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ABSTRACT. Time domain Galerkin boundary elements
provide an efficient tool for the numerical solution of bound-
ary value problems for the homogeneous wave equation. We
review recent advances in their a posteriori error analysis
and the resulting adaptive mesh refinement procedures, as
well as basic algorithmic aspects of these methods. Numer-
ical results for adaptive mesh refinements are discussed in
2 and 3 dimensions, as are benchmark problems in a half–
space related to the transient emission of traffic noise.

1. Introduction. Efficient and accurate computational methods to
simulate sound emission in space and time are of interest from the
modeling of environmental noise to the acoustics of concert halls. This
survey reviews time domain Galerkin boundary element methods for
acoustic wave problems as studied particularly in [16, 25, 26, 29, 42],
with references to related works. We particularly emphasise algorithmic
aspects, recent progress towards space-time adaptive mesh refinements
as well as applications to tire noise. Time domain boundary element
methods prove to be stable and accurate in long–time computations and
are competitive with frequency domain methods for realistic problems
from the sound emission of tires.

Computations in time domain are of particular interest for problems
beyond the reach of frequency domain methods, such as the simulation
of transient dynamics, moving sound sources or nonlinear and dynam-
ical contact problems. They can also be applied to obtain results in
frequency domain, for all frequencies in one computation, with the help
of the Fast Fourier Transform to translate between time and frequency.
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This approach proves competitive if a broad band of frequencies is of
interest.

Let d = 2 or 3 and Ωi ⊂ Rd be a bounded polygonal domain.
For simplicity, we assume that the exterior domain Ωe = Rd\Ωi is
connected and that the boundary Γ = ∂Ω is a Lipschitz manifold. Our
emphasis will be on the case d = 3.

We aim to find a weak solution to an acoustic initial-boundary
problem for the wave equation in Ωe:

∂2u

∂t2
−∆u = 0 in R+ × Ωe

∂u

∂n
− α

∂u

∂t
= g on R+ × Γ(1)

u(0, x) =
∂u

∂t
(0, x) = 0 in Ωe .

Here n denotes the inward unit normal vector to ∂Ωe, g lies in a
suitable Sobolev space, α ∈ L∞(Γ). In the case of an incoming wave

uinc scattered by Ωi, the right hand side is g = −∂uinc

∂n + α∂u
inc

∂t . In
order for (1) to be well-posed, α should have nonnegative real part, so
that waves are not amplified at reflection. We also consider the simpler
Dirichlet problem on Γ, for which instead of the absorbing boundary
condition, u|R+×Γ is given.

For the boundary element methods discussed here, the acoustic and
Dirichlet boundary problems are reformulated as time–dependent inte-
gral equations on R+ ×Γ. The integral equations are then numerically
approximated by a Galerkin method in space–time. We present from
[25, 26] an a priori and an a posteriori error analysis for methods
based on integral formulations of the first kind. Computational exper-
iments explore adaptive mesh refinements given in [26] and illustrate
the methods for real–world problems from the sound emission of tires.

For the sound emission of tires, the wave equation also needs to be
considered in a half space, Ωi ⊂ Rd+. The reader may wish to think

of Ωi as a solid tire, either in contact with the street (on ∂Ωi ∩ ∂Rd+)
or elevated above it (∂Ωi ∩ ∂Rd+ = ∅ ). We will concentrate on the

latter case, as it simplifies notation. The boundary of Ωe = Rd+\Ωi
decomposes into the boundary Γ = ∂Ωe ∩ ∂Ωi of the obstacle and the
boundary Γ∞ = ∂Ωe ∩ ∂Rd+ of the half–space.
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In this case the wave equation (1) is supplemented by acoustic
boundary conditions on Γ∞:

(2)
∂u

∂n
− α∞

∂u

∂t
= 0 on R+ × Γ∞ ,

where Re α∞ ≥ 0 [25].

1.1. Related works. Hyperbolic time domain boundary integral
equations and their numerical approximation go back to Friedman and
Shaw [24], resp. Cruse and Rizzo [18]. The first modern boundary
element methods and the basic algorithmic approaches were developed
by Mansur [38], while the mathematical analysis of time dependent
Galerkin boundary element methods was initiated by Bamberger and
Ha-Duong [11]. Relevant works on the numerical implementation of
the resulting marching-in-on-time scheme include the Ph.D. thesis of
Terrasse [49] and [21, 33], which made the methods competitive for
commercial applications.

As a main challenge in the stable implementation of time domain
integral methods, the fundamental solution to the wave equation is
singular, in odd dimensions a Dirac distribution supported on the
light cone. The discretization and accurate computation of the entries
in the Galerkin matrix has been considered in detail by Maischak,
Ostermann and Stephan [37, 47], and one may refer to the dissertation
of Ostermann [42] for further algorithmic details. See also [8] for an
alternative approach.

The analysis initiated by Bamberger and Ha-Duong is based on an
analysis in frequency domain. Using the Laplace transform to translate
between frequency and time domain, well-posedness and convergence
of numerical approximations can be analyzed for the infinite time
interval [0,∞). Recent works by Aimi and collaborators [3, 5, 6, 7]
emphasize formulations directly related to the conserved energy of the
wave equation on a finite time interval [0, T ). At the expense of a
slightly more involved weak formulation, the intrinsic coercivity directly
implies the stability and convergence of these methods.

A detailed exposition of the mathematical background of time do-
main integral equations and their discretizations is available in the lec-
ture notes by Sayas [45], see [17, 32] for more concise introductions
and [22] for recent progress.
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Recent interests have centered especially around fast methods, adap-
tivity and interface problems, including the coupling to finite elements
with possibly different time discretizations. In particular, we mention
the work of Sylvand on fast multipole methods [48]. First steps to-
wards adaptive mesh refinements will be discussed in this article. They
concern both space [26], time [44] and space-time in dimension 2 [29],
but the optimal algorithmic implementation of these methods is only
beginning to be understood.

For interface problems, Abboud, Joly, Rodriguez and Terrasse [1]
initiated the mathematical analysis of FEM-BEM coupling in the
time domain, coupling discontinuous finite elements to time domain
integral equations. A subsequent work by Banjai, Lubich and Sayas
[15] provides a fundamental general analysis of the coupling between
different discretizations, including convolution quadrature. Energy-
based formulations of FEM-BEM coupling have been investigated by
Aimi and collaborators [2, 4], while the authors study adaptivity in
the context of fluid-structure interaction [28]. Certain truly transient
phenomena studied by engineers cannot be simulated in the frequency
domain because they involve nonlinear contact and damage. See
[34, 46] for time domain BEM approaches to such problems. Their
mathematical analysis remains a hard challenge for future work.

In the engineering literature, fast methods are being developed and
studied especially in the group of Eric Michielssen, see e.g. [52]. We
finally mention the alternative ansatz functions in time that have been
explored in [19, 20].

As an alternative to time domain boundary elements, the past
years have seen rapid progress for convolution quadrature methods
[13, 14, 45]. Convolution quadrature exploits the convolution struc-
ture in time of the integral equations to approximate them through the
frequency domain by an inverse Laplace transform. Given a frequency
domain solver, their implementation does not struggle with the care-
ful, accurate computation of distributional integrals like time domain
boundary elements. However, for long-time simulations and certain
nonlinear problems with constraints, like dynamic contact and friction
problems, the variational nature of Galerkin time domain methods may
be advantageous.

Apart from wave propagation problems in Rd, applications like
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the sound emission and propagation above a street may naturally
lead to problems posed in a half-space [16]. Here current work is
motivated by the exact fundamental solutions obtained by Ochmann
[41], as they allow acoustic Robin boundary conditions on the infinite
boundary of the half-space. Further engineering applications involve
wave propagation in moving coordinate systems or with moving sources
[9, 43].

2. Boundary integral formulations. Similar to elliptic problems,
the initial–boundary value problem (1) for the wave equation can be
formulated as an integral equation of either the first or second kind on
Γ.

We introduce the single layer potential in time domain as

Sφ(t, x) =

∫
R+×Γ

G(t− τ, x, y) φ(τ, y) dτ dsy ,

where G is a fundamental solution to the wave equation. Specifically
in 3 dimensions, it is given by

Sφ(t, x) =
1

4π

∫
Γ

φ(t− |x− y|, y)
|x− y|

dsy .

We similarly define the double-layer potential as

Dφ(t, x) =

∫
R+×Γ

∂G

∂ny
(t− τ, x, y) φ(τ, y) dτ dsy .

For acoustic boundary conditions we require the single–layer oper-
ator V , its normal derivative K ′, the double–layer operator K and
hypersingular operator W for x ∈ Γ, t > 0:

V φ(t, x) = 2

∫
R+×Γ

G(t− τ, x, y) φ(τ, y) dτ dsy ,

Kφ(t, x) = 2

∫
R+×Γ

∂G

∂ny
(t− τ, x, y) φ(τ, y) dτ dsy,

K ′φ(t, x) = 2

∫
R+×Γ

∂G

∂nx
(t− τ, x, y) φ(τ, y) dτ dsy ,

Wφ(t, x) = −2

∫
R+×Γ

∂2G

∂nx∂ny
(t− τ, x, y) φ(τ, y) dτ dsy .
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For the absorbing half-space, the single-layer potential S and boundary
integral operators V,K,K ′,W are analogously defined in terms of an
appropriate Green’s function which satisfies the acoustic boundary con-
dition (2) on Γ∞. Explicit formulas have been obtained by Ochmann
[40, 41], in particular for d = 3:

V φ(t, x) =
1

2π

∫
Γ

φ(t− |x− y|, y)
|x− y|

dsy +
1

2π

∫
Γ

φ(t− |x− y′|, y)
|x− y′|

dsy

− 2α∞

π

∞∫
0

∫
Γ

∂

∂s

[ H(t− s− |x− y′|)√
(t− s+ α∞(x3 + y3))2 + (α2

∞ − 1)R2

]
φ(s, y) dsy ds .

Here, y′ denotes the reflection of y = (y1, y2, y3) ∈ Γ on the street ∂R3
+:

y′ = (y1, y2,−y3). Furthermore, R2 = (x1 − y1)
2 + (x2 − y2)

2, and H
is the Heaviside function.

The boundary integral operators are considered between space–time

anisotropic Sobolev spaces Hs
σ(R+, H̃r(Γ)). To define them, if ∂Γ ̸= ∅,

first extend Γ to a closed, orientable Lipschitz manifold Γ̃.

On Γ one defines the usual Sobolev spaces of supported distributions:

H̃r(Γ) = {u ∈ Hr(Γ̃) : supp u ⊂ Γ} , r ∈ R .

Furthermore, Hr(Γ) is the quotient space Hr(Γ̃)/H̃r(Γ̃ \ Γ).
To write down an explicit family of Sobolev norms, introduce a partition

of unity αi subordinate to a covering of Γ̃ by open sets Bi. For
diffeomorphisms φi mapping each Bi into the unit cube ⊂ Rd, a family
of Sobolev norms is induced from Rd:

||u||r,ω,Γ̃ =

(
p∑
i=1

∫
Rd

(|ω|2 + |ξ|2)r|F
{
(αiu) ◦ φ−1

i

}
(ξ)|2dξ

) 1
2

.

The norms for different ω ∈ C \ {0} are equivalent, and F denotes
the Fourier transform. They induce norms on Hr(Γ), ||u||r,ω,Γ =

infv∈H̃r(Γ̃\Γ) ||u + v||r,ω,Γ̃, and on H̃r(Γ), ||u||r,ω,Γ,∗ = ||e+u||r,ω,Γ̃.
e+ extends the distribution u by 0 from Γ to Γ̃. It is stronger than
||u||r,ω,Γ whenever r ∈ 1

2 + Z.

We now define a class of space–time anisotropic Sobolev spaces:
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Definition 1. For s, r ∈ R define

Hs
σ(R+,Hr(Γ)) = {u ∈ D

′

+(H
r(Γ)) : e−σtu ∈ S

′

+(H
r(Γ)) and ||u||s,r,Γ <∞} ,

Hs
σ(R+, H̃r(Γ)) = {u ∈ D

′

+(H̃
r(Γ)) : e−σtu ∈ S

′

+(H̃
r(Γ)) and ||u||s,r,Γ,∗ <∞} .

D′

+(E) resp. S ′

+(E) denote the spaces of distributions, resp. tempered
distributions, on R with support in [0,∞), taking values in E =

Hr(Γ), H̃r(Γ). The relevant norms are given by

∥u∥s,r,Γ =

(∫ +∞+iσ

−∞+iσ

|ω|2s ∥û(ω)∥2r,ω,Γ dω
) 1

2

,

∥u∥s,r,Γ,∗ =

(∫ +∞+iσ

−∞+iσ

|ω|2s ∥û(ω)∥2r,ω,Γ,∗ dω
) 1

2

.

For |r| ≤ 1 the spaces are independent of the choice of αi and φi.
See [25, 32] for a more detailed discussion.

The representation formula uses S and D to express a solution to
the wave equation in terms of its Dirichlet and Neumann data on Γ:

Theorem 1. Let u ∈ L2(R+, H1(Ω)) ∩H1
0 (R+, L2(Ω)) be the solution

of (1) for a Lipschitz boundary Γ. Then

u(t, x) = Sφ(t, x)−Dp(t, x) ,

where φ = [u] is the jump of u across Γ and p = [ ∂u∂n ] is the jump of
the normal flux.

As shown in [33] by reformulation to an interior problem, the
initial boundary value problem (1) is equivalent to a system of integral
equations of the first kind on Γ,

(3)

{
K ′p−Wφ+ α∂φ∂t = F

p+ α(V ∂tp+K∂tφ) = G .

Here, φ = [u] and p = [ ∂u∂n ] as above, and for an incoming wave

uinc scattered by Ωi, we have F = −2∂u
inc

∂n and G = −2α∂u
inc

∂t .

If α−1 ∈ L∞(Γ), we may pair these equations with test functions
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∂tψ respectively q
α , to obtain the following space-time variational

formulation:

Find Φ = (φ, p) ∈ H1
σ(R+, H̃

1
2 (Γ)) × H1

σ(R+, L2(Γ)) such that for

all Ψ = (ψ, q) ∈ H1
σ(R+, H̃

1
2 (Γ))×H1

σ(R+, L2(Γ)):

(4) a(Φ,Ψ) = l(Ψ) .

Here

(5) l(Ψ) =

∫ ∞

0

∫
Γ

F∂tψ dsx dσt+

∫ ∞

0

∫
Γ

Gq

α
dsx dσt ,

and a(Φ,Ψ) is given by
(6)∫ ∞

0

∫
Γ

(
α(∂tφ)(∂tψ) +

1

α
pq +K ′p(∂tψ)−Wφ(∂tψ) + V (∂tp)q +K(∂tφ)q

)
dsx dσt ,

for dσt = e−2σtdt, σ > 0. The complementary Neumann problem,
α = 0, is discussed in [16, 27].

For the Dirichlet problem, a single-layer ansatz u = 2Sϕ leads to the
integral formulation V ∂tϕ = ∂tf . Its variational formulation reads:

Find ϕ ∈ H1
σ(R+, H̃− 1

2 (Γ)) such that

(7) b(ϕ, ψ) = ⟨∂tf, ψ⟩ ∀ψ ∈ H1
σ(R+, H̃− 1

2 (Γ)) ,

where

b(ϕ, ψ) =

∫ ∞

0

∫
Γ

(V ∂tϕ) ψ dsx dσt ,

⟨∂tf, ψ⟩ =
∫ ∞

0

∫
Γ

(∂tf) ψ dsx dσt .

Adapting fundamental observations in [11] and [32] to our situation,
the bilinear forms a(Φ,Ψ) and b(ϕ, ψ) are continuous and, in a weak
sense, coercive. They are related to the physical energy of the system.
As a consequence, both the acoustic and the Dirichlet problem admit
unique solutions for sufficiently smooth data. See [25] for details.

In addition to the variational formulations as integral equations of
the first kind, for computations an integral equation of the second
kind will prove useful. We will only state the Neumann case, α = 0.
Here a single-layer ansatz u = Sφ leads to the integral equation
(−I +K ′)φ = 2g and the weak formulation:
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Find φ ∈ H
1
2
σ ([0,∞), H̃− 1

2 (Γ)) such that for all test functions ψ ∈
H

1
2
σ ([0,∞),H− 1

2 (Γ)) there holds:∫ ∞

0

∫
Γ

(−I +K ′)φ ψ dsx dσt = 2

∫ ∞

0

∫
Γ

g ψ dsx dσt.(8)

As it is equivalent to the original initial boundary value problem, also
this formulation admits a unique solution for smooth right hand sides.
However, while the integral equations of the first kind were related to
the energy and coercive, this might not be the case for (8).

As written, the above integral equations (4), (7) and (8) formally
hold both in the whole space Rd and the half space Rd+, with layer
potentials defined in terms of the Green’s function for the appropriate
domain as above. The choice of the Green’s function assures that even
for the absorbing half–space we obtain an equation on Γ, not on the
unbounded ∂Ωe.

3. Discretization. If Γ is not polygonal we approximate it by a
piecewise polygonal curve resp. surface and write Γ again for the
approximation. For simplicity, when d = 3 we will use here a surface
composed of N triangular facets Γi such that Γ = ∪Ni=1Γi. When d = 2,
we assume Γ = ∪Ni=1Γi is composed of line segments Γi. In each case,
the elements Γi are closed with int(Γi) ̸= ∅, and for distinct Γi, Γj ⊂ Γ
the intersection int(Γi) ∩ int(Γj) = ∅.

For the time discretization we consider a uniform decomposition of
the time interval [0,∞) into subintervals In = [tn−1, tn) with time step
|In| = ∆t, such that tn = n∆t (n = 0, 1, . . . ).
We choose a basis φp1, · · · , φ

p
Ns

of the space V ph of piecewise polyno-
mial functions of degree p in space (continuous and vanishing at ∂Γ if
p ≥ 1) and a basis β1,q, · · · , βNt,q of the space V q∆t of piecewise poly-
nomial functions of degree of q in time (continuous and vanishing at
t = 0 if q ≥ 1).
Let TS = {T1, · · · , TNs} be the spatial mesh for Γ and TT =
{[0, t1), [t1, t2), · · · , [tNt−1, T )} the time mesh for a finite subinterval
[0, T ).
We consider the tensor product of the approximation spaces in space
and time, V ph and V q∆t, associated to the space–time mesh TS,T =
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TS × TT , and we write

V p,qh,∆t = V ph ⊗ V q∆t .

These approximation spaces lead to Galerkin formulations for the
acoustic and Dirichlet problems (4), (7) and (8). E.g. the Galerkin
formulation of (7) reads: Find ϕh,∆t ∈ V p,qh,∆t such that

(9) b(ϕh,∆t, ψh,∆t) = ⟨(∂tf)h,∆t, ψh,∆t⟩ ∀ψh,∆t ∈ V p,qh,∆t .

In [25, 39], we discuss a priori error estimates and the convergence
of Galerkin approximations for (4) and (7) in a half space. Analogous
results for the whole space and non-polygonal Γ date back to [11], in
slightly different Sobolev norms. For the Dirichlet problem the basic
estimate is the following:

Theorem 2 ([25]). For the solutions ϕ ∈ H1
σ(R+, H̃− 1

2 (Γ)) of (7),
ϕh,∆t ∈ V p,qh,∆t of (9) the following a priori estimate holds:

∥ϕ− ϕh,∆t∥0,− 1
2 ,Γ,∗

. ||(∂tf)h,∆t − ∂tf ||0, 12 ,Γ

+ inf
ψh,∆t∈V p,q

h,∆t

{
(1 +

1

∆t
)∥ϕ− ψh,∆t||0,− 1

2 ,Γ
+

1

∆t
∥∂tϕ− ∂tψh,∆t||0,− 1

2 ,Γ

}
.

If in addition ϕ ∈ Hs
σ(R+,Hm(Γ)), then

∥ϕ− ϕh,∆t∥0,− 1
2 ,Γ,∗

. ||(∂tf)h,∆t − ∂tf ||0, 12 ,Γ
+
(
(hα1 +∆tβ1)(1 + 1

∆t ) + (hα2 +∆tβ2) 1
∆t

)
||ϕ||s,m,Γ ,

where

α1 = m+min{1
2 ,−

m
2(m+s)}, β1 = m+ s+min{ 1

2 ,
m+s
2m } ,

α2 = m+min{ 1
2 ,−

m
2(m+s−1)}, β2 = m+ s+min{− 1

2 ,−1 + m+s−1
2m } ,

and m ≥ − 1
2 , s ≥ 0.

For the acoustic problem, we introduce the norm

|||p, φ||| =
(
||p||20,0,Γ + ||φ||20, 12 ,Γ,∗ + ||∂tφ||20,0,Γ

) 1
2

.
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Theorem 3 ([25]). Assume (for simplicity) that α−1 ∈ L∞(Γ). For

the solutions Φ = (p, φ) ∈ H1
σ(R+, H̃

1
2 (Γ))×H1

σ(R+, L2(Γ)) of (4) and

Φh,∆t = (ph,∆t, φh,∆t) ∈ V p̃,q̃h,∆t×V
p,q
h,∆t of its discretization the following

a priori estimate holds:

|||p− ph,∆t, φ− φh,∆t|||
. ||Fh,∆t − F ||0,0,Γ + ||Gh,∆t −G||0,0,Γ

+max

(
1

∆t
,

1√
h

)
inf

(qh,∆t,ψh,∆t)∈V p̃,q̃
h,∆t×V

p,q
h,∆t

(
||p− qh,∆t||1,0,Γ + ||φ− ψh,∆t||1, 12 ,Γ

)
.

As for the Dirichlet problem, better estimates are obtained under
smoothness assumptions, φ ∈ Hs1

σ (R+, Hm1(Γ)), p ∈ Hs2
σ (R+,Hm2(Γ)),

[25].

We refer to [27] for an analysis of the Neumann problem. While
computationally convenient, the analysis of numerical methods based
on (8) remains open. In particular, schemes based on (8) are not known
to be stable, or to admit unique discrete solutions.

4. A posteriori error estimates. Computable error indicators
are a key ingredient to design adaptive mesh refinements. For time–
dependent boundary element methods such efficient and reliable esti-
mates of residual type have been obtained in [26], see also [29, 30, 31]
and [44] for alternative error indicators and relevant estimates for the
boundary integral operators. In the case of the Dirichlet problem we
obtain in [26]:

Theorem 4 ([26]). Let ϕ, ϕh,∆t ∈ H1
0 ([0, T ],H

− 1
2 (Γ)) be the solutions

to (7) resp. (9). Assume that R = ḟ − V ϕ̇h,∆t ∈ H0([0, T ],H1(Γ)).
Then

∥ϕ− ϕh,∆t∥20,− 1
2 ,Γ

. ∥R∥0,1,Γ
(
∆t∥∂tR∥0,0,Γ + ∥h · ∇R∥0,0,Γ

)
. max{∆t, h}(∥∂tR∥L2([0,T ],L2(Γ)) + ∥∇R∥L2([0,T ],L2(Γ)))

2.

Remark 1. The estimate generalizes to arbitrary subspaces V in place
of V p,qh,∆t, in particular discretizations with smooth ansatz functions in

time are of interest [44].
a) As the single–layer potential maps H1([0, T ], L2(Γ)) continuously to
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H0([0, T ], H1(Γ)), V ϕ̇h,∆t belongs to H
0([0, T ], H1(Γ)) if, for example,

ϕh,∆t ∈ H2([0, T ], L2(Γ)). The a posteriori estimate is therefore only
valid for sufficiently smooth discretizations, e.g. constructed from C1–
continuous splines.
b) In practice, we will here use ∆t∥∂tR∥0,0,Γ+∥h ·∇R∥0,0,Γ as an error
indicator.

For the acoustic problem, a simple error estimate reads as follows:

Theorem 5 ([26]). Let (φ, p), (φh,∆t, ph,∆t) ∈ H1
0 ([0, T ],H

1
2 (Γ)) ×

H1([0, T ], L2(Γ)) be the solutions to (4) and its discretized variant, and
assume that

R1 = F − αφ̇h,∆t + 2K ′ph,∆t − 2Wφh,∆t ∈ L2([0, T ], L2(Γ)) ,

R2 = G+ α−1ph,∆t + 2V ṗh,∆t + 2Kφ̇h,∆t ∈ L2([0, T ], L2(Γ)) .

Then

|||p− ph,∆t, φ− φh,∆t||| . ∥R1∥0,0,Γ + ∥R2∥0,0,Γ .

5. Algorithmic considerations. For piecewise constant test func-
tions, the Galerkin discretization in space and time leads to a block–
lower–triangular system of equations, which can be solved by blockwise
forward substitution.

For example, the Dirichlet problem yields an algebraic system of the
form

n∑
m=1

V n−mbm = 2(fn−1 − fn)

in time step n = 1, 2, 3, . . . . It can be solved by forward substitution,
giving rise to the marching in on time (MOT) scheme

V 0bn = 2(fn−1 − fn)−
n−1∑
m=1

V n−mbm .

The Galerkin solution of (9) is then given by:

φ̇h,∆t(x, t) =
∑Nt

m=1

∑Ns

i=1b
m
i β

m,0(t)φpi (x) .
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Figure 1. Sparsity pattern of the Galerkin matrix V 0 for a uniform
discretization of the sphere [42].

The above fully discrete systems involve the computation of a series
of matrices, that (if α∞ = 0) are sparsely populated, because the
Dirac–delta fundamental solution restricts the number of interacting
elements per time step. Figure 1 shows the distribution of nonzero
matrix entries for a typical matrix V 0, when Γ is an approximation of
S2 by 5120 triangles. Note that the computation of each matrix only
depends on the time difference. Furthermore, for bounded surfaces Γ
the matrices V n−m vanish whenever the time difference l := n − m
satisfies l >

[
diamΓ
∆t

]
, i.e. the light cone has traveled through the entire

surface Γ.

5.1. An hp-composite quadrature of matrix elements. The
most time consuming part in the MOT algorithm is the matrix compu-
tation, even though the resulting matrices are sparse in each time step.
An efficient hp-composite Gauss-quadrature allows to compute the en-
tries in V l, and similarly for the other layer operators [37, 42, 47].

Recall the form of the matrix entries of V l in R3 as an example:

1

2π

∫∫∫
R+×Γ×Γ

φpi (y)∂tβ
n,q(t− |x− y|)
|x− y|

φpj (x)β
m,q(t) dsy dsx dσt .



14HEIKO GIMPERLEIN, MATTHIAS MAISCHAK AND ERNST P. STEPHAN

First, the time integrals are evaluated analytically and result in an
integration domain

E = {(x, y) ∈ Γ× Γ : rmin ≤ |x− y| ≤ rmax}

of the form of a light cone, rmin and rmax depending on tm and tn. It
remains to evaluate terms like

Gνij =

∫∫
E

kν(x− y)φpi (y)φ
p
j (x) dsy dsx ,(10)

where kν(x − y) = |x − y|ν denotes a weakly singular kernel function.
Our numerical quadrature separates the outer spatial integration from
the singular inner one. Define the domain of influence of x ∈ R3 by

E(x) := Brmax(x) \Brmin(x) =
{
y ∈ R3 : rmin ≤ |x− y| ≤ rmax

}
as in Fig. 2(b). Fig. 2(a) similarly sketches the domain of influence of
a triangle T ,

E(T ) :=
∪
x∈T

E(x) = {y ∈ R3 : rmin ≤ |x− y| ≤ rmax , x ∈ T} .

Defining E(Tj , Ti) := E ∩ (Tj × Ti), we rewrite (10) as

Gνij =
∑

Ti′ ⊂ suppφi

Tj′ ⊂ suppφj

∫∫
E(Tj′ ,Ti′ )

kν(x− y)φpi (y)φ
p
j (x) dsy dsx

=
∑

Ti′ ⊂ suppφi

Tj′ ⊂ suppφj

∫
Tj′∩E(Ti′ )

φpj (x)P
p
i,i′(x) dsx ,

with a retarded potential Pi,i′ given by

Pi,i′(x) :=

∫
E(x)∩Ti′

kν(x− y)φpi (y) dsy .

To simplify notation, we explain the quadrature for a simplified
integral. Given triangles T , T̂ and basis functions φ, φ̂ defined on
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(a) Outer integral: Domain of influence

of triangle T̂ intersected with triangle T .

T

E(T )
E(T ) ∩ T̂

(b) Inner integral: Domain of influence

E(x) of point x ∈ E(T ) ∩ T̂ .

rmin rmax

E(x) ∩ T
x

Figure 2. Domains of influence and the illumination of test and trial
element T̂ and T during the evaluation of the inner and outer integral.

T and T̂ , respectively, a typical entry in the Galerkin matrix reads∫
E(T )∩T̂

Pφ(x)φ̂(x) dsx , Pφ(x) :=

∫
E(x)∩T

kν(x− y)φ(y) dsy .(11)

We evaluate the outer and the inner integral step by step decomposing
the integration domain and using a grading strategy for the different
singularities. It is crucial to take into account the cut-off behavior due
to the different domains of influence, and below we recall the rigorous
error analysis.

5.1.1. Composite inner quadrature. To calculate Pφ as defined in (11)
first seek a parametric representation of E(x) ∩ T . Let x′ denote
the orthogonal projection of x onto the triangle plane ET and set
d := |x − x′|, cf. Fig. 3(b). With r′min /max := (r2min /max − d2)1/2,

we have

E(x) ∩ ET = (Br′min
(x′) \Br′max

(x′)) ∩ ET = {y ∈ ET : r′min ≤ |x′ − y| ≤ r′max} ,
E(x) ∩ T = (Br′min

(x′) \Br′max
(x′)) ∩ T .
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(a) Decomposition of E(x) ∩ T
wrt. x′ into nd = 5 subelements.

x′ x

x′

d

y

E(x) ∩ T

(b) Projection of x onto the triangle plane.

Figure 3

We introduce polar coordinates (r, θ) around x′ and decompose

E(x) ∩ T =

nd∪
l=1

Dl, Dl := {(r, θ) : θ ∈ (θl, θl+1) and r ∈ (r1,l(θ), r2,l(θ))} ,

where it can be shown that nd ≤ 12 and

r1,l :=

{
r′min e ∈ Br′min(x)

re(θ) else
, r2,l :=

{
r′max e /∈ Br′max(x)

re(θ) else
.

Here re(θ) is the parametrisation of the intersected triangle edge e in
polar coordinates with respect to x′. In terms of the normal vector n
of e and the end point v of e,

re(θ) =
v · n

n1 cos θ + n2 sin θ
.

Four generic cases of decomposition types are sketched in Fig. 4:

D̂1 := {(r, θ) : θ ∈ (θ1, θ2) and r ∈ (rmin, rmax)} ,

D̂2 := {(r, θ) : θ ∈ (θ1, θ2) and r ∈ (re1(θ), rmax)} ,

D̂3 := {(r, θ) : θ ∈ (θ1, θ2) and r ∈ (rmin, re2(θ))} ,

D̂4 := {(r, θ) : θ ∈ (θ1, θ2) and r ∈ (re1(θ), re2(θ))} .
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D̂1 D̂2 D̂3 D̂4

Figure 4. Generic integration domains

From (11) we obtain

Pφ(x) =

nd∑
l=1

∫
D̂l

(d2 + r2)
ν
2φ(r, θ)r dr dθ ,

where d > 0 and φ is sufficiently regular. For each of the domains D̂l,
we can write the integral as

I(D̂l)f :=

∫ θ2

θ1

∫ r2(θ)

r1(θ)

f(r, θ) dr dθ , f(r, θ) := (d2 + r2)
ν
2φ(r, θ)r.(12)

To introduce our quadrature method, denote byQ
[a,b]
n f :=

∑n
i=1 wif(xi)

the Gauß-Legendre quadrature rule with n quadrature points to evalu-

ate
b∫
a

f dx. Given a subdivision of [a, b] into m subintervals Ij , a vari-

able order composite Gauß rule with degree vector n = (n1, . . . , nm)

is defined by Qn,m,σf :=
∑m
j=1Q

Ij
njf . We use a geometric subdivi-

sion of [a, b] with m levels and grading parameter σ ∈ (0, 1): [a, b] =∪m
j=1 Ij , where for j = 1, . . . ,m we let Ij := [xj−1, xj ], x0 := a,

xj := a+(b−a)σm−j . For nr = (n
(r)
1 , . . . , n

(r)
m ), mr ≥ 1 and σr ∈ (0, 1],

the integral (12) is then computed as

QD̂lf := Q[θ1,θ2]
nθ

(Q[r1(θ),r2(θ)]
nr,mr,σr

f).

5.1.2. Error analysis for the evaluation of (12). A detailed analy-
sis [42] shows that the integrand belongs to the countably normed,
weighted space B0

β(T ) of Babuska [10].

Definition 2 (Countably normed space Blβ(T )). We say u ∈ Blβ(T )
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with respect to a weight function Φβ,α,l, if u ∈ H l−1(T ) and if

∥Φβ,α,lDαu∥L2(Ω) ≤ Cd|α|−l(|α| − l)!

for |α| = l, l + 1, . . .. Here the constants C > 0 and d ≥ 1 are
independent of |α|.

If the number of angular quadrature points, nθ, is chosen propor-
tional to mr, we obtain the following theorem on the accuracy of the
quadrature in our TDBEM:

Theorem 6 ([42]). Given a function f ∈ B0
β(T ) with a weight function

Φβ,α,0(r) = r|α|+β and let max(1,
√
rmax)(θ2 − θ1) < eCθ, then there

holds for D̂l:

|I(D̂l)f −Q(D̂l)f | ≤ Ce−b
3√
N

for l = 1, . . . , 4. Here N denotes the total number of quadrature points
and C and b are positive constants independently of N , but depending
on the grading factor σr, the number of levels mr and on f . Also,

Cθ :=



1 for D̂1

min
θ∈(θ1,θ2)

| cos(θ − θ∗1)| for D̂2

min
θ∈(θ1,θ2)

| cos(θ − θ∗2)| for D̂3

min
θ∈(θ1,θ2)

(| cos(θ − θ∗1)|, | cos(θ − θ∗2)|) for D̂4,

and θ∗i denotes the angle corresponding to the edge normal ni, i = 1, 2.

6. Numerical experiments for tires. The numerical experiments
in this section will use the discretization of the Neumann problem, (8)
in R3

+, with α∞ = 0. It illustrates selected results from [16], for ansatz
and test functions which are piecewise constant in space and time. For
the computations we use σ = 0.

6.1. Validation on a problem with known solution. Considering
a wave problem with known solution p in the exterior of a unit ball in
R3

+ allows us to analyze the convergence properties of our method. For



ADAPTIVE TIME DOMAIN BOUNDARY ELEMENT METHODS AND ENGINEERING APPLICATIONS19

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

Degrees of Freedom

R
e

la
ti
v
e

 E
rr

o
r

 

 

L
2
([0,10];L

2
(Γ))−error in density

L
2
([0,10])−error in pressure 

Figure 5. Relative L2-errors of density φ∆t,h and pressure p∆t,h [16].

some fixed 0 < R < 1, one obtains a radial pulse which solves (1)
outside a unit sphere at a distance h above the street:

u(t, x) =
r(h)− t

2r(h)

[
1 + cos

(
π(r(h)− t)

R

)]
H(R− |r(h)− t|)

+
r(−h)− t

2r(−h)

[
1 + cos

(
π(r(−h)− t)

R

)]
H(R− |r(−h)− t|).

Here,H(t) denotes the Heaviside function and r(h) = ∥x1, x2, x3 − h− 1∥
and r(−h) = ∥x1, x2, x3 + h+ 1∥. By a modification of [44] to the half-
space, the density for the single layer potential ansatz is

φ(t, x) = −2

⌊t/2⌋∑
k=0

f1(t− 2k) + 2

⌊t/2⌋∑
k=0

∫ t

2k

e−(s−2k)f1(t− s) ds ,(13)

where

f1(t) =

[
t

2r(h)2

(
1 + cos

(
π(r(h)− t)

R

))
− π

R

r(h)− t

2r(h)
sin

(
π(r(h)− t)

R

)]
·H(R− |r(h)− t|).
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Figure 4 shows the relative discretization errors

∥φ∆t,h − φ∥L2([0,10];L2(Γ))

∥φ∥L2([0,10];L2(Γ))
and

∥u∆t,h(t, x0)− u(t, x0)∥L2([0,10])

∥u(t, x0)∥L2([0,10])
,

with φ∆t,h the TD-BEM Galerkin approximation of φ and p∆t,h =
Sφ∆t,h on uniform meshes. Here x0 = (0, 0, 2.8)⊤ for R = 0.9, h = 0.63.
The figure shows a convergence rate of 0.4 for the density, resp. 0.65
for the sound pressure, with respect to the degrees of freedom (dof),
i.e. the product of number of time steps and number of triangles. The
ratio of the mesh size h and time step size ∆t is ∆t/h ≈ 0.38.

6.2. Vibrating tire. Cyclic deformations of a moving tire enter the
computations through the right hand side f in (8). Physically, the right

hand side f is the result of the tire vibrations f = −2ρ∂
2vn
∂t2 . Here vn

describes the displacement of the tire in the outer normal direction and
ρ the density of air. In [16] we determine f from the particle velocity
∂u
∂τ on Γ, as supplied by the work group of W. Kropp at the Chalmers
University in Gothenburg within the LeiStra3 cooperation. These par-
ticle velocities are given for 513 equidistant frequency points between
0Hz and 1809.4Hz in each of the 6027 nodes of the triangulation in
Figure 6.

Figure 7 displays the A-weighted sound pressure level of the radiated
acoustic wave. The simulation parameters are ∆t = 0.01 averaged over
321 points in the hemisphere {x ∈ R3

+ : ∥x∥2 = 1} [16]. These curves
are obtained by a Fast Fourier Transform of the calculated sound pres-
sure level for times t ≥ t0, with t0 = 0, 0.005, and 0.02. The blue
reference curve [51] is calculated by a Burton–Miller stabilized BEM
collocation method for the Helmholtz equation with piecewise constant
trial functions.

Further computational results in [16] for truck tires and the sound
amplification in the horn geometry underline that the methods pre-
sented in this paper are competitive for industrial scale transient and
broad–band frequency domain computations.

7. Adaptive mesh refinements. Fully space–time adaptive meth-
ods have been explored by M. Gläfke [29] for 2d problems. He does
not treat the temporal domain separately from the spatial domain, but
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Figure 6. Discretization of car resp. truck tires used for computations
[16].
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Figure 7. Comparison of the A-weighted sound pressure level aver-
aged over 321 points and frequency bands for TDBEM and frequency
domain BEM [16].

refines the mesh of the space-time cylinder. More precisely, the rectan-
gular space-time elements are refined into four equally-sized rectangles.
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The flexibility of this approach comes with additional computational
cost: The MOT scheme no longer applies and one has to store and
solve the full space-time system in one step.

Error indicators η such as from the a posteriori error estimates
derived in Theorem 4 of Section 4 lead to an adaptive algorithm, based
on the 4 steps

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

Space–time Adaptive Algorithm in 2d [29]:
Input: Mesh T = (TS×TT )0, refinement parameter θ ∈ (0, 1), tolerance
ϵ > 0, data f .

(1) Solve V φ̇h,∆t = ḟ on T .
(2) Compute the error indicators η(�) in each space-time rectan-

gle.
(3) Stop if

∑
i η

2(�i) < ϵ2.
(4) Mark all � ∈ T which satisfy refinement criterion based on θ.
(5) Refine each marked � into 4 new rectangles to obtain a new

mesh T
(6) Go to 1.

Output: Approximation of φ̇.

In the following experiment, Gläfke uses a box pulse of the form
H(x1 + x2 + 2αt+ λ)−H(x1 + x2 + 2αt) as the incident signal of the
scattering problem with scatterer [1, 1]2. Here, λ = 0.05 and α = 1√

2
.

The box pulse is non-smooth, which appears to have an effect on the
regularity of the solution of the problem: The convergence order for the
adaptive version turns out to be genuinely higher than the one of the
uniform version, even for large degrees of freedom. The meshes that
result from the adaptive algorithm, as shown in Figure 8, are heavily
refined along the part of the surface of the space-time cylinder where
the box pulse moves along the scatterer.

Space–time adaptive methods in 3d, on the other hand, are still
in their infancy. As a test case in [26] we concentrate on time–
independent geometric singularities of the solution, e.g. in the horn
geometry between the tire and the street. In this case we expect to
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Figure 8. Adaptive mesh refinements for a box pulse in 2d [29].

have time–independent meshes, refined near the singularities, which do
not require an update of the Galerkin matrices in every time step.

From the discrete solution φ̇h,∆t of the Dirichlet problem (9) and

ḟ we determine in every triangle △ the time integrated local error
indicator

η(△)2 =

∫ T

0

∫
△
[h∇Γ(ḟ − V φ̇h,∆t)]

2 ,

where the time integral is approximated by a Riemann sum.

The error indicators η(△) lead to

Adaptive Algorithm [26]:
Input: Mesh T = T0, refinement parameter θ ∈ (0, 1), tolerance ϵ > 0,
data f .

(1) Solve V φ̇h,∆t = ḟ on T .
(2) Compute the error indicators η(△) in each triangle △ ∈ T .
(3) Find ηmax = max△η(△).
(4) Stop if

∑
i η

2(△i) < ϵ2.
(5) Mark all △ ∈ T with η(△i) > θηmax.
(6) Refine each marked triangle into 4 new triangles to obtain a

new mesh T
(and project the new nodes onto the sphere). Choose ∆t such
that ∆t

∆x ≤ 1 for all traingles.
(7) Go to 1.

Output: Approximation of φ̇.
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According to the a posteriori estimates derived in [26], the error
between the approximate and the actual solution to the problem is
bounded by a multiple of ϵ, up to quantities involving time–derivatives
of the residual ḟ − V φ̇h,∆t.

We consider the Dirichlet problem for the wave equation in the exte-
rior of the three-dimensional (discretised) unit ball with a singular right

hand side. We choose the right-hand side as ḟ(t, x) = 2 if x1 > 0 and 0

otherwise. The function ḟ is a toy example for a time–independent sin-
gularity, similar to the singular horn-like geometry where a tire meets a
street (see [16]). We expect adaptive mesh refinements to concentrate

around the line of discontinuity of ḟ , given by x1 = 0. For simplicity
we neglect the error of the surface approximation.

The numerical experiment depicted in Figure 9 shows the mesh gen-
erated by the above adaptive algorithm after three mesh refinements,
starting with an initial icosahedral triangulation of the sphere with 80
nodes. Most refinements are near the discontinuity of f , as expected.

The above experiment presents only a first step towards space–time
adaptive TDBEM, for the case of the geometric singularities relevant
to sound radiation of tires. The optimal use of space–time adaptivity
and its application to the acoustic boundary conditions remain to be
explored.

8. Outlook. Engineering problems such as the sound emission of car
and truck tires or scattering problems motivate the analysis of coupled
finite and boundary elements. First works in this direction investigate
the coupling of different time and spatial discretizations for scalar wave
equations [1, 2, 4, 15]. Waves scattered by an immersed elastic object
in a fluid provide a key example of practical interest. A basic well–
posedness theory for the time–dependent problem can be found in [23,
36]. The a priori and a posteriori analysis of numerical discretizations
based on Galerkin TDBEM [28], resp. convolution quadrature [35],
has been recently considered.

For large–scale engineering computations, the efficient assembly of
the space-time Galerkin matrix proves crucial. Fast multipole methods
based on perturbative expansions of the Green’s function in the far field
are being developed especially by Sylvand [48], see also [12] for related
work in the case of the Helmholtz-based convolution quadrature.
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26HEIKO GIMPERLEIN, MATTHIAS MAISCHAK AND ERNST P. STEPHAN

In this article we provide a survey over recent advances in time do-
main boundary element methods for the wave equation and applications
to engineering problems. The approach proves efficient and highly ac-
curate for scattering and emission problems, and we demonstrate its
relevance to applications in traffic noise. The a posteriori estimates
presented in this survey lead to fast space-time adaptive mesh refine-
ments. They make a first step towards high-order hp–adaptive methods
in space and time.
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31. M. Gläfke, M. Maischak, Wave-number explicit generalised mapping proper-

ties for Helmholtz boundary integral operators , applied to time domain boundary
integral operators, preprint.

32. T. Ha Duong, On retarded potential boundary integral equations and their

discretizations, in: Topics in computational wave propagation, pp. 301–336,
Lect. Notes Comput. Sci. Eng., 31, Springer, Berlin, 2003.

33. T. Ha Duong, B. Ludwig and I. Terrasse, A Galerkin BEM for transient

acoustic scattering by an absorbing obstacle, Internat. J. Numer. Methods Engrg.
57 (2003), 1845–1882.

34. G. D. Hatzigeorgiou, D. E. Beskos, Dynamic inelastic structural analysis by

the BEM: A review, Engineering Analysis with Boundary Elements 35 (2011), 159–
169.

35. G. C. Hsiao, T. Sanchez-Vizuet, F.-J. Sayas, Boundary and coupled boundary-

finite element methods for transient wave-structure interaction, preprint.

36. G. C. Hsiao, F.-J. Sayas, R. J. Weinacht, Time-dependent fluid-structure

interaction, Math. Meth. Appl. Sci., special issue, online first (2015), doi:
10.1002/mma.3427.

37. M. Maischak, E. Ostermann, E. P. Stephan, TD-BEM for Sound Radiation

in three Dimensions and the Numerical Evaluation of Retarded Potentials, Inter-
national Conference on Acoustics, NAG/DGA. 2009.

38. W. J. Mansur, A time-stepping technique to solve wave propagation problems

using the boundary element method, Ph.D. thesis, University of Southampton, 1983.

39. Z. Nezhi, Adaptive Time Domain Boundary Element Method for Sound
Radiation of tires, Ph.D. thesis, Leibniz Universität Hannover, 2014.

40. M. Ochmann, The complex equivalent source method for sound propagation
over an impedance plane, J. Acoust. Soc. Am. 116 (6), 2004.

41. M. Ochmann, Closed form solutions for the acoustical impulse response over
a masslike or an absorbing plane, J. Acoust. Soc. Am. 129 (6), 2011.

42. E. Ostermann, Numerical Methods for Space-Time Variational Formulations

of Retarded Potential Boundary Integral Equations, Ph.D. thesis, Leibniz Univer-
sität Hannover, 2009.

43. K. M. Rasmussen, S. R. K. Nielsen, P. H. Kirkegaard, Boundary element

method solution in the time domain for a moving time-dependent force, Computers
and Structures 79 (2001), 691–701.

44. S. Sauter, A. Veit, Adaptive time discretization for retarded potentials, Nu-
mer. Math. 132 (2016), 569–595.



ADAPTIVE TIME DOMAIN BOUNDARY ELEMENT METHODS AND ENGINEERING APPLICATIONS29

45. F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equa-
tions: a road-map, Springer Series in Comp. Math. 50, Springer, 2016.

46. G. E. Stavroulakis, H. Antes, P. D. Panagiotopoulos, Transient elastodynam-
ics around cracks including contact and friction, Computer Methods in Applied
Mechanics and Engineering 177 (1999), 427–440.

47. E. P. Stephan, M. Maischak, E. Ostermann, Transient boundary element
method and numerical evaluation of retarded potentials, Computational Science–
ICCS 2008 2008.

48. G. Sylvand, La Methode Multipole Rapide en Electromagnetisme: Perfor-
mances, Parallelisation, Applications, Ph.D. thesis, Ecole Nationale des Ponts et
Chaussees, 2002.
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