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Abstract

A theoretical study of surface plasmon polaritons (SPPs) in ultrathin lossy metal films is pre-

sented. The dispersion relation of such films is well known and can be solved numerically to obtain

a combination of long-range (LR-) and short-range (SR-) eigenmodes. In this contribution, a sim-

ple solution for the SR-SPPs is derived. An approximation for the LR- eigenmodes can be found

elsewhere [1]. To validate the approximation, a two dimensional (2D) periodic array of small holes

is studied subsequently. The spectral response of the array is obtained by full-wave simulations

and the results compared with those calculated analytically, showing an excellent agreement for

small holes.
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When an electromagnetic wave impinges on a metallo-dielectric interface, collective charge

oscillations may take place giving rise to bounded modes which propagate along the interface

and are confined to its vicinity: SPPs. When two semi-infinite media are considered, the

dispersion relation of the SPPs is well known [2]. The latter may be drammatically differ-

ent when dealing with finite metal films instead [3]. In this geometry, SPPs can propagate

along both interfaces. For thick films, the modes are degenerate and well described by the

dispersion relation of a single flat interface [2]. Per contra, when the SPPs are separated by

a distance smaller than the attenuation length, they can couple across it. As a result, two

hybridized modes with thickness-dependent dispersion relation and opposite field distribu-

tions appear: the symmetric mode, namely the LR-SPP; and the antysimmetric mode, the

SR-SPP.

In this study we focus in the thin-film case. In this scenario, the aforementioned dispersion

relation shows a complex behaviour and cannot be solved analytically. However, if the

dielectrics at both sides of the film are equal, we can deal with the LR- and SR- modes

separetely. An approximate solution for the LR-SPP dispersion relation can be found in

[1]. Here, we follow a similar approach to derive a closed-form expression of the dispersion

relation of the SR-SPPs and apply it to predict the resonance frequencies of a 2D hole array.

Recently, similar arrays have been suggested as absorbers [4] and polarizers [5], based on

SR-SPPs resonances. Having a closed solution for calculating the frequencies at which the

incident light couples to the SR-SPPs, could simplify and speed-up the design of these and

other applications [6–9].

The geometry under analysis is depicted in the inset of Fig. 1. It consists of a metallic

slab with thickness t and complex dielectric constant ε2 = −εr− iεi sandwiched between two

semi-infinite dielectric media with real permittivities ε1 and ε3. Without loss of generality, we

let the layers be parallel to the x axis resulting in a one dimensional problem. Since surface

plasmon polaritons are transverse magnetic (TM) in nature [2], they are better described

by their in-plane magnetic field component Hy:

Hy = H0f(z) exp[i(ωt− kxx)]ŷ, (1)

where kx = kr − iki is the in-plane complex propagation constant, H0 is a normalization

constant and the propagation is assumed to be in x. The term f(z) describes the z depen-

dance of the magnetic field so that it exponentially decays with increasing distance to the
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interfaces. From the magnetic field, the non-zero electric field components read:

Ex =
i

ωε0ε

∂Hy

∂z
x̂, (2)

Ez = − kx
ωε0ε

Hyẑ. (3)

The tangencial components of the magnetic field must be continuous at the interfaces.

Therefore, f(z) can be written as:

f(z) =


exp[kz1z], z < 0

cosh (kz2z) +
kz1εm
kz2ε1

sinh (kz2z), 0 > z > t[
cosh (kz2t) +

kz1εm
kz2ε1

sin (kz2t)
]

exp[−kz3(z − t)], z > t

(4)

where kzi with i = 1, 2, 3 are the wavenumbers in the different media and fulfil the wave

equation

k2zi = k2x − εik20. (5)

Forcing continuity of the tangential electric component, the following dispersion relation

is obtained[10]

tanh (kz2t)(ε1ε3k
2
z2

+ ε22kz1kz3) = −kz2ε2(ε1kz3 + ε3kz1), (6)

which, assuming that the modes are bound in all media, i.e. <[kzi ] > 0, in the thick film

limit simplifies to that of the single interface

kSPP = k0

√
ε2εj
ε2 + εj

, j = 1, 3. (7)

For a symmetric system, ε1 = ε3, Eq. (6) can be separated in two. One term for symmet-

ric Hy and another one for antisymmetric Hy, which correspond to the LR- and SR-SPP

respectively:

tanh

(
kz2t

2

)
=
−ε2kz1
ε1kz2

, (8)

tanh

(
kz2t

2

)
=
−ε1kz2
ε2kz1

. (9)

An approximate solution for the LR-SPP dispersion relation in the thin film limit was

already derived in [1]. Here, we follow a similar approach to find the solution for the SR-SPP

case. If the thickness is small enough so that |kz2t/2| � 1, Eq. (9) can be simplified to

t

2
∼=
−ε1
ε2kz1

. (10)
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As t is small, kr → k0
√
ε1 and ki << 1, we can define δ = kr − k0

√
ε1 so that

k2z1 = 2k0
√
ε1(δ − iki). (11)

Substituting Eq. (11) in Eq. (10), one obtains

2k0
√
ε1(kr − k0

√
ε1 − iki)−

[
2ε1

(εr + iεi)d

]2
∼= 0, (12)

whose real and imaginary parts can be treated separately to obtain

kr =

[
2ε1

d(ε2r + ε2i )

]2
ε2r − ε2i
2k0
√
ε1

+ k0
√
ε1 (13)

ki =
εrεi
k0
√
ε1

[
2ε1

d(ε2r + ε2i )

]2
(14)
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FIG. 1. (Color online) Dispersion relation of a 20 nm thick silver film. The light line is shown as

a green dotted line. The approximated solutions for the SR- and LR- SPPs are indicated by the

white dashed lines. Inset: Metallic film with thickness t and permittivity ε2 sandwiched between

two semi-infinite dielectric media with permittivities ε1 and ε2.

Fig. 1 shows the dispersion relation of a t = 20 nm silver film surrounded by vacuum

(ε1 = ε3 = 1) in the real k-ω plane. Silver’s complex dielectric permittivity is described

using a Drude’s model

εr = 1−
ω2
p

ω2 + ω2
c

, (15)

εi =
ωc
ω

ω2
p

ω2 + ω2
c

, (16)
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with plasma frequency ωp = 1.37× 1016 rad/s and damping frequency ωc = 2.5× 1014 rad/s.

For the sake of comparison, the approximate solution of the dispersion relation of the LR-

SPP calculated as in [1] together with that of the SR-SPP according to Eqs. (13) and

(14) appear superimposed to that obtained by numerically solving Eq. (6). In the short-

k range, the match is excellent. Notice how the dispersion curves lie at the right of the

light-line. It is widely accepted that SPPs cannot be directly excited by light impinging

from the dielectric because of their larger propagation constant [2]. In order to provide the

additional momentum necessary to excite the SPPs, in Fig. 2(a) we include a square grating

of subwavelength circular apertures with radius r and periodicity a, so that the in-plane

component is |k||| = |(kx ± nG)x̂ + (ky ±mG)ŷ|, where G = 2π/a is the reciprocal lattice

vector. The approximation given by Eqs. (13) and (14) can be used to analitically preddict

the frequencies at which an incoming TM polarized plane wave will couple to the SR-SPPs.

Fig. 2(b) shows the simulated angular absorption spectra for a a = 400 nm grating of

r = 35 nm holes perforated in a t = 20 nm film when a plane wave is impinging from the

ϕ = 0o direction. Absorption is calculated as 1 − T − R, where T and R state for zero-

order transmission and reflection, respectively. The cut-off frequency of the holes can be

calculated as in [11], by simply exchanging the roles of the dielectric and the metal. For

r = 20 nm holes, ωc/ωp = 1.62, which is far above the upper frequency limit considered

here. Therefore, the holes do not support any propagating modes. Thus, it is reasonable to

considered them as weak scatterers. In order to validate the approximation, the SR-SPPs

resonances calculated using Eqs. (13) and (14) are superimposed to the simulations, proving

that the derived solution accurately predicts the absorption peaks not only for normal but

also for oblique illumination. For off-normal illumination, the SR-SPPs hybridize into even

and odd modes which results in the absorption peaks splitting in two. To verify that the

excited SP is indeed the SR-SPP, Fig. 2(c) shows the magnitude of the paralell component

of the magntic field, Hy, normalized to its maximum at ω/ωp = 0.28 and normal incidence.

As expected for the SR-SPPs, Hy exhibits a zero inside the metal film.

The effect of increasing the size of the apertures is investigated in Fig. 3(a). Up to this

point any effects due to the holes, appart from providing a mechanism for the excitation of

SPPs, have been neglected. For larger holes, the simulations increasingly deviate from the

theory as a consequence of the empty lattice approximation limited validity. The red-shift of

the resonances with respect to the predictions has been extensively studied in the literature
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FIG. 2. (Color online) (a) Proposed geometry. The plane-wave impinges from −ẑ. (b) Simulated

angular absorption spectra at the ϕ = 0o plane when. Lighter colors correspond to higher values

of absorption. The superimposed green lines indicate the theoretical resonance frequencies of the

(n,m) order SR-SPPs. (c) Normalized |Hy| distribution at xz plane for ω/ωp = 0.28 and normal

incidence. (b)-(c) t = 20 nm, a = 400 nm and r = 20 nm

[12–14] and is out of the scope of this work.

The thickness of the metal film plays a key role in the dispersion relation of thin films

and thus, in the excitation of the SR-SPPs. Moreover, the approximation derived in this

work is thickness dependent and remains valid as long as |kz2t/2| � 1. Therefore, the

estimated resonances are more accurate for thinner films as confirmed by Fig. 3(b). Above

a critical thickness, the SR and LR-SPPs are uncoupled and converge to the SP mode of

the single interface, Eq. (7), which is not well described by Eqs. (13) and (14). To ilustrate

this, the dispersion relation given by Eq. (6) is solved for a t = 300 nm film. The predicted

normalized propagation constants of the LR- and SR-SPPs according to [1] and Eqs. (13)

and (14), respectively, appear superimposed in Fig. 3(c), together with that of the single

interface. Notice that the LR- and SR- SPP are degenerate in this case and Eq. (7) is more
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FIG. 3. (Color online) Angle resolved absorption at normal incidence for a a = 400 nm grating

(a) vs. hole radius when t = 20 nm; (b) vs. thickness of the film when r = 20 nm. The predicted

frequencies are shown as green dashed lines. (c) Dispersion relation of a 300 nm thick silver film.

The light line is shown as a green dotted line. The approximated solutions for the SR- and LR-

SPPs are indicated by the white dashed lines, while that of the single interface corresponds to the

white dotted line.

accurate for describing the overall behaviour.

In conclusion, we derived a simple expression for calculating the dispersion relation of

SR-SPPs of a thin lossy metal film which can be used to predict the coupling of light to

such SPs and hence facilitate the design of SR-SPPs based applications. To validate the

approximation, we compared the estimated resonance frequencies to the ones obtained when

solving the transcendental equation for finite metal slabs, finding an excellent agreement in

the short-k region. To further explore the accuracy of this approach we also considered a
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lattice of subwavelength holes as a mechanism to excite the SR-SPPs. Within the empty

lattice approximation limitations, the estimated and simulated resonance frequencies are in

very good agreement for normal and oblique incident light. Our solution remains valid as

long as |kz2t/2| � 1. Above a critical thickness, the SR- and LR- modes become degenerate

and the dispersion curves converge to that of a single smooth interface as suggested by the

simulations.
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