, (38)

where W controls the interface width and, in all simulations,
is set at W = 5; R is the distance between the interface and
the reference point; and r is the variable distance from the
reference point. For the case of the planar interface, it can be
one of the boundaries parallel to the phase interface. Unless
otherwise stated, the lattice spacing parameter is set to unity
c = 1 and EOS parameters for all types are set at a = 0.01
and b = 0.2. The simulations are run for at least 105 steps and
the pressure tensor profiles in VLE systems are monitored to
verify that the equilibrium state is reached.

B. Thermodynamic consistency

To investigate the thermodynamic consistency, the first
set of simulations is performed to measure the total normal

FIG. 1. Error due to the change of the normal component of pressure tensor along flat interfaces at different temperatures for the selected
EOSs: (a) VW, (b) CS, (c) SRK, and (d) PR. Pressure is normalized with the aid of the saturation pressure predicted by the Maxwell equal-area
rule. In graph (a) EXP-MPI symbols represent the MPI results of our previous paper [34] for reference only. The errors are smoothly changing
from one phase to the other one.
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FIG. 2. The phase interfaces found from MPI simulations and the theoretical predictions, Eq. (22), at different temperatures for the selected
EOSs: (a) VW, (b) CS, (c) SRK, and (d) PR.

component of the pressure tensor, p0 = Pxx + ρθ . Based on
the mechanical stability of the flat interfaces, p0 must be
constant across the phase interface (for more details refer
to [28]). Pxx is calculated from Eq. (18) where both first and
second spatial derivatives of pseudopotentials are computed by
use of the second-order central difference approximations. The
results are shown in Fig. 1. For the selected EOSs and specified
temperatures the errors are small and less than 0.15% which
validates the mechanical stability of the proposed scheme. The
errors increase with the decrease of temperature which will be
discussed in Sec. III D.

The gradient of density along the phase interface can be
calculated analytically from Eq. (22) as the right-side integral
has an analytical solution. Then, by numerically solving
x = ∫ ρ

(ρv+ρl )/2 (∂xρ)−1dρ, the spatial profile of density can be
achieved. Figure 2 depicts the phase interfaces for the selected
EOSs and the comparisons of the simulation results with the
theoretical predictions. The main graphs of Fig. 2 focus on
liquid phase densities and the inset graphs emphasize vapor
phase densities; the simulations are in good agreement with the
theory which means the interface shape can be ably predicted.

When a high density ratio system is desired an initial
guess of Eq. (38) may not be of help and the simulation
crashes as a result of instabilities generated at the interface.
Therefore knowing the equilibrium interface shape in advance

can effectively enhance the starting point stability of the system
in practical cases.

C. Scalability and interface width control

Herein, for the sake of brevity we merely focus on the
SRK EOS and investigate EOS parameters thoroughly. If we
divide both sides of Eq. (22) by pc/ρc and use the MPI SRK
pseudopotentials of Table I, the equation could be normalized.
Therefore, after some lengthy but simple algebra, we obtain

(c∂xρR)2 a2

24ρ2
R

[
−bc2

a

�a

�b

− 3α�a

�b

+ 3TR

(1 − 3�bρR)2

+ 3α�a

�b(1 + 3�bρR)2

]
=

∫ ρR

ρv(R)

(
p0(R) − pSRK

R

)dρR

ρ2
R

. (39)

It can be seen that the right-hand side of (39), which is
the Maxwell construction integral, is in the reduced format
which means it is independent of EOS parameters a and b,
and lattice scaling parameter c. Therefore the reduced VLE
densities are not affected by change of those parameters. It is
understood that the terms, which are multiplied by the gradient
of density, are impacting the interface shape. On the left-hand
side of (39), all terms are in reduced format as well, except the
first term in the brackets which is a function of ratio parameter
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FIG. 3. The phase interface is widened by decreasing χ = bc2/a

for a particular VLE, the SRK EOS at TR = 0.80. Parameters
are set at b = 0.2, c = 1, and a = 0.001, 0.01, 0.09, 0.25. The
theoretical profiles are obtained from Eq. (22). The theoretical
profile of density at χ = 0.8 is incomplete, which is explained in
Sec. III C.

χ = bc2/a. Therefore, it is expected that this parameter, χ , is
the sole parameter responsible for the change in the width of
the phase interface. As the VLE system is independent of χ in
Eq. (39), the sound speed in liquid and vapor is independent
of χ as well and is consistent with the EOS.

Four simulations are run for the different attraction param-
eter values a = 0.001, 0.01, 0.09, 0.25 while the SRK EOS
is set at TR = 0.80, b = 0.2, and c = 1. The results are shown
in Fig. 3. It is found that the increase of parameter a (decrease
of χ ) can effectively reduce the interface width. Another set
of simulations have been run by keeping a = 0.01, c = 1
and changing b to have the same χ values as the previous
simulations; the results are exactly the same as those of Fig. 3
where the interface width increases as parameter b rises.

It is worth mentioning that by changing χ from 200 to
2.2 the interface is perfectly predicted by (22); however, for
the case of χ = 0.8 a very thin interface is partly predicted
from vapor phase to liquid phase (see Fig. 3). This can be
understood by checking the right-hand side of Eq. (22), which
is the Maxwell construction integral and is always negative
for ρv < ρ < ρl . In order to have a meaningful gradient of
density, the left-hand side of Eq. (22) should be negative
throughout the given density interval. Therefore, in the case
of χ = 0.8, we cannot predict interface shape near the liquid
phase as the left-hand side of Eq. (22) becomes positive there.
Moreover, slight oscillations of density near the liquid phase
of the simulated system are observed. We only experienced
the partial prediction of the interface in very sharp and thin
interfaces.

In χ another parameter, c, being the numerical resolution
to capture the physical details, makes a contribution to the
interface width. For the pseudopotential LB models, it is
predicted that the interface width is varied directly as the lattice
scaled by means of c. This behavior might not be of interest as
the interface width of the fluids such as liquid water with its
vapor is in the scope of molecular scale and LB simulations
aim at microscale phenomena; therefore with scaling an LB

FIG. 4. The phase interface preserves its shape through lattice
scaling by keeping χ = 20. The theoretical profiles are obtained from
Eq. (22).

simulation domain in the interval of microscale, a change in
the interface shape should not be seen. The results shown in
Fig. 4 are those from the simulations with the domain being
scaled at c = 0.1, 1, 10 but parameters a and b are utilized
to keep χ = 20. It is demonstrated that the same interface
shape is obtained. The simulation results are supported by the
prediction of theory (39).

It should be noted the VW, CS, and PR EOSs have the
same behavior as the SRK EOS and a normalized governing
equation similar to (39) for the phase interface. Therefore,
from the simulations and theoretical analysis, the parameter χ

is identified as the only parameter that governs the interface
width for the selected cubic EOSs.

In addition to the discussion on the effects of EOS
parameters a and b, and lattice spacing parameter c on
the numerical simulations of the phase interface, it is also
important to investigate the effects of those parameters on
the VLE state of interest. Such a discussion, in our previous
study [34], through examining the single pseudopotential
scheme recovering cubic EOSs showed that the mechanical
stability condition is remarkably sensitive to the changes in
these parameters. Figure 5 shows the errors for vapor density
deviation of simulations, using the MPI scheme proposed in
this study, from Maxwell construction due to the change of a,
b, and c. It can be seen from Fig. 5 that error in simulating
vapor density is increasing with the increase of lattice scaling
parameter, c, increase of a, and decrease of b. However, all
the simulations errors are less than 0.6% for the SRK EOS
at TR = 0.80 which means at relatively low density ratios
(high temperatures) the thermodynamic state is satisfactorily
independent of the change of those parameters.

D. Liquid-vapor saturation curves

To further test the proposed scheme, VLE systems are
simulated from a temperature near the critical point to
the lowest stable temperature for planar interfaces whose
widths are controlled via parameter χ . As the interface width
theoretically goes to infinity in the case of diffuse interfaces,
the nondimensional interface width is defined as l2% =
|xρ=0.98ρl

− xρ=1.02ρv
|/�x. The one-dimensional domain is
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FIG. 5. Error in vapor density due to change of EOS parameters
a and b, and lattice spacing parameter c. The SRK EOS at TR = 0.80
is applied.

long enough to make sure the vapor and liquid densities
reach plateau profiles. The VW, CS, SRK, and PR EOSs
are examined in the sense that parameter χ is changed
at each temperature to have constant interface widths of
l2% = 20, 30, 60. The χ values are listed in Appendix B.

Figure 6 compares the MPI simulations of VLEs with the
predictions of the Maxwell construction. It can be found that
all EOSs almost perfectly simulate the liquid phase. Regarding
the vapor branch, in all cases we have satisfactory results
at high temperatures and different interface widths. In the
case of short interface width l2% = 20 the increase of error is
more obvious by decreasing temperature. Widening interface
width l2% = 30, 60, the error significantly decreases, which
is more apparent at lower temperatures. Therefore, at lower
temperatures a higher-resolution interface is necessary for the
MPI to be in accordance with the thermodynamic requirement.

The errors due to deviation of the vapor and liquid branch
from the Maxwell construction are plotted vs temperature for
the selected EOSs in Figs. 7(a) and 7(b). The errors of the liquid
branch for all cases are less than 0.01% and generally decrease
to a local minimum and, after a rise, decrease continuously
again by decrease of temperature. In general, the errors at
the liquid branch decrease as the interface widens at a given
temperature; however, there are some exceptions such as SRK
EOS at TR = 0.80. With regard to the vapor branch shown
in Fig. 7(a), in all cases the error increases but faces a
fall immediately and then again increases limitlessly when
temperature recedes from the critical point. Widening the
interface, the vapor branch error can be effectively reduced
but it might not be very helpful near the local minimum errors,

FIG. 6. MPI results at different interface widths l2% = 20, 30, 60 in comparison with Maxwell construction curves for
(a) VW, (b) CS, (c) SRK, and (d) PR EOSs.
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FIG. 7. The errors due to deviation of MPI results, the saturation densities, from Maxwell construction predictions at interface widths
l2% = 20, 30, 60 for the VW, CS, SRK, and PR EOSs: (a) the vapor branch errors vs reduced temperature, (b) the liquid branch errorsvs
reduced temperature, (c) the vapor branch errors vs density ratio, and (d) the liquid branch errors vs density ratio. The inset graphs are for
clarifying some regions of the graphs. All graphs have the same symbol legend which is shown in graph (b).

such as for VW and CS at TR = 0.7, and SRK and PR at
TR = 0.8.

When checking the liquid branch error vs density ratio in
Fig. 7(d) the local minimum errors can be identified, which are
located around a density ratio of 20 for all EOSs (except PR
EOS) at l2% = 20, 30. The local minimum errors move to a
density ratio of 500 when interface width is broadened to l2% =
60. Concerning the vapor branch error shown in Fig. 7(d), for
all cases the local minimum errors are at a density ratio around
25. Beyond the density ratio of 50, regardless of the type of
EOS, the errors are only a function of the interface width whose
increase reduces the error significantly.

Considering Eqs. (39) and (22), and knowing different
EOSs having different VW-loop shape, the geometrical shape
(or ∂xρ) of the interfaces should vary even at the same interface
width. Therefore, we expect the different EOSs at the same
density ratios and interface widths to show relatively different
behavior.

The current MPI scheme is basically constructed on the
previous idea [34]. However, from the stability viewpoint,
in comparison to that, the current scheme provides an in-
dependent parameter χ , to control the interface width which

helps us straightforwardly enhance the stability of simulations.
Therefore, the maximum achievable density ratio from order
10 in the previous paper could successfully reach to 106.

E. Circular droplet

MPI drops are analyzed regarding measuring surface
tension, spurious velocities, isotropy, dynamic behavior, and
assessing the stability dependent to the relaxation time.

To understand the effect of χ on surface tension, the SRK
EOS is considered. Therefore, by substituting the SRK MPI
parts from Table I into Eq. (23) and normalizing surface tension
by σR = σ/(cpc), we obtain

σR =
∫ ρl

ρv

−5

24ρR

(
c
dρR

dx

)[
−�a

�b

bc2

a
− 3α

�a

�b

+ 3TR

(1 − 3�bρR)3 + �a

�b

3α

(1 + 3�bρR)3

]
(dρR), (40)

where K1 = K2 = K3 = −5 is used. All terms depend only on
SRK constant parameters except c dρR/dx and the first term
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FIG. 8. Laplace test for MPI SRK drops at TR = 0.80. The
interface width is widened by increasing χ = 2.5, 10, 25. The solid
lines show the theoretical predictions of Eq. (40).

inside the brackets which is a function of χ = bc2/a. In fact,
while widening the interface, χ helps attraction interaction
forces around the interface.

We make use of the Laplace test to validate Eq. (40).
For measuring the surface tension in the Laplace test, it is
necessary to find the accurate radius of drops in simulations.
We consider a domain where density at the center (r = 0) is ρl

and it continuously declines to reach ρv at r = R; we assume
it is equivalent to a domain where a drop of radius Rm with a
homogeneous density of ρl is immediately in contact with a
vapor phase with density ρv . By use of the mass equality, we

obtain the mean radius R2
m = 2

∫ R

0 ρrdr−ρvR
2

ρl−ρv
. The simulations

are run in a 300 × 300 domain and SRK EOS at TR = 0.80
is employed. Figure 8 shows the results of the Laplace test
for drops with different radii. The surface tensions of the
drops with interface widths χ = 2.5, 10, 25 are satisfactorily
predicted by Eq. (40). As can be seen, surface tension increases
with a slow rate proportional to χ ; thus we advise χ is better
used for adjusting the interface width rather than tuning surface
tension, which will be investigated in the future.

As had been discussed in the previous study [34], the
MPI scheme reduces the spurious velocities as the MPI is
thermodynamically consistent. In this study, the effects of
interface width, which can be adjusted freely by χ , on the
generation of spurious velocity are further discussed. Two
two-dimensional (2D) drops with a density ratio of 1000
are set up using CS EOS at TR = 0.486 and VW EOS at
TR = 0.37. Similar to Ref. [33], we define the distortion
ratio DR45 = |1 − r0/r45| where r0 is the radius of drop
along the horizontal line (0◦) and r45 is that at 45◦. The
interface shapes are created by setting χ = 200, 20, 4 for
both the VW and CS drops which are demonstrated in Fig. 9
where the interface becomes sharper with the decrease of
χ . The maximum spurious velocities for both VW and CS
EOSs drops increase about 1000 times in order of magnitude.
The drops’ distortions are quite negligible as CS drops
give DR45 = 1.6 × 10−4, 1.6 × 10−3, 1.7 × 10−3 shown in
Figs. 9(d)–9(f) respectively, and VW drops give DR45 =
3.3 × 10−4, 1.1 × 10−3, 7 × 10−3 shown in Figs. 9(a)–9(c).

Simulations are run for moving circular drops to study the
dynamic behavior and assess the Galilean invariance of the
proposed scheme using SRK EOS. For all three cases, the MPI

FIG. 9. Effect of interface shortening on spurious velocities and isotropy of the VW drop at (a) χ = 200, (b) χ = 20, and (c) χ = 4 and
CS drop at (d) χ = 200, (e) χ = 20, and (f) χ = 4.
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FIG. 10. Testing Galilean invariance of an MPI SRK drop at
different diagonal bulk velocities (a) |ub| = 0, (b) |ub|/c = 7.071 ×
10−2, (c) |ub|/c = 1.414 × 10−1, and (d) |ub|/c = 2.818 × 10−1.

SRK drop is set with initial density ratio of approximately 1000
at a thermodynamic state of TR = 0.59, pR = 5.762 × 10−3,
ρR

l = 3.177, and ρR
v = 3.288 × 10−3. The SRK parameters

are set as a = 0.01 and b = 0.2 which leads to χ = 20. With
radius r = 30�x the drop is initialized in the center of a two-
dimensional domain with 200 × 200 nodes and the periodic
boundary condition is applied over both horizontal and vertical
directions. To access the Galilean invariance, the distortion
ratio is defined, DR90, as the ratio of longest diameter of a
drop to the diameter perpendicular to the longest one [48]. The
MPI SRK drop experiences three stages: the rest, acceleration,
and the long rest for each case run. In the beginning, the drop
is kept to stay at the rest state for 5 × 104 steps to ensure it
reaches the equilibrium shape. Then the drop is accelerated
diagonally by ax = ay = 0.0001 for time period 500�t (case
1), 1000�t (case 2), and 2000�t (case 3), respectively. The
accelerated drop is then released for 5 × 105 time steps, for all
three cases, to remove the transit effects and enable the drop
along with its surroundings to move diagonally at constant
velocities. The simulation results are discussed as follows.

At equilibrium state, the MPI SRK drop keeps a perfect
circle drop with DR90 = 1.0 and has density of ρR

l = 3.195
in contact with vapor density of ρR

v = 5.505 × 10−3. The MPI
drop and the pattern of its spurious velocities are shown in
Fig. 10(a).

As the drop and its surroundings reach higher velocities,
the shape eventually distorted from the circle to DR90 = 1.004
(case 1), DR90 = 1.018 (case 2), to DR90 = 1.087 (case 3),
which is demonstrated in Figs. 10(b)–10(d). The changes in
densities are neglectfully small, in comparison with those of
the equilibrium case, for all cases smaller than 0.03% for
liquid and 3.2% for vapor. The flow pattern, however, is more
sensitive to the changes in bulk velocity whose increase from
|ub|/c = 7.071 × 10−2 (case 1) to |ub|/c = 1.414 × 10−1

(case 2) and then to |ub|/c = 2.818 × 10−1 (case 3) causes
the flow to deviate more from the uniform distribution.

TABLE II. The minimum possible relaxation time of the MPI
SRK drop at different temperatures and interface widths. The interface
width is measured from the flat interface simulations and can be
obtained by setting χ at a given temperature found in Appendix B.

TR Interface width (�x) τmin

0.60 20 0.562
30 0.546
60 0.523

0.75 20 0.526
30 0.518
60 0.514

0.90 20 0.514
30 0.514
60 0.513

Considering case 3, which is a critical case demonstrated
in Fig. 10(d), the drop is disfigured noticeably and the system
highly violates Galilean invariance as the fluid is unable to
damp spatial velocity differences by time. This means that the
proposed MPI scheme is well Galilean invariant for |u|/c <

0.15 but violates Galilean invariance beyond this ratio.
As had been discussed in [49–51], the mechanism of viola-

tion of Galilean invariance for LBM is due to the insufficiency
of the equilibrium distribution function, which is Maxwellian
expansion to the second order at constant temperature. It
introduces the cubic velocity term, τ∇ · (ρuuu), to the viscous
momentum flux of the LB system. In this study, the equilibrium
distribution function is employed without any modification;
therefore the term, τ∇ · (ρuuu), is the only term which violates
the second-order Galilean invariance. If |u|2/θ or |u|/c is very
small the cubic velocity term is negligible in comparison with
the Navier-Stokes viscous term. That is why when the bulk
velocity is increased, the spatial velocity differences are not
dissipated by time and the drop shape is distorted.

The MPI SRK drop is tested to obtain its minimum stable
relaxation time τmin. The drop, at different temperatures and
interface widths, is located at the center of the computational
domain. The relaxation time is set at τ = 1 initially; after
the drop reaches its equilibrium state, τ is gradually, and in
a quasiequilibrium process, decreased to achieve new lower
viscose systems. The process is monitored to record the point
before the system crashes at which the relaxation time is taken
as the minimum possible relaxation time τmin. As shown in
Table II, the decrease of the temperature and interface width
weaken the τ -related stability.

IV. CONCLUSION

To summarize, the MPI scheme is extended, which is
based on the original SC model, in order to eliminate the
numerical errors as a result of the discretization effect of
the lattice when cubic equations of state are implemented. The
thermodynamic consistency condition has been made more
flexible by modifying the forcing scheme by which in addition
to cubic EOSs other types such as a virial EOS can be employed
analytically and consistently in pseudopotential models. In
such a way, different pseudopotentials can be identified by the
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TABLE III. The MPI forces parameters which reproduce virial
and VW-like EOSs in the LB system.

EOS j th pseudopotential Gj εj λj Cj

Virial 1 − 2
3 + 2T

c2 2 1
2 0

j > 1 Bj
2
c2

2
j

j

2 0

VW-like 1 − 2
3 2 1

2 0

2 T 2
c2 2 1

2 −b

3 − a

2
√

u2+w2
2 1

2 u − √
u2 + w2

4 a

2
√

u2+w2
2 1

2 u + √
u2 + w2

attraction and repulsion parts of cubic EOSs without the need
for curve fitting or trial and error methods.

The most basic and popular cubic EOSs are adopted
including the VW, CS, PR, and SRK to demonstrate the validity
of the proposed MPI scheme by performing a set of simulations
of planar interfaces. For all the cases the normal component of
the pressure tensor is satisfactorily constant along the flat
interfaces.

The LB system is analyzed in a reduced format which
can be compared with real physical systems. The equilibrium
interface shapes are predicted from mechanical stability
condition and found in good agreement with the simulations.
Interface width could be systematically adjusted with the aid
of the EOS parameters, while they can positively affect the
accuracy of the VLE densities. Such a feature helps to control
the interface width in the case of grid refinements.

The proposed MPI scheme provides stable two-phase
systems even for very high density ratios. The liquid branch of
the Maxwell construction curve is almost perfectly achieved.

Regarding the vapor branch, the errors are negligible and small
at low and midrange density ratios (less than 1000) but, at
higher density ratios, exponentially grow. The errors can be
suppressed by broadening the interface width, i.e., increasing
the interface resolution.

We have shown that the isotropy of the circular drops
are satisfactorily preserved in the process of shortening the
interface width. An MPI SRK drop is moved diagonally in
a periodic domain which showed its Galilean invariant at
relatively low bulk velocities in addition to being stable. The
minimum available relaxation time for the stationary MPI drop
is obtained which increases with the decrease of temperature
and interface width.

APPENDIX A

We illustrate that the virial equation and the general form
of the VW-like EOSs can be incorporated into the MPI-LB.
The virial EOS is defined based on the theories of statistical
mechanics as an unlimited series of molar density [47],

p = ρT + B2ρ
2 + B3ρ

3 + · · · , (A1)

where B2, B3, etc., are functions of temperature only, and are
the second, third, and so on virial coefficients. The virial EOS
is well in conformity with the MPI EOS with the corresponding
parameters listed in Table III.

Almost all VW-type EOSs, such as Schmidt-Wenzel
EOS [52] and Patel-Teja EOS [53], can be expressed in the
general form of [47]

p = ρT

1 − bρ
− aρ2

1 + 2uρ − w2ρ2
, (A2)

where a, u, and w do not depend on density but, possibly,
other parameters such as critical point specifications and the
acentric factor. After some lengthy but simple algebra we can

TABLE IV. The χ parameter values to obtain interface widths of l2% = 20, 30, 60 with VW and CS EOSs at different temperatures.

EOS VW CS

TR χ for l2% = 20 χ for l2% = 30 χ for l2% = 60 χ for l2% = 20 χ for l2% = 30 χ for l2% = 60

0.95 5.26 11.76 46.95 7.35 16.39 65.57

0.90 8.23 18.35 73.26 11.49 25.64 102.04

0.85 10.42 23.26 92.59 14.49 32.15 128.21

0.80 12.05 26.81 106.38 16.53 36.70 145.99

0.75 13.16 29.28 116.28 17.86 39.45 156.25

0.70 13.79 30.72 121.95 18.35 40.57 161.29

0.65 14.08 31.20 123.46 18.18 40.08 158.73

0.60 13.89 30.82 121.95 17.09 38.46 150.38

0.55 13.33 29.54 116.96 16.39 36.04 142.86

0.50 12.58 27.10 106.95 14.71 32.36 120.48

0.45 11.83 24.63 96.15 12.99 28.57 111.11

0.40 10.20 21.62 84.03 12.20 25.97 92.59

0.35 9.09 20.10 74.63 10.81 22.47 68.97

0.30 7.69 15.38 60.98 9.30 18.18 66.67

0.25 7.87 14.71 52.63
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TABLE V. The χ parameter values to obtain interface widths of l2% = 20, 30, 60 with SRK and PR EOSs at different temperatures.

EOS SRK PR

TR χ for l2% = 20 χ for l2% = 30 χ for l2% = 60 χ for l2% = 20 χ for l2% = 30 χ for l2% = 60

0.95 4.58 10.20 40.65 3.62 8.10 32.15
0.90 7.19 16.00 63.49 5.71 12.74 50.51
0.85 8.97 20.00 79.05 7.19 16.00 63.29
0.80 10.10 22.32 88.50 8.16 18.02 71.68
0.75 10.58 23.36 92.59 8.62 19.05 75.47
0.70 10.58 23.34 89.69 8.66 19.05 75.47
0.65 10.15 21.88 83.33 8.37 18.35 68.97
0.60 9.52 20.20 83.33 7.75 16.95 66.67
0.55 8.70 19.05 74.07 7.55 14.60 62.50
0.50 8.33 16.95 64.52 7.27 14.60 57.14
0.45 7.14 15.04 57.14 6.67 12.50 45.45
0.40 6.45 12.50 50.00 5.88 11.43 38.46

rewrite the EOS as

p = ρT

1 − bρ
− a

2
√

u2 + w2

ρ

[1 + (u − √
u2 + w2)ρ]

+ a

2
√

u2 + w2

ρ

[1 + (u + √
u2 + w2)ρ]

. (A3)

Now, we can straightforwardly set the MPI forces to consistently implement the general form of VW-like EOSs as shown in
Table III.

APPENDIX B

Here, for interested readers, values of the χ parameter used in reproducing the Maxwell construction curves at different
interface widths demonstrated in Sec. III D are shown in Tables IV and V.
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[38] V. E. Ambruş and V. Sofonea, Phys. Rev. E 89, 041301 (2014).
[39] S. Khajepor, M. Dewar, J. Wen, and B. Chen, Proc. Appl. Math.

Mech. 14, 679 (2014).
[40] X. Shan, Phys. Rev. E 73, 047701 (2006).
[41] G. Falcucci, S. Chibbaro, S. Succi, X. Shan, and H. Chen,

Europhys. Lett. 82, 24005 (2008).
[42] S. Chibbaro, G. Falcucci, G. Chiatti, H. Chen, X. Shan, and S.

Succi, Phys. Rev. E 77, 036705 (2008).
[43] G. Falcucci, S. Ubertini, and S. Succi, Soft Matter 6, 4357

(2010).
[44] G. Soave, Fluid Phase Equilib. 82, 345 (1993).
[45] G. Soave, Chem. Eng. Sci. 27, 1197 (1972).

[46] D.-Y. Peng and D. B. Robinson, Indust. Eng. Chem. Fundam.
15, 59 (1976).

[47] A. Danesh, PVT and Phase Behaviour of Petroleum Reservoir
Fluids, Developments in Petroleum Science Vol. 47 (Elsevier,
Amsterdam, 1998).

[48] N. Sellami, M. Dewar, H. Stahl, and B. Chen, Int. J. Greenhouse
Gas Control 38, 44 (2015).

[49] Y. H. Qian and S. A. Orszag, Europhys. Lett. 21, 255 (1993).
[50] A. J. Wagner and Q. Li, Physica A (Amsterdam) 362, 105 (2006).
[51] X. Nie, X. Shan, and H. Chen, Europhys. Lett. 81, 34005 (2008).
[52] G. Schmidt and H. Wenzel, Chem. Eng. Sci. 35, 1503 (1980).
[53] N. C. Patel and A. S. Teja, Chem. Eng. Sci. 37, 463 (1982).

013303-15

http://dx.doi.org/10.1103/PhysRevE.89.041301
http://dx.doi.org/10.1103/PhysRevE.89.041301
http://dx.doi.org/10.1103/PhysRevE.89.041301
http://dx.doi.org/10.1103/PhysRevE.89.041301
http://dx.doi.org/10.1002/pamm.201410323
http://dx.doi.org/10.1002/pamm.201410323
http://dx.doi.org/10.1002/pamm.201410323
http://dx.doi.org/10.1002/pamm.201410323
http://dx.doi.org/10.1103/PhysRevE.73.047701
http://dx.doi.org/10.1103/PhysRevE.73.047701
http://dx.doi.org/10.1103/PhysRevE.73.047701
http://dx.doi.org/10.1103/PhysRevE.73.047701
http://dx.doi.org/10.1209/0295-5075/82/24005
http://dx.doi.org/10.1209/0295-5075/82/24005
http://dx.doi.org/10.1209/0295-5075/82/24005
http://dx.doi.org/10.1209/0295-5075/82/24005
http://dx.doi.org/10.1103/PhysRevE.77.036705
http://dx.doi.org/10.1103/PhysRevE.77.036705
http://dx.doi.org/10.1103/PhysRevE.77.036705
http://dx.doi.org/10.1103/PhysRevE.77.036705
http://dx.doi.org/10.1039/c002974b
http://dx.doi.org/10.1039/c002974b
http://dx.doi.org/10.1039/c002974b
http://dx.doi.org/10.1039/c002974b
http://dx.doi.org/10.1016/0378-3812(93)87158-W
http://dx.doi.org/10.1016/0378-3812(93)87158-W
http://dx.doi.org/10.1016/0378-3812(93)87158-W
http://dx.doi.org/10.1016/0378-3812(93)87158-W
http://dx.doi.org/10.1016/0009-2509(72)80096-4
http://dx.doi.org/10.1016/0009-2509(72)80096-4
http://dx.doi.org/10.1016/0009-2509(72)80096-4
http://dx.doi.org/10.1016/0009-2509(72)80096-4
http://dx.doi.org/10.1021/i160057a011
http://dx.doi.org/10.1021/i160057a011
http://dx.doi.org/10.1021/i160057a011
http://dx.doi.org/10.1021/i160057a011
http://dx.doi.org/10.1016/j.ijggc.2015.02.011
http://dx.doi.org/10.1016/j.ijggc.2015.02.011
http://dx.doi.org/10.1016/j.ijggc.2015.02.011
http://dx.doi.org/10.1016/j.ijggc.2015.02.011
http://dx.doi.org/10.1209/0295-5075/21/3/001
http://dx.doi.org/10.1209/0295-5075/21/3/001
http://dx.doi.org/10.1209/0295-5075/21/3/001
http://dx.doi.org/10.1209/0295-5075/21/3/001
http://dx.doi.org/10.1016/j.physa.2005.09.030
http://dx.doi.org/10.1016/j.physa.2005.09.030
http://dx.doi.org/10.1016/j.physa.2005.09.030
http://dx.doi.org/10.1016/j.physa.2005.09.030
http://dx.doi.org/10.1209/0295-5075/81/34005
http://dx.doi.org/10.1209/0295-5075/81/34005
http://dx.doi.org/10.1209/0295-5075/81/34005
http://dx.doi.org/10.1209/0295-5075/81/34005
http://dx.doi.org/10.1016/0009-2509(80)80044-3
http://dx.doi.org/10.1016/0009-2509(80)80044-3
http://dx.doi.org/10.1016/0009-2509(80)80044-3
http://dx.doi.org/10.1016/0009-2509(80)80044-3
http://dx.doi.org/10.1016/0009-2509(82)80099-7
http://dx.doi.org/10.1016/0009-2509(82)80099-7
http://dx.doi.org/10.1016/0009-2509(82)80099-7
http://dx.doi.org/10.1016/0009-2509(82)80099-7



