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Abstract

We analyze stabilized mixed hp-boundary element methods for frictional contact problems for the Lamé equation.
The stabilization technique circumvents the discrete inf-sup condition for the mixed problem and thus allows us to
use the same mesh and polynomial degree for the primal and dual variables. We prove a priori convergence rates in
the case of Tresca friction, using Gauss-Legendre-Lagrange polynomials as test and trial functions for the Lagrange
multiplier. Additionally, a residual based a posteriori error estimate for a more general class of discretizations is
derived. It in particular applies to discretizations based on Bernstein polynomials for the discrete Lagrange multiplier,
which we also analyze. The discretization and the a posteriori error estimate are extended to the case of Coulomb
friction. Several numerical experiments underline our theoretical results, demonstrate the behavior of the method and
its insensitivity to the scaling and perturbations of the stabilization term.
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1. Introduction

Mechanical problems naturally involve frictional contact with surrounding materials. The frictional contact prob-
lems studied in this article consist of a differential equation balancing the forces within the object at hand and contact
and friction constraints on one part of the object’s boundary. The latter significantly complicate the numerical analysis
and computations as they give rise to a variational inequality with a closed, convex set K of admissible test and trail
functions and a non-differentiable functional for the frictional energy, j(-), see e.g. [14} 21, 24].

With the help of a Lagrange multiplier A, which represents the negative surface traction on the contact boundary, the
variational inequality can be formulated as a mixed problem, such that the constraint from the variational inequality
takes a simpler form. If one directly discretizes the mixed problem, a discrete inf-sup condition is required to obtain a
unique discrete solution [21]]. Even if the inf-sup condition is satisfied, the possible dependence of the discrete inf-sup
constant on the mesh size # and polynomial degree p affects the convergence rate of the numerical method and must
be known to derive a priori error estimates. Sufficient coarsening of the mesh size and reducing the polynomial degree
for the discretization of the Lagrange multiplier A guarantees a uniform bound for the discrete inf-sup constant [31].
What sufficient means explicitly remains open, though a doubled mesh size k = 2k and a polynomial degree reduced
by one ¢ = p — 1 are found to work in practice [31]]. In particular, the discrete inf-sup condition is not satisfied for
the same mesh size k = h and polynomial degree g = p, which which would significantly simplify the data structure
and the computations. For finite elements it is well known that the discrete inf-sup condition in mixed formulations
can be circumvented by introducing a stabilization term [4} [53]]. In this article we consider the stabilization of mixed
hp-boundary element methods, their a priori and a posteriori error analysis and validation in numerical experiments.
The stabilized procedures are constructed from an equivalent saddle point problem which is strictly concave in the
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second, dual variable (see Theorem [7).

The challenges of the friction and contact constraints do not only involve the formulation, but also the observed error
reduction: Typically, the solution is of reduced regularity at the interface from contact to non-contact and from stick to
slip condition. The location of these interfaces is a priori unknown, so that special meshes like geometrically graded
ones cannot be applied. An a posteriori error estimate with an automatic mesh refinement procedure is required to
resolve the singularities. As a drawback, the adaptive methods require to compute an entire sequence of solutions,
rather than one solution only. For computational advantages the convergence rate of the adaptive method should be
significantly higher than the one of the quasi-uniform method. For example, hp-adaptivity is well suited to achieve
this [3]]. There, a non-stabilized mixed BEM formulation is analyzed, which relies on special basis functions, namely
Gauss-Lobatto-Lagrange for the primal variable and its biorthogonal counterpart for the dual variable. The unproven
p-dependency of the discrete inf-sup constant for biorthogonal basis functions is here circumvented by an appropriate
stabilization term. Moreover, no special basis functions are needed.

In many cases the insufficient resolution of these interfaces is the dominant source of error [3[]. As they lie on the
boundary only, it seems to be favorable to reduce the differential problem to the boundary as in [17, [16], and use a
boundary element method. Thereby one only requires a boundary mesh rather than precise refinements (both 4 and p)
on the trace mesh induced by refinements of a mesh in the domain. As a drawback of the boundary element methods,
compared to FEM, the system matrix is densely populated and the computation of the entries requires the evaluation of
singular integrals. We refer to [29]] where several strategies to overcome these BEM specific difficulties are discussed.

Most of the arguments in our article carry over to the 3d problem, at least for rectangular meshes. The functional
analytic parts hold verbatim, and for rectangular meshes one can consider tensor product discretizations of the La-
grange multiplier. However, a number of new technical and notational issues arise, e.g. the assumption of Lemma
14 might not be satisfied even for fine meshes in 3d and, computationally, adaptive mesh refinements are restricted to
rectangular meshes. We therefore restrict ourselves to 2d.

The paper is structured as follows. In Section 2] we introduce a mixed boundary element method with the help of
the Poincaré-Steklov operator S, which maps the displacement # on the boundary to the boundary traction o(u)n = —A.
The existence of a unique solution (u, 4) of the mixed formulation of the original Tresca friction contact problem is
based on the coercivity of the underlying bilinear form (S, -y on the trace space H'/>(T's) on the Neumann and friction
part of the boundary, as well as the inf-sup condition for A in the dual space (see Theorem [I). In Section 3] we dis-
cretize the mixed formulation in suitable piecewise polynomial subspaces. On a locally quasi-uniform mesh we use
linear combinations of affinely transformed Bernstein polynomials or Gauss-Legendre-Lagrange polynomials for the
Lagrange multiplier. In both cases we impose additional conditions to reflect the constraints of non-penetration and
stick-slip in the original contact problem. Based on these #p-boundary element spaces we introduce a stabilized mixed
method (T3)) with stabilization parameter |, which depends on the mesh size and polynomial degree on the element
E of the subdivision 75 of ['s. As in [20] for the h-version FEM, the stabilized discrete mixed scheme admits a unique
solution (7, A*7) (Theorem . We derive a priori error estimates for the Galerkin error in the displacement « and the
Lagrange multiplier A which are explicit in the polynomial degrees p, ¢, see Sectiond Our results (Theorem [T6and
Remark[I8) cannot fully recover the FEM result for the lowest order s-version in [18,[19] due to the approximation of
the Poincaré-Steklov operator in the stabilization term. In Section[5|we derive an a posteriori error estimate of residual
type for a general class of Lagrange multiplier discretizations (Theorem[22). After discussing implementational chal-
lenges in Section[6] we give an extension of our approach to Coulomb friction in Section [7]by suitably modifying the
test and ansatz spaces. Finally, our numerical experiments in Section [§|underline our theoretical results, demonstrate
the behavior of the method and its insensitivity to the scaling and perturbations of the stabilization term. They clearly
show that the classical stabilization technique extends to variational inequality problems, here for contact problems,
handled with boundary integral equations and s p-methods.

Notation: C, C’ or C denote generic, positive constants which may take different values at different positions. These
constants may dependent on the material parameters, the domain, especially the Dirichlet boundary and the shape
regularity of the mesh, but they are independent of the quantities of interest, namely the mesh sizes and polynomial
degrees.



2. A mixed boundary integral formulation

Let Q c R? be a bounded polygonal domain with boundary I" and outward unit normal n. We assume that T’
is already sufficiently scaled such that cap(I') < 1. Furthermore, let T = T'p U Ty U I'c be decomposed into non-
overlapping, for simplicity connected, Dirichlet, Neumann and contact boundary parts, and denote by Ty := Ty UT¢
the union of the latter two. For the ease of presentation regarding the correct dual space for the contact stresses
we assume I'p N ¢ = 0. For given gap function g € H'/?>(I'¢), friction threshold 0 < ¥ € L*(I'¢), Neumann
data f € H'?(T'y) and elasticity tensor C the considered Tresca frictional contact problem is to find a function
ue H}D(Q) = {v e H(Q) : VI, = O} such that

—divo(u) =0 in Q (1a)

o) =C:e(m) inQ (1b)

u=0 onlp (1c)

own=f onTy (1d)

0, <0, u, <g, op(u,—g) =0 onl¢ (le)
lof| < F, ooy + F |lu ) =0 onTc. (1)

Here, o, u,, 0, u; € R are the normal, tangential components of o(u)n, u, respectively and describes Hooke’s
law with the linearized strain tensor e(u) = % (Vu + Vu™). Equation may equivalently be written in the form

los| < F, ol < F = u; =0, ol =F = da =0 :u = —aoc,. 2)

Testing (1) with vq € Kq := {VQ € H}D(Q) :(vo)y, < gae.on FC} and introducing the friction functional j(v) :=
frC F |vi ds yields the (domain) variational inequality formulation:

ug € Ko : (0(un), €(va — ua)q + j(va) — jlug) = {f,va —ua)r, Yva € Kq, 3)

where (u,v)g o = fQ uv dx and {f, v)r, = er fv ds are defined by duality.
Boundary integral formulations can be advantageous for problems with non-linear boundary conditions and with
no source terms in Q. They rely on the explicit formula for the fundamental solution of the Lamé equation in R:

A+pu (x=y)(x=y7
A+3u |x—yP '

+3u

Glx.y) = 4rp(A + 2u)

(log |x —y|I +

With the help of the traction operator (Tu); = An; div u+ud,u; +u <%, n>, we define for x € I the single layer operator
V, double layer operator K, adjoint double layer operator K™ and hypersingular integral operator W as

Ve = [Geomoids, Ko = [ (160) vords,, )

KTu) =T, [ Gleopms, W = =T, [ (1,60 vds,. )

see [12]] for transmission problems in linear elasticity and [16] for contact problems in linear elastostatics. The
Poincaré-Steklov operator S := W + (K + )" V~!(K + ) is a Dirichlet-to-Neumann mapping [8]:

Su,v) ={o(wn,v) = (c(ua), eva)oq -

Ttis H> (I')-continuous and H* (T'y)-coercive, where H? (T's) denotes the closed subspace of H 5 (') of functions sup-
ported in I's. Hence the (domain) variational inequality immediately yields the (boundary) variational inequality
formulation: Find u € K with K := {v e H'?(I's) : v, < gae.on FC} such that

Su,v—wuyr, +jv) — j) 2{f,v-—uy, YveK. (6)
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It is well known, e.g. [9, Theorems 3.13 and 3.14], [10] that there exists a unique solution to (6). Since neither K is
trivial to discretize nor is the non—differelltiabl_e friction functional j(v) easy to handle [15] it may be favorable to use
an equivalent mixed formulation. Since I'p N T'¢c = @ by assumption, let

M (F) = {u e H'2Te) : (uvdr, < (F,vibr, v € H'P(Ts), v, < 0) (7)

be the set of admissible Lagrange multipliers, in which the representative 1 = —o-(u)n is sought. Then, the mixed
method is to find the pair (1, 1) € H'/>(T's) x M*(¥) such that (see [3])

(Su,Vr, + (AW, = (fi¥dr, Vv e H'2(Ty), (8a)
(o pp = Drp <& tn — Andp, Y€ M*(F). (8b)

Theorem 1. For the mixed problem ®) the following hold:

1. The inf-sup condition is satisfied with a consmntﬁ >0, ie.

~ s V)re ~
Blillgang, < sup  ————  VueHATe). ©)
VEH'/Z(Fz)\{O} ”VHHI/Z(I‘E)
2. Any solution of @®) is also a solution of (6).
3. For the solution u € K of (6) there exists a A € M*(F) such that (u, A) is a solution of (8)
4. There exists a unique solution to (B))

Proor. 1. The inf-sup condition has been proven in [|9, Theorem 3.2.1].

2. and 3. follow as in [32) Section 3] with (Su,v)r, = (0(uq), €(va))oq for volume force fq = 0.

4. follows from the equivalence results 2. and 3., the inf-sup condition 1. and from the unique existence of the solution
of (@) proven in [9 Theorems 3.13 and 3.14].

3. Stabilized mixed 7% p-boundary element discretization including Lagrange multiplier

Let 7, be a subdivison of I' into straight line segments such that the endpoints of the boundary parts coincide
with a node from that mesh. Furthermore, let 7, = 7, rlr,, & the distribution of side lengths, p the polynomial degree
on 7, r which on each element specifies the polynomial degree on the reference interval and O the affine mapping
mapping from [-1, 1] onto E € 7. Moreover, assume the mesh and polynomial degree distribution to be locally
quasi-uniform. We consider the ansatz spaces

Vip = {Vhp € H'A(Ty) V)5 0 Op € [P, (-1, 1D] VE € frh} c C'Ty), (10)
Vi = {¢hp € H'2(I) 1 ¢ 0 O € [Pyi (-1, 1])]2VE € frh,r} . (an

Note that v = 0 in the endpoints of I'y if Vi e V},p- The displacement field uh? is sought in Vy,,. Let ip, : (V}?p -
H~'2(T') be the canonical embedding and i;  its dual. The space V}> is used to construct the standard approximation

(81 S5, := W+(KT + %) ith;p' i (K + %) of S, where V), is the Galerkin realization of the single layer potential over

(V,?p . For the discrete Lagrange multiplier let T x be an additional subdivision of I'c. The discrete Lagrange multiplier
is sought in

qE
M (F) = {,ukq € LX(Tc) : fh(x) = ) uEBig, (W5 (0) VE € T, )y 2 0, |(uf)] < ?(%(iq;;»} . (12)
i=0

where B, ,, is the i-th Bernstein polynomial of degree g and W is the affine mapping from [0, 1] onto E € ‘T‘k Since
the Bernstein polynomials are non-negative and form a partition of unity, it is straight forward to show that M,jq(?—~ )is
conforming, i.e. M,:r (F) C M*(F), if F is linear. Since M,jq(?—~ ) is chosen independently of V), it cannot be expected

q
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that the discrete inf-sup condition holds uniformly, i.e. independently of 4, k, p and g, especially not for T = Thlre.
To circumvent the need to restrict the set M;q(?’ ), the discrete mixed formulation is stabilized analogously to [4] for

FEM. That is, find the pair (u"?, 1) € V), x M,:rq(ﬁ':) such that
hp kg i
<Shpu 7y p>r + </1 9y p)

b3 I'c

(= A9y =y (W= 2) A S ) < (g = 4T) YR € M) (13b)

) ) =) Wrev, )

Here, v is a piecewise constant function on I'c such that y|p = )/Oh};ﬁ pgz_" with constants yg > 0, 8, n > 0 for all

elements E € Tr... For the forthcoming analysis, y must scale at least like 2p~2 to be able to compensate the scaling
factors of the polynomial inverse estimates. In the following we assume 2 < 1 and p > 1.
Alternatively, M*(¥) is discretized such that the constraints are only satisfied in a discrete set of points, namely

M;Gﬁ:{M“Gﬁﬂb%#monEeﬁﬁﬂ—LHﬂa#?Q)ZQ—Tﬁﬂsﬁ%w37ﬁwﬂnx€Gw},(M)

where Gy, is a set of discrete points on I'c, e.g. affinely transformed Gauss-Legendre points (which are used in the
following) ), and *? are linear combinations of Gauss-Legendre-Lagrange basis functions. Enforcing the constraints
of the primal variable u in such a finite set of points has only been applied successfully in e.g. [[15, 25, 27].

We point out that M, (F) = M, (¥) for ¢ = 1 if in M} () the set of Gauss-Lobatto points are used instead
of the set of Gauss-Legendre points. This is no longer true for higher order polynomials. Unless specifically stated
otherwise, the proven results are true for both discretizations M,jq((F) and M,:'q(?’).

We collect some results on S ,, which allow to prove existence and uniqueness of the solution of the mixed formulation
(T3). Here and in the following, in estimates we also write & = max hg and p = min pj for the maximal side length,
resp. minimal polynomial degree in the discretisation.

Lemma 2 (Lemma 15 in [27]). There holds:

1. Sy is continuous from ﬁl/z(Fz) into H-Y2(") and coercive on ﬁm(FX) X I?‘/Z(rz). We denote the operator
norm by Cys and the coercivity constant by ag.

2. Epp =S = 8y, is bounded from H'2(T's) into H™'2(I), and there exists constants Cg, C > 0 such that for
ve H'(Iy)

_ 1
VUK + 5)v — iy

”EthHH,m(r) < CelMligingy, and “EhPV”HfI/Z(r) <C inf

S VD, H2(D)

For the coercivity in part 1., we refer to [8]]. The proof for the ~—method there extends verbatim to Ap, provided 4 is
replaced by min{h, p‘l} and min{A, p‘l} is sufficiently small. Reference [2] bootstraps the result from [8] from small
h to arbitrary h; again the proof for hp only replaces 4 by min{h, p~!}.

Lemma 3. Let 6§ € [0, %]. There exists a constant C(6) > 0 independent of h and p such that

1-26
| EnpVaplla-sqy < C((S)anhp”mﬂ(r) Ynp € Vi

Proor. As V : HO() = H'™°(T) is bijective, we may set 7 = V"' (K + %)Vhp € HO) and estimate

Pl
<C ||Vhp”H1—5(r) = Cm ”"hp”Hl/z(r) :

1
mmﬂDSCWK+§w@
Hl—é(]")

Here the last two inequalities follow from the mapping properties of the boundary integral operators [11] and the

inverse polynomial estimate [13|] by complex interpolation. Let zj,), € (V,?p be the unique solution of

1
<Vth’ ¢hp>l- = <(K + z)vhps ¢hp>r V(php € (v}?p .

5



From the H™Y2(T')-coercivity of V it follows that

1
el < C H(K + 3,

o) HVhP”Huz(r)
Thus we obtain

(Ber) {0 =i il a0 )
WEnpVaplla-sqy = sup  ———— sup
remonoy ITllao) TeHY(D\{0) Illzocr)
. 1
<Z — InpZip, (K + §)T>
= sup < Clz = inpznp|| sy < C zllz-sry + ||2ap]| -
TeHO\(0) Tl ” I ® ( ol m)

pl-% pl-%
< C(||Z||H sry + Ch1/2 5 “Zh/’”H '/2(1")) = Ch1/2—§ th/’”H'/z(r) ’
where we use the inequalities from above and the inverse polynomial estimate.

Lemma 4 (Lemma 3.2.7 in [9], Prop. 5.1 in [7]). Withu € H'*(Ts), u"? € V),

_ 1 . _ I, .
Y =VIK+ R U, =V K+ E)u“’, WP =iV in (K + 5 )uh”.

(15)
Then there holds
(Vwi, —v'N.¢"7) =0 Vg e V],
and
=PI, + Iy = W1, = (Su = St u=u?) (Vg =0, =y
where |lu — u"?|[3, = (W(u — u"),u — u"P)r and |y = |5, = V(@ = "), = "P)r.
Theorem 5. Let T, be a locally quasi-uniform mesh. Then there holds
B2 2 5
SEsi| <G, € Vi (16)
EcT), L2(E)

Proor. From the definition of Sy, follows that Shpvh” =Wy + (KT + )lhpnh’) with n'? = hp lhp(K + 2)vhp € (Vth
In [l Corollary 3.2] it is shown that

172 2 , Rl 2 5

E h 21|,k E T h 2|,
Z o Wyhe <t p“ﬁw(rz)’ Z . K™ < C? |y p“ﬁ_”z(m
E€T;, I2(E) E€T;, 12(E)

for the boundary integral operators associated to the Laplacian. For the integral operators @), @) of the Lamé
equation this can be done analogously. The assertion follows with the mapping properties of V,_ pl i]’;p(K + %) and the
standard inverse polynomial inequality for the identity term, see e.g. [I3)].

Lemma 6 (Coercivity). There exist constants as and C > 0 independent of h, p, k and q such that

<Sh Vhp hp>r <7Shpv P’ Shpvhp>rc = (Q'S - YOC) ”Vhp”%l/z(rz) Vv e (Vhp

(17)
for yq sufficiently small, with @, := as — yoC > 0



Proor. From Theorem[D} h < 1, p > 1, B, 1 > 0 it follows that

W 2 2
h h hp h
(yS i/, V7)< n5C "7y < Y€ IV Gy » (18)
with C > 0 independent of of h, p, k and q. Hence, from the coercivity of Sy, there holds

<Shpvhp, Vhp>rz B <7’S/11:Vhp, Shpvhp>rc = (s —y0C) “vhpnzﬁ”z(rz) ’ 1)

Theorem 7 (Existence / Uniqueness). For vy, sufficiently small, the discrete, stabilized problem (13) has a unique
solution.

Proor. In the standard manner it can be shown that (13)) is equivalent to the saddle-point problem: Find (u"?, A7) €
Vip X M;q(?) such that

L, f) < L, 24 < L,6"7, 24 WP eV, Vit e My (F), (20)

with LVP) = (f,v")r,, L) = (g, 1")r, and

1 ~ 1
L, M) = §<Shpvhps VPr, = LOMP) = L) + (,Uk", vhp>rc -3 <)/(pk‘1 + 8 V"), 1M + S"thp>rc .Q@n
Due to agqp = as —yoC > 0 for yy sufficiently small,
L0700 = (S, - L)~ 5 [ s = S Wl V]
y v, - 2 hpv ,V Ty 14 2 - 'y th S 2 2 14 ﬁl/z(r):) H—I/Z(FN) 14 ﬁl/z(r):) s
-
and L, (0, k) = —% frc y(uk)2ds — kaq ), L, is strictly convex and coercive in VP and strictly concave and coercive

in /,tkq. Since it is also continuous on Vy;, X M,jq(?’), and Vy,,, M,jq(?') are non-empty, closed, convex sets, standard

arguments (e.g. [21|]) provide the existence of a unique solution.

In the absence of stabilization, i.e. yo = 0, £, is only linear and thus not strictly concave in /1’“’ . Here however,
strict concavity is needed to avoid the use of the discrete inf-sup condition. Due to the conformity in the primal
variable there trivially holds the following Galerkin orthogonality.

Lemma 8. Let (u, 2), (u"?, A*9) be the solution of [®), (13) respectively. Then there holds
hp kg k h h )
(Su=Supu VP, + (1= 25, v P}rc + (YA + S 3pu"™), S v P)rc =0 VWP eV,
The next result will be used in our error analysis in Section 4]

Lemma 9 (Stability). For the solutions (u, 1) of ) and (u"?, A*?) of (T3), there exists a constant C > 0, independent
of h, p, k and q, such that

[’
A

(22)

(@s =100 [ |y, + 24 oy < (Cllllzingyy + 1A zme) 1 gy, + oy [ 07, -

Proor. Choosing ,uﬁq = 0and /,t];q = 2/1],7, each with /qu = /lfq, in (13b) yields
kg h kg 4k k
</lnq’ unp>l-c - <yﬂnq’ /lnq + (S hpuhp)n>l-c = <g9 /lnq>l_c 5
kg _ kg kq _ .
whereas (,,' = A, and ;" = 0 yields
(-1, uf'f’)rc + (y2 47+ (Shpuh”)t>rc <0.

7



Hence, (13d) yields with V' = u" and Lemmalf]
(110, = ()~ oS5+ (15), 5,
2 <S”1’“hp’ ”hp>rz - <75 e Sh/’”hp>rc + <7/lkq’ /lkq>rc + <g ’ Afﬂ)rc
> (@5 =900 [ [y * 20 s + (0,

On the other hand from (8a) with v = u"? € V), c H'*(T's) it follows that

(£, “h”>rN < (Cllalgirryy + 1) 14 702y

which completes the proof.

The above proof also shows the following sharpened estimates:

Corollary 10. Let € > 0 be an arbitrary constant. If C°(T¢) 3 g > 0 and ¥ ¢ M;q(?'), then there exists a constant
C>0, independent of h, p, k, q and €, such that

(@s = %0C = O [ [y, + (0 = Oy 20 < ” (C||u||Hl,z(rz)+||A||H ) H7 12 (g - qug) .

ProOF. Recall that the (affinely transformed) Gauss-Legendre quadrature with q + 1 points integrates polynomials of
degree 2q+ 1 over the element E exactly and that it has positive weights wfq”’E). Let 1y be the interpolation operator

in the Gauss-Legendre points Gy, then /l]:,qf k& 2 0 in Gy and, thus,

—_

(6 ), == T )+ (T ), = (6= T+ 3 w0 P00 (1) o)
Ee7, =0

>0
> <g - qug’ Aﬁq>rc

Hence,

(Cllllzgnaryy + 1) [ ey, + (2 = Trag z’:ﬂ%ﬂj 2 (as = 0O [ |7y, + P22 o, -

The assertion follows with

1/2 1kq

+e ||71/2/lkq”iz(rc)

(e = Zuas. i), | < b7 (e = Zuas)| o 72N < 32 HV 2 (g~ s

L2(T¢) L2(T¢)

for arbitrary € > 0 and Young’s inequality.

Corollary 11. If X ¢ M;q((f), ie. 40 >0, and if g = 0, then there exists a constant C>0, independent of h, p, k
and q, such that

| l/2/lkq

(as —y0C) ”uhp”i'.jm(rz) + | 2T = (C ”u”H”z(Fg) + ”/l”H ]/2(Fc)) Hu ”HW(FZ) (23)

4. A priori error estimates

Lemma 12. Let (u, 1), (u"P, A*9) be the solutions of ), (13), respectively, and A € L*(U¢). There holds

-0,

—{a= Ak v — hp kg . kq
e (A= 2 u u>rC+Ry(u,/l,u A g k), (24)



where for any u € L*(T¢) N M*(F), (k4 € M;q(?’ ) (or 4k € 1\711;(?7) depending on the selected discretization) we
define

R, (u, A, u?, ke g;,u,,ukq) = </lk" — U, u>rc + </l - pkq, u? — )/(/lkq + Suh”)>rc + <7(/l - 2+ Suh”>rC

(Y= X0, By (g~ 2 - A, @

Proor. First note that

2

|

PA=29| =D, =2 (ya 2) o+ (ya, )

Ly(T'c) [o
Rearranging (13B) we get
<7/lkq’/lkq>rc < <7/lkq’,ukq>rc _ <,ukq L uhp>rc + <7(Ilkq _ /lkq)’Shpuhp>FC + <g’/1/';q _ /lﬁtI)FC V,ukq € M;q(g_‘)_

Adding (Bb) results in

AU <A =2 (A ), A, (i B (il 0,5,
(gt~ 7).
<= (=% u - u)rc +{A—p, uh”>rc + (A% —p, u>rc + (A, D, = 2 (A, A)

+ <y/lkq’ :ukq>1-C + <7(ﬂkq - /lkq), Shpuhp>l-c + <g’ :uﬁq - /lfzq + Un — /ln>rc .

I'c

Rearranging the terms and adding the zero (y/l, Sul? Suhp>r gives (With Ey,, = § — Syp)
c

</1 -, uhp>rc +(yd, Vr, =2 <7/l’ /lkq>rc + <y/lkq"ulaz>rC + <y('ukq =2, Sh”uhp>rc

= </l TV Suh")>rc + <y(/l — A 4+ Suh">rc - <7(/qu — ke, Ehpuh”>rc ,

which yields the assertion.
Theorem 13. Let (u, 2), (u"?, A*9) be the solutions of (), (I3), respectively, and ¥, y"? as in (@3). Ifae [*(T¢), then

there holds with arbitrary V'? € V,,, ¢ € (Vth, ue M (F)NLATe), ke M,jq(?') (or " € M,:rq(?') depending on
the selected discretization)

2

hp) 2 hpi2 1 ka2 (C+Cp) G hon2
aw — 2e)|lu— u"’||~ +ay — € —y"P +ly2(1 = A <|—+ = ||lu-V*"|~
(aw DIl ”H%(rz) (av —e)lly — v ”H*%(r) ly2( Mz ( Il ”H%(rz)

4de 2
[ e S ),
(A=l (4 SUY) = (y = X Bt )+ (gt = A+ b = )

= (Y 83", Enp” = V) 4+ {y(A = A0, A4 V) (y (A4 SulP), S = V7))
~ (YEwpu”. S @ =),
with constants ay, ay,C, Cg, Cy, Cx > 0 independent of h, k, p and q and €, €; > 0 arbitrary.

ProoF. By the coercivity of W and V, and by Lemmas Eland there holds for all V'P € V), uk € M;q(?') or



W e M;q(?—') depending on the selected discretization, u € L*(T'¢) N M*(F), that

aw “” - “hp”%uz(rz) tay “’ﬁ - ‘ﬁhpnii-'/z(r) + ”71/2(/l - ’lkq)”iz(rc)
<(Su=Supu u—u?y 4 (VW — 0w =)+ A= A
=(Su=Supu u =)+ (VW =g =)+ (A= A )

+ (Y94 S, S @ =) [y 2= 2D
<(Su—Spu,u- vhp)rz +(V(y, ="y =g+ (A= 2 u— vhp)rC + Ry (u, A, u, 249, g 1, 14

I'c

=:A =B
+ (Y@ S 3", S =D)L

It remains to estimate A, B and the last two terms. Since, Su — Shpuh” =Su—-u")+ Ehp(uh" —u) + Eppu we obtain
with Lemma@and W = VUK +1/2)u that

A< [(C +Ck) ”” - ”hp“i{‘l/z(rz) +C ”‘/’ - ¢hp“Hfl/2(r)] ”” - Vhp“ﬁw(rz) Vg'r € (thp :

From Lemma adding the zero <V(zﬁ -y, - ¢h/’>r and (13)) it follows that
1
B=(V;, —¢"),u—¢"). = <(K + 5) W = u),y - ¢hﬂ> + (V- g,y — "),
r
1
< [(Ck + E) ||u - I/thp“ﬁl/z(rz) + ||w - lﬁhp”Huz(r)} ”lﬁ - ¢hp”H71/2(1—) V¢hp € (Vi?p .

Note that (Ep, = S — S1p)

(Y5 + 8 pud"), S 4 — v’w))rc + (Y= A", 1+ Suhp>rc = — (Y + S 4u?), By ~ th)>rC

(Y S, S @ V7)) (A=A, A+ SV S @ 7))

= = (Y4 Spp). Enp(@? =)+ (A= 2,4 SVP) 4 (y(A+ Sppud ) S G = V7))
= — (Y9 + S 4puP), Enp@? =)+ (y(A = A9, 1+ SVP) + (y(d+ SuP), S @ — 7))
I'e

I'c ¥e
- <)/Eh,,uhp, S(uhp - vhp)>rc .
Application of Young’s inequality yields the assertion.

Following [30], there holds by exploiting the exactness of the Gauss-Legendre quadrature:

Lemma 14. [f the Lagrange multiplier mesh is decomposable such that ‘;:k =& U & with
E:={EeTi:Wl<FVxek|, & :={EeTi:+l20VxeE}, (26)

Ak e 1\7;4(7’ ), 0 < ge  H*I¢) and u € H*(T) with « € [0, %), then there exists a constant C > 0 independent of
h, p, k and q such that

k1+(l/ ( s p(2+n)/2 O p(2+n) k1+a/ 1) (27)

. kq _ _ kq _ o o
ye[ll/}’l"f(‘f) </ln Hns Un g>rc + </11 His u’>rc = quJr(t Yo h(1+B)/2 % h(1+B) qlJr“’ *

10



Proor. From CorollaryI0|it follows that

Q2+m)/2 1 l+a
-1/2P k ) ) (28)

1/2 4k _ _
22, < C(”“”H'/ﬁ(m e Yo gz i lellrea
Recall that the (affinely transformed) Gauss-Legendre quadrature with q + 1 points integrates polynomials of degree

2q + 1 over the element E exactly and it has positive weights quH’E). Since u, < g a.e. on I'c we obtain for the first
of the two terms with u, = 0 that

(! = o n = g),. = f A (= ) = Tiglutn — 8)) ds + f A Thg(uty — ) dis
I'c

I'c
qe+1
— f Aﬁ‘[ ((un -9 - qu(un _ g)) ds + Z Z quE+1,E)/li4(x§qE+l.E)) (qu(un _ g)) ()ngEH’E))
I'e 7 =0
EeTy

<0

< I (1 o= T, 7 e i)

L2(T'c) L2 (Fc))

2+m)/2 k1+a/ 2+m)/2 k1+a/
<y 2P ~1/2

0 LB F (”“”E”Z(FE) + ”’1”17-‘/2(1“5) +% WW ”g”HW(FC)) (”unH“ﬂ(r) + IIgIIle(rC))

with %9 € ]\./i,jq(?'), the exact integration with a quadrature formula adjusted to the constraints in M;q(f) and with

@38).

Given the decomposition ’Fk =& v 8,? we choose g = +F for E € 8;' and |l = 0 for E € &;. From @) we

deduce that +u;|r > 0 for E € &; and u;|r = 0 for E € &;. Hence, for Ak e 1\7,:’4(77) we obtain (/lfq — u)u; < 0in the
Gauss-Legendre points Gy,. Therefore

(=), = [ =) = Tag) dse [ (2 =) Tig, s
c

c

1
- fr (47 = ) (0 = Tiquy) ds + Z qi WO (9~ ) o (DY (L) o (1)
C

EeT; =0

771/2 (uz - quut)

<0
< [,

o) (0o + lltellz2rey ””f - I’“I”f”LZ(rc)
C p(2+77)/2 klﬂ? 4 2p(2+r])/2 klﬂr
< 5 e g (Wl + WG aae + 70" 4 aem7 e I8l | Wlesa
yal2 h q h q
1+a

+ qu—m F 2y Nl grseqry -

Remark 15. 1. The condition :fk = &, U & requires that the continuous Lagrange multiplier A; does not change

its sign and that it does not take its upper or lower bound on the same element E € T.
2. If A, € CUTo), Ty = &V S,f, can always be achieved if the mesh size k is sufficiently small.

3. The condition ‘7:/( = & U & is also fulfilled if the “critical” points of discontinuity of A; coincide with nodes of
the mesh 7.

Theorem 16. Let (1, 4) € H'**(I') x H*(T¢) N C°(T¢) and (u"?, %) € V), x 1\712(1(7") be the solutions of (8), (13),

respectively, with 0 < g € H'**(T¢) and a € [0, %). If ’7:;( = &, U &, then there exists a constant C > 0 independent
of h, p, k, q, B> 0 andn > 0 such that there holds

_hp)2 L0y kgy 2 _ w2
lloe — u IIE%(FZ)HIW(/% DNy =o™I , <C

hﬁ hl+2(1—ﬁ k@ kl+(y p(2+r])/2 k2+2(r p2+7]
hS —t—t -t ———t =7 >
H 2(D) pn p2(y—r7 qw ql+(y h(l+ﬁ)/2 q2+20 h1+ﬂ

with y, Y given as in (T3).
11



Proor. We apply Theorem [[3]and estimate the individual terms. For that we use the following results:
Let 7, be the interpolation operator in the Gauss-Lobatto points Gy, on I's and 1}, be the interpolation operator in

the Gauss-Legendre points Gy,. Since u € H'*(I'y) and 1, pu can be extended continuously by zero onto the whole I
(denoted 1, ou) we have [[6, Theorem 4.7 and Theorem 3.4]:

1/2+a
“"‘ - Ihﬁ“”ﬁl/z(r;) = ”” - Ih/’vOM”H‘/Z(D < Cm lletl | p1+ary »

l-s+a

h k(l/
ot = Zpot] .y < CW lillgpoy s s € (0,1} and |4 = Tigd|| o, < C—a I gre ) -

In particular, 7,1 € M by (T ). We also note that from the mapping properties of the boundary integral operators and
Lemmal[3}
ISV < iy Yv e H'(D), (29)
h P n
”EhPV p”LZ(r) = CW ”V p“H'/Z(F) Vv € Vip. (30)

Furthermore, we need the polynomial inverse estimates, see e.g. [[13] and using complex interpolation:

70 < €2 VPl 7 € Vi 52 0 31)
h P yn h
”V p”HI(r) < Cm “V p”H‘/Z(l“) YWY e Vip. (32)
In the error estimate the following terms appear in several places.
From (29) and v'? = I, ou it follows that
h(1+P)/2 h+P)2+a
1/2 h /2 1/2
”7 Su-v p)”LZ(rC) = C—san P2 “” “Hl(r) =% Clm lletl ey - (33)
From (29), (32) and the triangle inequality it follows that
K482 W2 W2
1/2g (0 _ Jh 1/2 N 1/2 h hp 1/2 h hp
”7 S - p)”LZ(rc) =% Cp(2+r])/2 ”u p”H‘(F) =% CW ”“ P ||H1/2(r) Y0 Cpr]/Z ”“ P—v “ﬁl/z(rx)
W2 W2
1/2 1/2 N
<% CW ”“ P - ““ﬁ”z(rx) % Cﬁ ”” p”ﬁlﬂ(rz)
hﬁ/Z h(1+,8)/2+(1
1/2 h 1/2
<y, CW 6" = ull 2y + 70 cp(m,) oz ey - (34)

Equation (30) and the triangle inequality now imply:

WB2 B2 (1+4p)/2+a
”71/2Ehp(”hp - Vhp)“LZ(rC) = 7’(l)/zclm “” - Vhp”HU?(r) 7(1)/2CW “” " ””ﬁl/z(rz) + 7(])/2C1m lletl 1oy -
(35)
From (30) it follows that
L B2
”yl/thPuh[)”LZ(rL) = I/ZCW ”“h ||H1/2(r) = yé/ZCW | " ||H‘/2(F);) (36)

With these approximation results at hand the remaining terms can be estimated. From the Cauchy-Schwarz inequality
and Young’s inequality follows

2+n
_ 1 p
A= u ="yre < Iy 2 = Dllyaolly™ 2@ =)o < ey A9 = Dl + deyo B M~ Pl
. 1+2a- X C h 1+2a—-f
< EH'}’E(/l a4 /l)”LZ(F ) Y0 WHMHHH”(F) 5”7 (/l a /l)”L?([‘ ) €Yo W (37)

12



From LemmaT4]and interpolation we obtain

llelil/%f(‘T) </lkq e u>rc * <g"uflq - /l/';q T Hn /ln>l"c

_ kg _ _ kg _ E
= ”eixﬂf(ﬂ </l,, s U g>rC + </lt U u,>FC + an

k1+01 1 p(2+17)/2 » p(2+17) k1+a’ k@
('}’0 H(1+B)/2 + Yo H(1+B) W +1)+ Cq_a ”/l”H”(FC) ||g||L2(FC)

1Al gre ey 182 e

q1+a

C k1+a p(2+n)/2 C k2+211r p(2+r]) k@
< + = +C— .
,yé/z q1+a h(1+ﬁ)/2 Y0 q2+2a h(1+/3) qa

Using 29), (1)) and Corollary[10]yields

(A= =y (A + S”hp)>rc S s P

“u + Hy/lk + “ySuh”

hp“LZ(rc) q”LZ(rC) LZ(I‘C))
12 h(1+B)/2

””hp”Lz(rC) % P2 H7

= ”/1 - “kq”LZ(rc) At

—— —~

)
q”LZ(rC) + C)/oﬁ ””hp“LZ(r))

12 p(2+7])/2 k1+a
lull 72y + Al =120) + €Yy WW ||8||H1+a(rc))

104

k
< Cq—a [l e rer)

l—

ka C (2+1)/2 kl+2<x
< C_a/ t p(1+/3>/2 142a *
q* vy h q

From the Cauchy-Schwarz inequality, (36) and Corollary [T0]it follows that
_ <y(ﬂkq _ AkQ), Ehpuhp>l—~(‘ — <'yl/2(/lkq _ /l), ,yl/ZEhpuh[)>rC + <,y1/2(/1 _ /qu)’ ,yl/ZEhpuhp>l_C
< O (120 = M+ 1= ] )
- 0 p’]/2 LX(Tc) LX(Tc) H'2(Ty)

h(1+ﬁ)/2 k@ )

W
1/2 1/2 3k 1/2
< Cyo pn/z (”7 (/l 1 - /l)”LZ(FC) + ’Y() p(2+7])/2 E ”/l”H“(rc)

12 p(2+77)/2 k1+a/
: (”u”ﬁl/z(rz) +lAlg-120 + € WW ||g||H1+w(rC))

h(1+ﬁ)/2 k< hﬁ/Z k1+a
1/2 2k 1/2 1/2 )4
< (“7 (A = ’D”LZ(FC) % )( 0 i + Ch1/2 q1+a)

p(2+7])/2 qa/

k1+a/

W82 KQ1/248 fo BPI2 12
1/2 P 1/2 9k 1/2
<C (70 e + hi2 q1+a/) “7 (4 - /1)||L2(FC) +Cyo po

p1+n q* 0 pn/2 q1+2(y :

Furthermore, we obtain

= (YA S ") B =) = (Y= A= A= S+ Sul” = S, By (' = V7))

I'c
(YA =2, By =)+ (y (A= Su?), B =v7)) 4 (YEpptd?, Eppul'” = V7))
=tA+B+D.

I'c

From the Cauchy-Schwarz inequality, Young’s inequality and (33) follows

A < ey Pa- 29|,

T¢) Tc)

2 pl+2
g+ B
H'(T'y) Qe pl+2etn TUHTD)

5 ,yOC hl+2<x+ﬂ
= gy + Te pite

1
T

’)/()C2 /’lﬁ

<e|y'?a- Akq)”i%rc) T2 o

e

< ey - ")

2 YoC Wy,
rae T 7 ”“
o € p'l

13



From 1 = —Sulr., the Cauchy-Schwarz inequality, (33), (34) and (33), Young’s inequality and triangle inequality
follows

B = < 12g (u- hﬁ) + 'yl/zs (Vhp hp), Yl/thp(“hp - vhp)>l‘c
< (s @- ey * 728 057 - hp)”LZ(rc))”7’1/2Ehp(”hp - Vhp)“mrc)
PP/ 2+a , hAI? W
< ( 1/2C‘ (2+T])/2+(Y ||”||H1+“(F) + C')/O p’]/z “Vhp - uh ”1—11/2(1“2)) C’y(l)/z pTI/2 “Vhp - uhp”ﬁl/z(rz)
)’OCZ h1+,3+20(

+(1+ e)czyoﬁ v - u

h
- 4 2nt2a ”u”H”"(F) p”ﬁl/z(r )
€ p-h z

()’ C2 hl+ﬁ+2a 1+8+2a

W 2
2 h
4 ot OC Yo )nunwm +2AL+Cy05 [l = |Gy

p 1+n+2a
1+8+2a

<(l+e+€ 1)Cyo

W
+(1+ e)Cyoﬁ ||u - Mhpuzguz(rz) .

1+r]+2(1
From the Cauchy-Schwarz inequality, (36) and Young’s inequality follows

hl+ hﬁ
D<o prn ”Ehl’”] ”Lz(rc) ”Ehp(”hp hp)“Lz(rC) = 70C[7 ””hp”ﬁlﬂ(rz) “”hp - Vhp”ﬁl/z(rz)

W 1
< VUEC ((1 +€) “” - ”hp“f?/l(rz) + de ”“ - vhp”f?”z(r;) +llullgie, “” - vhp”Hl/z(rz) + iy H” - ”hpnguz(rz))
hﬁ apli2 N 1 hl +2a 1/2+a
s yocﬁ ((1 + ) —u p”ﬁl/z(rx) +llullzingy) e = u p”ﬁlﬂ(rx) 4e plt2a llt ”H‘“’(F) Pl llull 12y el ey

h1/2+,3+a

! “171/2<r;) hp“ﬁl/z(r yt+e “C

W
+ YOCE ”u —u pl/z+a

B
S(l+e)yoCh— ”u—up 2
p’l

Using A = =S ulr,., the Cauchy-Schwarz inequality, Young’s inequality and (33) yield

2 1 12 /ihp 2
vro ¥ ae ”7 SO =Wl

C)’O hl+ﬂ+20
reo ™t € Im

(Y@= 2D, 24807) = (' PA= 20507 —w) < ey Pa- 2

C)/O h

<e|y'*a- /1’“1)“L2(rc) " lm” oy =

= €|y *(1 - A"q)

Using A = =S ulr,., the Cauchy-Schwarz inequality, Young’s inequality, (33) and (34) yield
(YA +Su). S =) = (Y PS WP ) £y RSO ),y S ' =Py

= “71/25 (”hp - vhp)”iz(rc) + “71/25 (vhp - ”)“LZ(FC) ”71/2S (uhp - Vhp)”LZ(rc)

s+l Ps@” v + i Y28 0" = [ e,

hﬁ 2 CZ,y hl+ﬁ+2ry
2 h 2 0 2
S 2(1 + E)C yoﬁ ”ulp - u”ﬁl/z(r):) + (2(1 + E)C 'y()p + € ) p2+77+2a ||u||H1+a(r‘)

h1+,8+20

WP
S(1+6)C’)/0ﬁ”uhp— +(+e+eHCyy——

2
u“ﬁl/z(r ) p1+n+2a '

Analogously to the estimate of part D we obtain

hl+ﬁ hﬁ
- <7Ehpuhp’ S(”hp - vhp)>rc < 70]% “EhPuhp”LZ(rc) HS (”hp - vhp)“LZ(rc) = 70C1? “”hp”ﬁlll(rz) ”“hp - Vhp“ﬁlﬂ(rz)

n W 1/24B+a
<1+ e)yocﬁ [ = u"”||2ﬁl/2(rz) ¥ yocﬁ Ju uhp”ﬁm H(l+e DyyoC——r T

14



Putting all these estimates together yields

W ) \ L
(aw 26— (1+e+e mcp)uu ’f’||i%(r +(av—62>||w—w"’||2,%(r)+<1—3e>||y5u DN

¥, 2 k
_ "o hp _ 12 P 1/29kq _
yonn ”” u ”ﬁl/z(rz) C(70 e tn ni2 1+a) ” (=) 12T
1+2a hl+ﬁ+2(1 h1/2+,8+(1 C hl+ﬁ+2(1 C h1+2(1—ﬁ
—1 —1 —1 -1 Y0
< (61 + ) + 1) Cp1+2a/ + (1 tete )Cy0p1+n+2(y + (1 te )'}’OC ]/2+n+<y € p2+n+2ry 6_,),0 p2(1—7]
C k1+a/ p(2+77)/2 C k2+2a/ p2+r] C p(2+n)/2 kl+2(x hl/2+ﬁ k@ 12 hﬁ/Z k1+2(1 k@

2 g hB7 T e B P BT g +Cn o go TN g Cq_a/ :

For €, €], € and vy sufficiently small and 2 < 1, p > 1, 8, > 0 and compressing the constants to the positive, generic
ones yields that the error estimate has the following form

% 1 WE oy ok
2 hp) 2 h 210 d k 1/2( 3k
Cillu = u™II-, B )_C?_nH”_"‘pHﬁm(rz)+C4”"yz(/1 ’1(1)||L2(FC) 5(p7,/2 t R qlm)” (4 - ’DHLZ(F)
e hpy 2
= ¢l o
Cy WY ] Cs (W12 K|\
_ L Y= . S (P K 2 hp| |2
(C1||u T PIO 2C pn) +(C4||'}/2(/l A N2 2C4(pn/2+h1/2 qlm)) + C3lly — "] o

C2 ¥ CE w2 p pire)?
- 4Cf_ - 4C2 (pn/Z T n2 1+a)
hl/2+ﬁ+a h1+2a —B k1+a/ p(2+17)/2 k2+2a p2+r] k@
_C( 1/2+n+a + 2a— + 1+a |B(14B)/2 t e 242 1+ﬁ + ) ’
pE p* gt h g~ h q“

where the equality sign results from the second binomial formula. From that we deduce the assertion by using the
trivial lower bound of squared terms, taking the square root, separating the error terms and the convergence rates,
squaring the resulting inequality and finally using once more Young’s inequality.

Remark 17. 1. For h =k, p = g, the a priori error estimate in Theorem[I16|becomes

hﬂ he h1/2+a—,3/2
_ )2 3 kq _ 2 <l 2. 2
”M u ||ﬁ%(rz)+||7 (/l /l )”L2(1" )+||¢’ 110 ”H’%(F)_ C pn + pa/ + pa_n/z >

which is maximal for a range of B, e.g. B =1 0rB = a, as a € [0,1/2), and n = 2a/3, i.e. the error reduces at
least like h®/?> p=@/3.

2. The term (F7) and Lemma [[4] require that the stabilization does not go too fast to zero. On the other hand, a
closer inspection of the proof shows that the approximation of the Steklov-Poincare operator in the stabilization

term requires B, n > 0 (i.e. y scales "better” then hp~?). Only in this case, the proof gives a convergence rate

for ”71/2Ehpwhp”y(rc)'

For the conforming approximation of (T3) by Bernstein polynomials A* € M;q(?') C M*(F) the properties of a
corresponding interpolation operator into M,jq(?" ) do not seem to be available in the literature. Assuming that a quasi-
interpolation operator 7qu LA N MY F) — M,jq(?‘ ) can be defined, such that %‘qu satisfies the approximation
property

— k\*
7 = Zase 1l o < C(c‘]) Illzere) (38)

the proof of Theorem [I6] yields:
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Remark 18. Ler (u, 1) € H'**(I') x H*(I'c) N C°(T¢c) and (u"?, A1) € V), x M} (F) be the solutions of @), (13),

respectively, with g > 0, F linear, i.e. M;q(?—" ) C M (F) and a € [0, %). Under the assumption that (38) holds, there
exists a constant C > 0 independent of h, p, k, q, 5 > 0 and 7 > 0 such that

( h 1+2a-p hﬁ k<

hp|2 1 kgy(12 hp|2
u—u’?|l2,  +ly:(1-4 +ly — <C + =+ ,
[ [ L M+l = vl ettt

HIm
with y, Y" given in (T3).

Proor. The proof is analogous to the proof of Theorem|[T6|except that we now use Corollary[TT]instead of Corollary[10]
and choose y = A% € M} (F) € M*(F) to obtain

a

. kq _ kq _ qkq _ kg _ k_
Lt (V=) + (g =4+ =) < (g = A <C g 18leao Ml -

as p* = Ty, A.

5. A posteriori error estimates

In this section we present an a posteriori error estimate of residual type for the mixed 2p-BEM scheme which is
independent of the selected discretization for A,.

Lemma 19. Let (u, 1), P, A¥9) be the solution of @), (13) respectively. Then there holds

(2 (@) e l) ), =,
" h

( B ?') H12(T¢) ||M - p”ﬁllz(r):) B <( >rc

= )+ ([ ),

where v = max {0, v} and v = min{0,v}, i.e. v =v* +v".

(g N sz)_HHl/z(Fc) * H(/lﬁq)_Hﬁ—l/z(Fc) Huhl’ - u“ﬁ”z(rz)

k k J
+ [|( |47 o u’

-7) .

hp
ut

5

Proor. Utilizing that (A, u, — g)r. = 0 by (BB), u, — g < 0 almost everywhere inT¢ and (/lﬁq)+ € LX(T¢), there holds
= (k) = )
I'c

</l,, — ko u">rc = </l,, - (Aﬁq)Jf '’ - g>r +{An, & = Un)r, — <(,1ﬁ‘1)+ g- u,,>
C

< (b= ()7l =), = ()l =)
C C

I'c

and with A € M*(F)

<,ln B (ﬂﬁqy ’ MZP _ g>rc _ (ﬂﬁq)v‘ g MZP>FC + <—/lm (g - sz)Jr + (g - uﬁ[’)7>rc

() =l (2= = () = (sl )

()=l (= el ), (G-,
() o= ool

Application of Cauchy-Schwarz inequality and trivial estimates of the norms yields

(o=t = () (= d)) = e,
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hp

For the tangential component we exploit {;, us)r. = {F, luDr, </l,, uf’p>r < <T, u, > , v =v' + v and the triangle
: - Te

h.

inequality to obtain

hp

</1; A kq ,ufp - ut> < (=F, lubr, + </lkq’u’>rc * < |t

kg  hp
_</ll Uy >rc

<l =7) ), < el o
(=) o), o {lbed =) o), =G,
(=) by (=) ), b« (i,

H Hﬁ—m(m [l = u" ||ﬁl/2(rz) - <( W >rc <,1’;4 ufp>rc +< kal >rc .

Lemma 20. Let (u, 2), (uhp s /lkq) be the solution of @), (IED respectively. Then there exists a constant C independent
of h, p, k and q such that

h h
C(”“ - uhp”%lﬂ(rz) + ”'/J - whp“irlﬂ(r)) < Z _i “f - Shpuhp”;(E) + Z P_i ”’lkq + Shpuhp”il(E)

E€Thlry p E€Thlre
1 2
+ Z hg + <(/1§q)+ , (g - I/tzp)+>rc + € ”/lkq - /l“;‘,_l/za-c) + 4_6 ”(g - MZP) ”H”Z(FC)
E€Tyr ’

>FC - (), +< >FC ,

kq
/lf

-7

1 2
(VW (K + 5)u’"’)
2

[2(E)
T)+ A <(Wq' - (F)i ’

with € > 0 arbitrary and s, Y"? given in (I3).

hp
t

hp
t

kq /lkq

u t

L |u

GO P

PRrOOE. Since u — u'"? € ﬁl/z(l"z) there holds by Lemma

c (||,, o l,,m) (W= ), =)+ (V=)0 /),
= <Su - Shpuh”, u— uh”>rZ + <V(w2p - lﬁh”),w - tﬁ’”’)r .
From Lemma(8land (83) it follows that
<Su - Shpuh"’, u-— u’”’)rz = <Su - Shpuh”, u-— uh”>r2 +{(Su- Shpuhp, u? — vh”)rZ + </1 — Ak — vh”>rc
kg hp hp _ hp
+ <7(/l + Shpu )» Shp(u v )>FC
= <f - Shpuh”, u— vh”>rN + <—/1k" - Shpuh”, u— vh”>rc + </1 — ke e — u>rc + <7(/lk" + Shpuh”), Shp(uh” - vh”)>rc
Let Iy, be the Clement-interpolation operator mapping onto Vy,, with the property (see [28|] and interpolation between

L* and H')

o\ 172
Hv - I;,pv”wE) < C(p—i) IVl 2wy

with w(E) a net around E. Then, an application of the Cauchy-Schwarz inequality yields with V7 := u"P + Inp(u— u'"”)

ho\12
<f - Shp“hp’ u- Vhp>FN <C Z (_E) “f - Shl’uhp“Lz(E) ”” - uhP||H'/2(w(E)) ’
BéTlry, \PE

ho\12
<_/lkq - Shp”hp’ u- Vhp>rC <C Z (_E) Hflkq + Shp”hp”Lz(E) H” - Mhp”H‘/z(w(E)) :
EETok, \PE
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Since up, € Vi C H(; (I's) and y,, € (V,?p c L*(T'), the mapping properties of V and K [[I1] yield

VO -y, = Vgt - (K + %)u’” €H\(D)c ).

Furthermore, V(P — ‘//Zp) is orthogonal in L*(T) to (VDp , Lemma Hence, for the characteristic function yg € (V,?p
of an element E € T, there holds

0= (V" —y;,).xe), = fE V' ~y;,) ds

and therefore the continuous function V(\ry, — z//;‘lp) has a root on each boundary segment E. Since V({p, — ‘/’Zp) €
HY(T'), the application of [7) Theorem 5.1] yields

0
(V(whp B "//ZP)’ ¥ - whp>r < Hv(l//hp - wZP)HH%(F) “th - M/HH‘%(F) ) C{ Z he a(v(‘l’hp l/’hp

E€Thr

Ilwhp Wyt -

Since V7 = u'"P + Inp(u— u'"P), there holds by Cauchy-Schwarz inequality (twice), Theorem@and the H'?-stability of
Iy that

1/2+8 h1/2
(Y5 + 1), S 1 (" - v’w))rc =0 Z [El—+] A+ s, u’”’)[ ]S oy " = w)) ds
E€Tilrc Pg PE
hl+2ﬂ 5 3 B2 2 2
<vo| O = I+ St | | D) (=S mpUnp@™ = w)
BT PE e L(E)

1

h1+2/3 i
) C{ Z 2+2n “’lkq + Spt” ”L2<E>] “” - ”hp“ii%(rz)'
EeTilre PE

In total this yields with Lemma[I9 that

h 1/2
(= gy + 1= ) < 3 () = St =

E€Thlry

hp |2 ) . . h1+2ﬁ ) e 3 )
o 3 () I S = iy +| D o I S | =i
E€Tilr, E€Tilr. PE

1
{Z he g0 i) ]“‘”’"’ sy = () (=) ) 10 = Al s = ) e,
E€T;

- + -

) Wi 1 =l (2= 7) | T U, = (] =) ),

ki h
bl q ;P

+ u

>

ey + ) -

The assertion follows with Young’s inequality and h < 1, p2+2'7 > PE.
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Lemma 21. Let (u, 1), (u"P, A*9) be the solution of (), (I3) respectively. Then there holds

=

B h
C ”/l - /lkq”Hfl/Z(rC) S ”” - uhp”Hl/z(rz) + ”lﬁ - lﬁhp”Hfl/Z(r) * ( Z — ”Akq + Shl’uhp iZ(E)
E€Thlrc

1/2
h
(5 st

E€Thlry

with i, Y"P given in (T3).
ProoF. Letv € H/2(s) and V7 := I,v € Vi, then by Lemma and there holds

(A= 2v) = (A= 20 =7) —(Su =Sy V) = (YA 4 S "), S ")

I'c I'c

= <f, V- vh”>rN - (S u,v— vh”>r - (/1’“1, V- vh">r —(Su- Shpuhp, vh”)r)2 - <y(/1k‘1 + S,,puh”), Shpvh”>

b3 c I'c
_ _ hp _ _ kg _ hp _,hp _ _ hp
—<f Sppt? v =V >FN+< A Spput,v =V - Su—Sppu V)

C z

(Y@ 4+ S1pu"), S 17,

For the third term we obtain by the definition of ¢ and y"? in (13) and by the continuity of the operators that
1
(Su— S, v)l_z = <W(u — "y + (K + = y"y, v>
I's
1
< Cy ”” - ”hp“ﬁl/z(rz) ||V“ﬁ”2(Fz) +(Cxr + E) ”'I’ - ‘//hp”;rl/z(r) ”V“ﬁ”z(Fz) :

The first two and the last term can be handled as in Lemma 20} leading to

1428 2
1
c (-4, v>rc < [l = oy Wz + (1 = "Ny Iy + [ Z S 1+ Shpuhl’niz(E) M
E€Tile. PE
T B 12
+ ) (_i) £ = S npt | oy Wiy + (p_i) I8+ Spt gy W2 -

ET oy E€Tilr,
The assertion follows from the continuous inf-sup condition () and Cauchy-Schwarz inequality.

Combining the two Lemmas 20]and 21| immediately yields the following theorem if € > 0 in Lemma[20]is chosen
sufficiently small.

Theorem 22 (Residual based error estimate). Let (u, d), ("7, 2*9) be the solution of (8), (13) respectively. Then
there holds

h h
C(”” - ”hp“%l/z(rx) + ”‘/’ - ‘/’hp”fi—l/z(r) * “’lkq - ’1“2—1/2(&)) < Z _Z ”f - Shl’uhP“iZ(E) * Z = ”’lkq + Shl’“hP“iZ(E)

E€Thlry E€Thlr¢
+ Z hE
EeThur

i Gl O |

with i, Y"P given in (T3).

It is worth pointing out, that the stabilization implies no additional term in the a posteriori error estimate compared
to the non-stabilized case in 3, Theorem 11] and does not even effect the scaling.
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Corollary 23. For A¥ ¢ M; (7") the estimate of Theorem E is reduced by non-conformity terms and simplifies the
complementarity and stick error contributions.

h
C(“u - uhp”%m(rz) + ”W - Wlp”irllz(r) + ”’lkq - AH?—I'*W(F()) < Z _i “f - Shpuhp”i%E)

E€Thlry
/’ZE 2
ZE | yka hp
+ E > ||/l +Sppu ||L2(E)+ E hg
EeTil, £F EeTyr

o)) et L, =

with y, Y given in (T3).

2

(VW (K + %)u’”’)

LA(E)

>FC </lfq’ M?p>Tc * <

kq
t

h h
P utp

-7, |u,

kq
/lt

> b
I'c

6. Implementational challenges
For the contact stabilized BEM (T3] two non-standard matrices must be implemented, namely <7//1’“’ S VP >r
C
and <yS h,,uhp Sn v'”’>r To restrain from additional difficulties we use the same mesh for 4*¢ and u"? on I'c. Hence,
the singularities of Shpvh” for the outer quadrature coincide with the nodes of the mesh for A*¢ and the standard
outer quadrature technique for the BE- potentlals can be applied. In the implementation we utilize the representations
SV = WP + (K + $)Tip, )" where 7 = Vi zhp(K + I e ‘V,? and Wy = —Lv*4 where V* is the single
layer potential with modified constants in the kernel function [33] p. 163] Hence, performing integration by parts
element-wise yields

d_.d 1
A S V) = (AR —— v ) (AR (K + )Ty
{y .84, <7 o), K

_ d kq d
‘702 <ds/l VY >E

E€Thlr¢

T'c

d 1
gy —yhe o (y MK+ )T
ds 2

I'c

OE

where OF are the two endpoints of the interval E. Each of these terms can now be computed by standard BEM tech-
niques, e.g. decomposition into far-field, near-field and self-element with the corresponding (hp-composite) Gauss-
Quadrature for the outer integral and the analytic evaluation of the inner integral [26]. The algebraic representation of
X" for the computation of the standard Steklov-operator <S ;,puhp VP >Fz is reused, i.e.

S =TTWo+ 1T (K+172) VI (K+1/2)7.
For the second matrix we obtain

1 1
(ySupu S, = <yWu’"’ FYK + )T W 4 (K + E)TX’"’>
, e

:(yWuh”,thp> <7Wuhp K+ = )T ’"’> +<7(K+%)T§]”’,th”> <7(K+ =) (K + = )T ’W>

I'c I'c I'c

Here, an element-wise integration by parts in the hypersingular integral operator yields no advantages, except for
<yWuhP X >r and (y{ hp Wyhe >r , and, therefore, the tangential derivative is approximated by a central finite differ-
C c

ence quotient with a step length of 10~* on the reference interval. This yields the matrix representation
— . 1.\" — 1 1
V'Sit = V" WWil + 7 (K + EI) v (WKT + EWI) i+v (WKT + WI) v (K + El)ﬁ
7 (K4 1 TV‘T KK + K71+ AR + 11| v (K + L1) i
' 2 2 2 4 2)"
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Most of the computational time is required for the matrices WW, K'K™ and WK™. Hence, their symmetry and other
optimization possibilities should be exploited thoroughly. As an alternative to the approximation of the tangential
derivatives by finite difference quotients one can approximate the function V% by a polynomial and work with the
derivative of this approximation.

7. Modifications for Coulomb friction

Tresca friction may yield unphysical behavior, namely non-zero tangential traction and stick-slip transition outside
the actual contact zone. Therefore, in many applications the more realistic Coulomb friction is applied, in which the
friction threshold ¥ is replaced by 7 |0, («)|. In the discretization which we present here only the Lagrange multiplier
set must be adapted, namely

MY (F ) = {ue H'(Te) : (uvir, < (F . il ¥v € H(Te),v, <0 (39)
qE
M (F A = {u"q L2 (Te):pMp(x) = D U By, (W5 (1) YE € Th, (uF)y 2 0, |(uf)| < F(WiligshH)aF »} :
i=0
(40)
M (F AL = {,ﬁq € LX(Ce) : p)g 0 Wi € [Py, (=1, 1D] 4 > 0, ~F 2% < 4 < F 2 in qu} : (1)

A standard iterative solver technique for Coulomb friction is to solve a sequence of Tresca frictional problems in
which the friction threshold 7 A,, of the current Tresca subproblem is obtained from the previous iterative Tresca solu-
tion. Since that solution is updated in the next Tresca iteration anyway we solve the subproblem inexactly by a single
semi-smooth Newton step.

Theorem 24. Let (u, 1), ("7, A¥) be the solution of (8), (I3) respectively, with the Lagrange multiplier sets modified
according to Coulomb friction. Under the assumption that A, = F 1,&, & € Diry(u;) where Dir,(u;) is the subdifferential
of the convex map u, — |u;| (see [I8]), ¥ > 0 constant and F ||&|| sufficiently small, there holds

h h
C(”” - ”hp“fql/z(rx) + ”‘/’ - ‘/’hp”ir-w(r) * “/lkq - ’1“3?—1/2(&)) < Z - ”f - ShPMhPHiZ(Q * Z = ”’lkq + Shl’”hp“izw)

E€Thlry E€Thlr
+ Z l’lE

EcTihr

- <(|(/1’“’),| —F;) |(uh”),|>r + (AL @)y, = (@D @),

+{ltg = @), + <(/1kq): (e- (”hp)n)+>r ) '

Proor. The same arguments as for Theorem [22] apply, only the estimate of the tangential component in Lemma [T9]
changes, [[18,3]]. From A; = ¥ 4,,¢ follows

</l, — Akt ”’>rc = <,1’;‘1 _F¢ (/ch)n Uy — ("‘hp),>rc + <T§((/lkq)n _ ﬂn) - <uhp)t>l"c
< ((m)t —FE (M)n Uy — (”hp))rc + F N ||u - u’wllg]/z(rz) |4 - ﬂkq!lg-wm .

For the other term there holds, similarly to [18l Eq. 27],
((219), - 7 (29), = ()

2
0 hp 1,
—_ —(K + 2
ds (W e Z)M ) LX(E

NGy + A - )|
)

H-'2(T¢)

)FC <l = g {”(|(/lk‘1);| - F ) sy T F ||(/1k‘1);||g,1/2(rc)}

~ (=7 @) faind) o+ @ Jwind), = (@),

t

This gives the assertion if ay — € — & — %T||§|| (1 + &) >0,1i.e. 7 ||&] is sufficiently small.
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For a discussion of the assumption A, = ¥ 4,& where & € Dir,(u,), in particular in which cases this assumption cannot
be fulfilled, we refer to [19, Remark 2]. That assumption is relaxed in [3] which leads to a very similar a posteriori
error estimate.

8. Numerical experiments

For the following numerical experiments we choose yo = 1073, 8 = = 0 and ‘ﬁ = T, with g = p, i.e. we
use the same mesh for 2*¢ and u"” on I'c. Contrary to Remark we do observe measurable algebraic convergence
rates, indicating that the a priori error estimate in Theorem [I6] may not be sharp. For adaptivity we use the following
algorithm with Dorfler marking parameter 6 = 0.3 and analyticity parameter § = 0.5. For § close to one p-refinements
are favored.

We define the local error indicators Z(F) of an edge E € 7,1 using the right hand side of the a posteriori error
estimate in Theorem approximating the dual norm ||/1kq||12E111 ., by a scaled L?>-norm kq~'||u*9|?,, and |||, by

LZ’ H1/2
A plvI2,:
h h
Z ZXE) = Z p_i||f_5h17”hp“i2®+ Z i”ﬁkh’shz’”hp“iam
E€T)r E€Tlry E€Thlre
0 1 : + + -2
h_vhp_K_hp) <ﬁkq’_hp> PE | (g = ul?
+E€Z]—” E ﬁs( v ( +2)u Lz(5)+ (n) (g Mn) FC+EE7%C I (g u,,) 2
Z k_EH(/lkq)_ ? + Z ke (/lkq —T)+ ’ —<(/lkq —T)_ uhp> —</lkq uhp> +</lkq uhp> )
W&t qE n L2(E) = qr t [X(E) t et re RS = t | %t Ie

Algorithm 25. (Solve-mark-refine algorithm for hp-adaptivity)

1. Choose initial discretization Ty, and p, steering parameters 6 € (0, 1) and 6 € (0, 1).
2. Fork=0,1,2,...do
(a) solve discrete mixed problem (13).
(b) compute local indicators E* to current solution.
(c) mark all elements E € N := argmin {'{N CThr : Zpef E2(E) > 9256‘7’,,; EZ(E)}|}for refinement.
(d) estimate local analyticity [22)], i.e. compute Legendre coefficients of
' S 2i+1
e@p() = ) ailix),  ai= =

j=0

1
f VPl (@()Li) dx
-1

and use a least-squares approach to compute the slope m of |1og |a;|| = mi + b, for each direction of u" on
s, of 47 on T'p, respectively. If e™ < & for all directions, then p-refine, else h-refine marked element E.
If pg = 0 always p-refine to have a decision basis next time.

(e) refine marked elements based on the decision in 2(d).

The discrete problems are solved with a semi-smooth Newton method, for which the constraint is written as
two projection equations, one in the normal and one in the tangential component. In all figures we use the abbreviations
GLL for Gauss-Lobatto-Lagrange polynomials, GLeL for Gauss-Legendre-Lagrange polynomials and Bernstein for
Bernstein polynomials. Each of these three abbreviations states which discrete set, (IE[) or @]) is used for the discrete
Lagrange multiplier.
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8.1. Mixed boundary value problem with linear Tresca-friction threshold
For the following numerical experiments, the domain is Q = [—%, %]2 withT'¢c = [—%, %] X {—%}, I'p = [}—1, %] X {%}

8]

X

and I'y = 0Q \ (I'c UT'p). The material parameters are £ = 500 and v = 0.3, the gap functionis g = 1 — /1 — 155

and the Tresca friction function is ¥ = 0.211 + 0.412x;. The Neumann force is

(1 _ _1_ 1 11
ﬁeft:( (2 XZ)é 2 xZ)) on {—E}X[—E,E],

B 0 1 1] (1
ﬁ”‘(zm—é—mx—i—m>) onT> a2

and zero elsewhere. An example with similar obstacle and friction function is considered in [32] for FEM and in [3]]
for BEM with biorthogonal basis functions. The solution is characterized by two singular points at the interface from
Neumann to Dirichlet boundary condition. These singularities are more severe than the loss of regularity from the
contact conditions. At the contact boundary the solution has a long interval in which it is sliding, i.e. where |0 =
and u, = —ao, for some @ > 0, and in which the absolute value of the tangential Lagrange multiplier increases linearly
like 7. The actual contact set, i.e. where u, = g, is slightly to the right of the center of I'c.

Figure [T| shows the reduction of the error estimate for different families of discrete solutions. The residual based

error estimate for the uniform A-version with p = 1 has a convergence rate of 0.5 which is the same as in the non-
stabilized case with biorthogonal basis function presented in [3]]. Here, the residual contribution of the residual error
indicator is divided by a factor of ten to compensate for the residual estimator’s typical large reliability constant. This
factor is purely heuristic and based on a comparison of the residual and bubble error estimator for contact problems
with biorthogonal basis functions in [3]]. Employing an h-adaptive scheme improves the convergence rate to 1.6. If
both, i- and p-refinements are carried out, the convergence rate is further improved to 1.9. This is a very different
behavior to the non-stabilized case with biorthogonal basis functions. There h-adaptivity has a convergence rate of 1.3
and hp-adaptivity of 2.8 and a significant fraction of the adaptive refinements is carried out on the contact boundary
I'c. In fact, the h-adaptive scheme there shows an almost uniform mesh refinement on a large part of I'c which is not
that severe here, Figure 2] (a). The reason for that might be that the residual of the variational equation is the dominant
contribution of the error indicator, Figure 3| On the contact boundary, this is 2 + S ,,u"?. However, the employed
stabilization tries to achieve that % + § nptt"? = 0 for each discrete solution. Hence, the estimated error on I'c is small
and fewer local refinements are carried out there.
Noting that the Bernstein based discretization (I2) is the same as the Gauss-Lobatto-Lagrange (GLL) based on (T4)
if p = 1, it is clear that the error estimate does not differ between these two approaches for both the uniform and
the h-adaptive scheme, Figure[I] Even though, the constraints in the Gauss-Legendre-Lagrange (GLeL) approach are
different then in the other two approaches, and in particular the GLeL approach is also non-conforming even for p = 1,
there is no significant difference in the error estimate, expect in the preasymptotic range. When looking at the /p-
refined meshes for these three approaches, Figure 2] (b)-(d), it becomes clear why the difference in the error estimates
is that small. Nevertheless, in the GLeL approach the consistency errors in A, and A, are non-zero, Figure [3[c)-(d),
contrary to the conforming Bernstein polynomial case, Figure[3(b). The error contributions for the GLL approach are
almost identical to the Bernstein polynomial case and are therefore omitted here.

8.2. Neumann boundary value problem with Coulomb-friction

For the following numerical experiments, the domain is Q = [-4, 1]* with I'c = [, 1] x {—%} and Ty = 0Q\Tc.
Since no Dirichlet boundary is prescribed, the kernel of the Steklov operator consists of the three rigid body motions
ker(S) = span{(x;,0)", (0, x3)7, (xz,—x1)"}. Nevertheless, to obtain a unique solution the rigid body motions are
forced to zero during the simulation. The material parameters are E = 5 and v = 0.45, and the Coulomb friction
coefficient is 0.3. The Neumann force is

—10sign(x1)(3 + x2)(3 — x2) exp(—10(xz + 75)%) )
G+ )3 - x) ’

fside = (

0
ﬁwz(—%@—mfg+mf)
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Figure 1: Error estimates for different families of discrete solutions (Tresca-friction)

on the side, respectively on the top, and the gap to the obstacle is zero. A similar example is considered in [23]] for
FEM and the same in [3] for BEM with biorthogonal basis functions. The solution is characterized by a large contact
set and that the Lagrange multiplier has a kink, jump in the normal, tangential component, respectively, at x; = O,
Figure 4

Figure [5] shows the reduction of the error estimate for different families of discrete solutions. The residual based
error estimate for the uniform A-version with p = 1 has an optimal convergence rate of almost 1.5. Thus, employing an
h-adaptive scheme improves the convergence rate in the preasymptotic range but then the estimated error runs parallel
to the uniform case as only quasi uniform mesh refinements are carried out, Figure[6](a). If both, /- and p-refinements
are carried out, the convergence rate is improved to over 2.8 after a preasymptotic range in which only A-refinements
are been carried out. The estimated error for the GLL- and Bernstein approach is the same even for the hp-adaptive
case, since the basis functions for the Lagrange multiplier and the contact conditions only differ where p > 2. This
however, is only the case outside the actual contact area, Fi gure@(b)—(c), but there A = 0 due to Coulomb’s friction law.
The estimated error for the GLeL approach does not differ to the other two approaches in a significant manner, neither
in the asymptotic nor in the preasymptotic range. The error reduction and adaptivity behavior is again very different
to the non-stabilized case with biorthogonal basis function [3| Sec. 6.2]. There the convergence rate is larger with 1.9
for h-adaptivity and 3.3 for hp-adaptivity and the refinements on I'c are more localized. There, the dominant error
source is the stick-slip contribution, and thus explaining the local mesh refinements on I'c, whereas here the residual
of the variational equation and the violation of the complementarity condition in A, are dominant. Interestingly, here,
the stick-slip contribution is the smallest non-zero error contribution and is several orders of magnitudes smaller then
the other remaining ones, Figure[7]

8.3. Influence of the stabilization for the Neumann boundary value problem with Coulomb-friction

From Lemmal6]it is clear that if , is chosen to be too large the system matrix has at least one negative eigenvalue
and the entire theory may no longer hold. For a uniform mesh with 256 elements and p = 1 the dependency of the
error estimate on the parameter vy, is displayed in Figure[§] In all cases the iterative solver converges to a solution of
the discrete problem. But for yy > 0.152 the system matrix has a negative eigenvalue and the discrete solution looks
unphysical or even simply useless. Interestingly, the error estimate captures this partly, the red curve in Figure[§] even
though the error estimate may not be an upper bound of the discretization error. Once 7y, is sufficiently small, here
1.9-10712 < vy < 6.6 - 1072, there is (almost) no dependency on the absolute value of vy itself, neither in the error
estimate nor in the discrete solution itself. Only if yq is further decreased, i.e. the stabilization is effectively switched
off, the Lagrange multiplier in the GLL/Bernstein approach starts to oscillate as it is typical for the non-stabilized
case, when using the same mesh and polynomial degree for |- and A% and no special basis functions. This is
captured by the increase in the error estimate. Interestingly, in the GLeL approach, the Lagrange multiplier almost
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does not oscillate for extremely small gy, which is reflected by the error estimate.

Within the simulation, the most time consuming contribution is the computation of the matrices WW, K'K™ and
WKT for the stabilization matrix S. Since 7y is allowed to be very small it may be favorable to compute these matrices
only approximately. In the following we replace WW by WTMBTM7M51 W, where

— —T
(My)i,j = <7¢j’¢">r(< ’ (MD)i’f = <¢j’ qﬁ">r2 ’ (W)i,j = <‘)‘/‘Pfl’¢i>rZ ’ (K )i,j = <KT¢j’ ¢’A>rZ ’ 42)
with span{¢;}; = "V}?p . and span{e;}; = Vp,. In particular Mp is only a block-diagonal matrix and thus its in-
verse is cheap. The difference to the original formulation in Section E] is in an intermediate projection of Wu'?,

WV onto the discontinuous finite element space ‘V}?p -

(KT)TMZ)TMYMZ)IKT, (KT)TMBTM7M5IW, respectively. Even though four instead of three matrices must now be
computed, only two potentials (due to element-wise integration by parts for W) must be evaluated and thus this is
significantly faster.

FigureQ]shows the decay of the error estimate for the uniform / version with p = 1 and for the hp-adaptive scheme
with Gauss-Lobatto-Lagrange basis functions when using the above approximation of the stabilization matrix. For
comparison the corresponding curves from Figure [5] are also depicted. The difference in the error estimate for the
original stabilization approach and its approximation is +£0.014% for the uniform h-version with p = 1 and +0.02%
for the hp-adaptive scheme.

The analysis of this approximate stabilization, as well as simpler stabilizations which are not based on Szw, are
left for future work.

Analogously, the matrices KTK™, WKT are replaced by
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