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Abstract 34 

In this work, the hydrate phase boundary of a gas mixture consisted of 29.9 mol% CH4 and 70.1 mol% 35 

CO2 is experimentally studied in the presence of 1 to 7 mol% of an aqueous acetone solution. Results 36 

indicated that acetone acts as a weak inhibitor on this gas mixture. In addition, enthalpy of hydrate 37 

dissociation for this system is reported. Based on the results, the inhibition effect of acetone is found 38 

to be decreasing with the increase of acetone concentration while the enthalpy of hydrate dissociation 39 

is increasing with the increase of acetone concentration within the studied range. 40 

Keywords: Hydrate phase boundary; Acetone; Carbon dioxide-Methane Mixed Gas; Inhibitor; Enthalpy of 41 
dissociation 42 

1. Introduction 43 

Gas hydrates are crystalline complex structures consist of hydrated polyhedron lattice, which 44 

acts as a host and entrapped guest molecules. Guest molecules, generally, may carry strong 45 

hydrophobic characteristics and none or weak polarity, which leading to immiscibility with water [1]. 46 

Still, some water soluble hydrocarbon can form clathrate hydrate due to minimization of Gibbs free 47 

energy of the guest and host molecules at high pressure and relatively low temperatures [2].  48 

Increasing energy demand across the globe in the 21st century makes non-conventional fuel 49 

resources to become economically interesting. This includes the development of high carbon dioxide 50 

(CO2) gas reservoir where CO2 content can be more than 50 mol% of the gas originally in place. For 51 

example,  K5 field located offshore of Sarawak, Malaysia with 25.65 trillion SCF gas reserve, shows 52 

evidence of bearing more than 70 mol% CO2.[3] In addition, biogas and landfill gas that can be 53 

classified as renewable energy resources, mostly consist of 45 to 60 vol% methane (CH4) and 40-60 54 

vol% CO2 with traces of some other gases [4, 5]. Economically, the high CO2 gas requires an efficient 55 

CO2 separation module to make these resources marketable or even suitable as feedstock for 56 

manufacturing processes [3]. On the other hand, international regulations, such as Kyoto Protocol, 57 

emphasize on the reduction of greenhouse gases emission, particularly CO2, to the atmosphere [6, 7]. 58 

Therefore, both economic and environmental aspects are pointing to a need for a clean CO2 59 

separation process prior to the utilization of these new resources.  60 

The common gas separation technologies such as chemical absorption, adsorption, cryogenic 61 

distillation and membrane separation, are incapable, both economically and technically, to capture 62 

the large amounts of CO2 from gas streams. Some critical problems are associated with large energy 63 

consumption, corrosion, foaminess, and low capacity. For example, estimations showed that the 64 

deployment of absorption capturing technology in flue gas cleaning from a modern power plant can 65 

reduce the thermal efficiency from approximately 45% to approximately 35%. [8]. Therefore, 66 
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development of new and existing capturing technologies should lower the energy requirements in 67 

order to minimize the overall costs as well as environmental impacts  [9].  68 

Utilization of gas hydrate as a separation technology is one of the alternatives. Separation of CO2 69 

from N2 by forming gas hydrate in the presence of tetrahydrofuran (THF) was reported by Kang and 70 

Lee [10]. According to their investigation, utilization of hydrate technology is less energy intensive 71 

compared to common capturing process due to the moderate temperature condition of 273 to 283 K. 72 

In addition, using THF can decrease hydrate formation pressure and consequently decrease the 73 

overall energy consumption for the process [10]. There are several publications in the open literature 74 

that suggest hydrate formation process for separation of CO2 from N2, H2 and some other gases. 75 

Eslamimanesh et al. (2012) presented a comprehensive survey of experimental studies dealing with 76 

separation of a gases by hydrate formation technology [11]. However, separation of CO2 from CH4 77 

received less attention in these studies. Seo et al. at (2000) showed that separation of CO2 from CH4 is 78 

possible through hydrate formation process [12].  Both CO2 and CH4 are good gas hydrate former and 79 

their gas hydrate phase boundaries are relatively close to each other. This makes their separation 80 

through hydrate formation process more challenging. A suitable promoter to enhance the separation 81 

may be the key. THF as the most famous promoter is shown good promotion effects for both gases 82 

[13, 14]. Consequently, it cannot be a good candidate to enhance their separation. 83 

 Acetone, as a common solvent, can be a good candidate for this purpose. Acetone has shown a 84 

thermodynamic promotion effect on methane hydrate formation at low concentration [14, 15]. The 85 

promotion effects of acetone on methane hydrate is first observed by Ng and Robinson when they 86 

were looking for a new inhibitor for methane hydrate [16].  Acetone is a polar compound that is liquid 87 

at room temperature. At first glance, acetone seems to be an inhibitor, as it has many characteristics in 88 

common with alcohols. But, at low concentrations, it thermodynamically promotes the methane 89 

hydrate formation condition. The maximum promotion effect was observed at around 6 mol% 90 

concentration[17]. This promotion effect is converted to inhibition when acetone concentration is 91 

higher than 30 mol% [15].  On the other hand, acetone showed thermodynamic inhibition effect for 92 

carbon dioxide hydrate at all concentration [18].  Therefore, as acetone has different effects on pure 93 

CH4 and CO2 hydrates at low concentrations, it may show some selectivity on separation of these 94 

gases by hydrate formation process. Yet, prior to study the separation efficiency, the equilibrium 95 

phase boundary for such system should be studied and analyzed first. Acetone and water are well 96 

known for non-ideal behaviors and hence predictions of hydrate formation in such system through 97 

thermodynamic modeling have a considerable error. Thus, in this work, the phase boundary of gas 98 

hydrate for a system of water + acetone + CO2 + CH4 is experimentally measured and reported.  99 

 100 

 101 
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2. Experimental Section 103 

2.1. Material 104 

Acetone with purity of 99.8% was purchased from Merck Millipore. A pre-mixed CH4 and CO2 105 

gas mixture was purchased from AirProduct Singapore Pte. Ltd. The gas mixture ratio as specified by 106 

the supplier is 29.99 mole % CH4 and 70.01 mol% CO2. This CO2 to CH4 ratio is selected in order to 107 

simulate the K5 field gas composition and the pre-mixed gas was used without any further 108 

purification. Deionized water was used to prepare aqueous acetone solutions.  109 

 110 

2.2. Apparatus 111 

A high-pressure cell, manufactured by Dixson FA engineering Sdn. Bhd is used for the 112 

measurement of gas hydrate phase boundary. The schematic of the experimental rig is depicted in 113 

Figure 1. The equilibrium cell is made of stainless still and has an internal volume of 500 ml. The cell 114 

is equipped with a PT-100 platinum thermometer with the accuracy of ±0.15 °C. A GP-M250 115 

Keyence pressure transducer with the accuracy of ±1.0% full span is used to measure the pressure 116 

inside the cell. In addition, a magnetic stirring system consisted of a 2-bladed pitch impeller and a 400 117 

rpm motor is used to agitate liquid in the cell. The cell is immersed inside a thermostatic bath. The 118 

bath temperature is controlling by a PID controller with an accuracy of ±0.3 °C. In addition, the bath 119 

temperature set point is programmable through data acquisition system.  Pressure and temperature 120 

data is recorded every second.  121 

INSERT FIGURE 1  122 

Figure 1. Simplified schematic of experimental rig. 123 

 124 

2.3. Procedure 125 

The -hydrate equilibrium points were measured by employing an isochoric method. The cell was 126 

washed using distilled water and dried. The extra air was removed from the cell using a vacuum 127 

pump. 100 cm3 of aqueous acetone solution at the desired concentration was fed into the cell through 128 

liquid injection point and gas was purged three times to ensure complete removal of air from the 129 

system. Then, gas was introduced to the cell until the desired pressure is achieved at room 130 

temperature. The stirring system was turned on and then the temperature was decreased to 273 K. 131 

System was kept at this temperature for 4 hrs to ensure gas hydrate formation. After that, the system 132 

was warmed stepwise to 293 K. At each step, the temperature was held constant for 30 min to 240 133 

min, according to the set point temperature and expected equilibrium temperature. The hydrate 134 

dissociation condition was determined through P-T diagram, as described by  Tohidi et al.[19].  135 
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To produce the phase boundary for CO2 + CH4 + water + acetone system, four different acetone 136 

concentrations was studied at three different pressures. In addition, to validate the accuracy of the 137 

experimental setup, methane hydrate phase boundary in the presence of deionized water at three 138 

different pressures was measured and compared with literature data.  139 

3. Results and Discussion 140 

3.1. Validation of the new setup 141 

The pressure-temperature profile for CH4-water system as a sample of the experimental 142 

procedure followed in this work is depicted in Figure 2. The cooling step is set to be fast to shorten the 143 

experimental time. The rapid pressure drop is due to the hydrate formation. The heating part consisted 144 

of a fast heating step following by several slow steps. The location of the change in the P-T slope, as 145 

shown in Figure 2, is taken as the hydrate equilibrium point. The methane hydrate equilibrium point 146 

shown in Figure 2 is 5.808 MPa and 281.35 K. In Figure 3, CH4-water equilibrium data points are 147 

included. As shown in this figure, the measured data coincides with pure methane hydrate data 148 

reported by Nakamura et al. [20]. 149 

 150 

INSERT FIGURE 2  151 

Figure 2. Pressure-Temperature profile measured during CH4 + water experiment. 152 

 153 
 154 

3.2.  CH4 + CO2 + acetone + water hydrates Equilibrium data 155 

The equilibrium points of CH4 + CO2 + acetone + water hydrates are tabulated in Table 1. Four 156 

different aqueous solutions of 1, 3, 5 and 7 mol% of acetone are studied in this work. In addition, 157 

blank deionized water is studied as reference condition. For each solution, the hydrate dissociation 158 

condition is reported for three to four different pressures between 2.68 to 5.36 MPa. In each 159 

experiment, the pre-mixed gas mixture of 29.9 mol% CH4 and 70.1 mol% CO2 is used as the feed gas. 160 

In each experiment, based on starting pressure and temperature condition the final concentration of 161 

gas and liquid phase composition is changed. In Table 1, the CO2 and CH4 concentration in gas phase 162 

is calculated by vapor-liquid equilibrium (VLE) calculations at equilibrium pressure and temperature 163 

with utilization of a ϕ-ϕ approach, using Peng-Robinson equation of state [21] with modified 164 

Huron-Vidal (MHV1) mixing rule [22] and UNIFAC activity coefficient model [23] to calculate the 165 

non-ideality of system. 166 

As previously mentioned, the presence of acetone promotes CH4 hydrate formation at 167 

concentrations lower than 7 mol%, while for CO2 hydrate it acts as an inhibitor at all concentrations. 168 

Therefore, for a mixture of CO2 and CH4, its impact is more complicated. The gas hydrate phase 169 

boundaries of CH4, CO2 and mixed CO2/CH4 in the presence of 1 mol% acetone aqueous solution is 170 
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depicted in Figure 3. The data for CH4 + acetone in Figure 3 to 6 are taken from Seo et al. [14] and 171 

Partoon et al.[15] while those for CO2 + acetone data are taken from Maekawa work [18]. In addition, 172 

HLV equilibrium data of CH4 hydrate and CO2 hydrate in pure water are also illustrated in Figure 3 to 173 

provide better observation of acetone impact on gas hydrate phase boundary. The CH4  and CO2 174 

hydrate data are taken from Nakamura et al. [20] and Sabil et al. [24], respectively. 175 

 176 

Table 1. Gas hydrate equilibrium condition for CO2 + CH4 + acetone + water system. The feed gas consisted of 29.9 177 

mol% CH4 and 70.1 mol% CO2. 178 

Acetone 
concentratio
n in solution 

(mol%) 

Equilibrium condition Acetone 
concentration 

in solution 
(mol%) 

Equilibrium condition 

y1CO2 
(mol%) 

y1CH4 

(mol%) T2 (K) P2(MPa) 
yCO2 

(mol%) 
yCH4 

(mol%) T (K) P (MPa) 

0 69.95 34.16 281.35 3.25 3 63.66 35.84 281.65 4.17 

 
69.97 33.36 283.05 4.35 

 
64.13 35.22 282.85 5.13 

 
69.98 32.75 284.65 5.32 

 
64.92 34.37 283.15 5.36 

1 64.84 34.95 279.35 3.22 5 60.70 38.77 280.65 3.32 

 
65.54 34.22 281.1 4.16 

 
61.84 37.54 282.05 4.18 

 
66.31 33.35 282.85 5.28 

 
62.74 36.48 282.95 5.05 

3 62.16 37.44 279.25 2.68 7 57.83 41.57 281.2 3.36 

 
62.78 36.81 279.85 3.19 

 
59.48 39.85 282.25 4.22 

  63.02 36.54 280.75 3.71   60.65 38.52 283.35 5.03 
1 Calculated value  179 
2 Standard combined uncertainties: uc(P) = 0.07 MPa and uc(T) = 0.1 K. 180 

 181 
 182 

INSERT FIGURE 3  183 

Figure 3. HLV phase boundary of CH4, CO2 and their mixture in the presence of 1 mol% acetone solution. 184 

 185 

As shown in Figure 3, the presence of 1 mol% acetone in the solution shifts CO2 hydrate phase 186 

boundary to lower temperature, while it moves CH4 phase boundary to the higher temperature 187 

condition. This resulted in almost the same equilibrium hydrate boundary for CO2, CH4 and 188 

consequently their mixture, as it shown in this figure. By increasing acetone concentration to 3 mol%, 189 

its promotional effect on CH4 hydrate and its inhibition effect on CO2 hydrate is increasing and thus 190 

creating a distinct separation between the two equilibrium lines as depicted in Figure 4.  191 

INSERT FIGURE 4  192 

Figure 4. HLV phase boundary of CH4, CO2 and their mixture in the presence of 3 mol% acetone solution. 193 

 194 

As shown in Figure 4, methane hydrate phase boundary is shifting to a higher temperature in the 195 

presence of 3 mol% acetone. In contrast, the inhibition effect of acetone significantly reduced the 196 
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phase boundary of CO2 hydrate. Therefore, in the presence of 3 mol% of acetone in the aqueous 197 

solution, CH4 hydrate is forming at higher pressure and temperature than that of CO2 hydrate. For the 198 

mixed gas, as expected, the hydrate phase boundary is laying between that of pure gases 199 

hydrate-liquid-vapor (HLV) equilibrium line. However, as the studied gas mixture is rich in CO2, its 200 

HLV line is tending toward CO2 HLV line.  201 

INSERT FIGURE 5  202 

Figure 5. HLV phase boundary of CH4, CO2 and their mixture in the presence of 5 mol% acetone solution. 203 

 204 

A similar trend is observed for a system with 5 mol% aqueous acetone solution as depicted in 205 

Figure 5. Due to the increase in acetone concentration, the gap between methane and carbon dioxide 206 

hydrate phase boundaries is increasing. This behavior can be attributed to cage occupancy 207 

competition. First of all, because of acetone molecular size, the presence of acetone in the system 208 

converts structure sI methane and carbon dioxide hydrate to structure sII, where acetone molecules 209 

are occupying the large cavities of structure sII hydrates. For methane hydrate, sII provides lots of 210 

small cages where methane molecules can best fit inside. In contrast, due to the diameter of 211 

CO2molecules, the  small cages are very tight and although CO2 molecules can also occupy small 212 

cages of both sI and sII, they tend to go into large cavities [1]. This creates a competition between 213 

CO2 and acetone molecules to occupy the larger cavities of sII hydrates. Therefore, for methane 214 

hydrate at low concentrations, where acetone molecules occupy the large cavities and methane 215 

occupies mostly small cavities, acetone promotes the hydrate formation condition while the similar 216 

trend is not observed for the CO2 system. It is interesting to notice that the maximum promotion effect 217 

of acetone in such system is at 6 mol% where they can completely fill all large cavities of sII hydrate. 218 

At higher concentrations, the polar properties of free acetone molecules start to inhibit the hydrate 219 

formation. Thus, at 30 mol% acetone becomes inhibitor for CH4 hydrate [15, 17]. For CO2 hydrates, 220 

the competition between acetone and CO2 molecules along with polar properties of both compounds 221 

convert acetone to an inhibitor at all concentrations.  222 

 223 

INSERT FIGURE 6  224 

Figure 6. HLV phase boundary of CH4, CO2 and their mixture in the presence of 7 mol% acetone solution. 225 

 226 
Figure 6 depicts CH4, CO2 and CO2-CH4 mixture phase boundaries in the presence of 7 mol% of 227 

acetone. At this concentration, the promotion effect of acetone on methane hydrate phase boundary is 228 

started to decrease. This is, however, not directly affected the phase boundary of the CO2/CH4 system.  229 

The impact of acetone on mixed gas hydrate HLV is inhibition for all acetone concentrations. 230 

Figure 7 compares the gas hydrate equilibrium temperature of the mixed gas as a function of acetone 231 

concentration at different pressures. As it shown in this figure, the presence of acetone in the solution 232 
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decreases the mixed gas hydrate equilibrium temperature at constant pressure. This thermodynamic 233 

inhibition effect is a weak function of acetone concentration.  For example, at 5 MPa and 1 mol% of 234 

acetone the hydrate equilibrium temperature is decreased around 2 K. This shift in equilibrium 235 

temperature is 1.4 K at 7 mol% for the same pressure.  236 

  237 

INSERT FIGURE 7  238 

Figure 7. The impact of acetone on mixed gas hydrates equilibrium temperature at constant pressures. 239 

3.3. Enthalpy of dissociation 240 

Another important parameter for industrial application of gas hydrate is enthalpy of dissociation, 241 

∆Hd, which by definition is the amount of heat required for dissociating hydrate crystals to liquid and 242 

gas phases. Gas hydrate enthalpy of dissociation is quantitatively much higher than water enthalpy of 243 

melting. ∆Hd is equal to the amount of heat being released during hydrate formation and it is known 244 

as enthalpy of hydrate formation. This parameter plays essential roles in process design and 245 

optimization. To calculate ∆Hd, Clausius–Clapeyron type equation can be applied:  246 

zR

H

Td

Pd d∆−=
)/1(

ln
           (1) 247 

where, P and T are equilibrium pressure and temperature, z is gas compressibility and R is universal 248 

gas constant [1]. The values for ∆Hd of the studied system are reported in Table 2. At equilibrium 249 

condition, it can be assumed that amount of hydrate phase is negligible and therefore, the system 250 

mainly consisted of liquid and gas phase. However, the studied system is considerably non-ideal in 251 

liquid phase because of acetone’s presence. Therefore, to calculate the gas compressibility, 252 

vapor-liquid equilibrium (VLE) of system at equilibrium pressure and temperature is calculated by a 253 

ϕ-ϕ approach, using Peng-Robinson equation of state [21] with modified Huron-Vidal (MHV1) 254 

mixing rule [22] and UNIFAC activity coefficient model [23] to calculate the non-ideality of system.  255 

 256 
Table 2. Average enthalpy of dissociation for studied systems. 257 

Acetone concentration 
in solution (mol%) 

∆Hd  (kJ/mol) 

0  55.6 
1 69.0 
3 90.7 
5 92.2 
7 94.5 

    258 

As presented in this table, the ∆Hd in the absence of acetone is in the range of sI hydrates value 259 

such as methane and carbon dioxide [25, 26].  ∆Hd is increasing as a result of large cage occupation 260 

by acetone molecules. However, the values are less than common sII hydrate formers such as propane 261 

(∆Hd =129 kJ/mol) [1]. This is shown that both small and large cavities of sII hydrate are filling with 262 
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gases. In addition, increasing the enthalpy of dissociation with acetone concentration indicates that 263 

acetone is occupying large cavities of sII crystals more than CO2 or even CH4. This result is in line 264 

with the impact of acetone on HLV of studied system, as discussed before.  265 

4. Conclusion 266 

The phase boundary of CO2 and CH4 gas mixture in the presence of acetone solution is 267 

experimentally measured in this work. The results indicated that presence of acetone in the solution 268 

has inhibition effects on mixed gas HLV phase boundary. However, this inhibition effects is 269 

decreasing by increasing the acetone concentration in the studied range. In addition, the enthalpy of 270 

dissociation for this system is presented in this work. Enthalpy analysis indicates that chance of 271 

acetone for the occupation of large cavities of sII hydrate is increasing by an increase in acetone 272 

concentration. These findings show that acetone has the potential to act as a selective additive for 273 

separation of CO2 and CH4. The slight inhibition effect of acetone on the equilibrium condition does 274 

not have a large impact on the operational condition of any proposed process for separation of these 275 

gases. In such process, at a certain pressure, the operating temperature should be put well below the 276 

equilibrium temperature to provide enough super-saturation. As a matter of fact, the reduction of 277 

water freezing point as a result of acetone presence in the system can give this opportunity to reduce 278 

the operational temperature to below ice point temperature. However, further study is required to 279 

investigate this application for acetone. Especially, the amount and composition of captured gas by 280 

hydrate at a certain temperature below the hydrate equilibrium temperature should be measured to 281 

find out if acetone can work as a selective additive for separation of CO2 from CH4 or not  282 
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Figure 8. Simplified schematic of experimental rig. 327 

Figure 9. Pressure-Temperature profile measured during CH4 + water experiment. 328 

Figure 10. HLV phase boundary of CH4, CO2 and their mixture in the presence of 1 mol% acetone solution. 329 

Figure 11. HLV phase boundary of CH4, CO2 and their mixture in the presence of 3 mol% acetone solution. 330 

Figure 12. HLV phase boundary of CH4, CO2 and their mixture in the presence of 5 mol% acetone solution. 331 

Figure 13. HLV phase boundary of CH4, CO2 and their mixture in the presence of 7 mol% acetone solution. 332 

Figure 14. The impact of acetone on mixed gas hydrates equilibrium temperature at constant pressures. 333 
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