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Abstract. We describe an approach to embedding a formal method
within UML use case modelling while extending this requirements cap-
ture technique to also consider safety concerns. Our motivation comes
from interaction with systems and safety engineers who routinely rely
upon use case modelling during the early stages of defining and analysing
system behaviours. Our chosen formal method is Event-B, which is re-
finement based and consequently has enabled us to exploit natural ab-
stractions found within use case modelling. By underpinning informal
use case modelling with Event-B, we are able to provide greater preci-
sion and formal assurance when reasoning about concerns identified by
safety engineers as well as the subsequent changes made at the level of
use case modelling. To achieve this we have extended use case modelling
to include the notion of an accident case. Our approach is currently being
implemented, and we have an initial prototype.
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ment, Event-B

1 Introduction

UML use cases are an informal notation for modelling the required behaviour of
a system with respect to its operational environment. They are widely used and
highly accessible. Our interest in use cases has developed through interactions
with systems and safety engineers at BAE Systems1. Use case modelling provides
a basis on which initial system behaviours can be defined and analyzed by safety
engineers. Moreover, safety concerns that are identified by safety engineers are
mitigated via changes to the use cases, e.g. corrections, inclusion of additional
behaviours, etc. The lack of formality of use case modelling means that the
process of analysis is typically review-based, and thus lacks the rigour that comes
from formal methods, i.e. systematic identification of ambiguities, inconsistencies
and incompleteness. Moreover, use case modelling does not provide any special
mechanisms for representing the concerns of safety engineers, such as accident
scenarios.

We present an approach which adds rigour to use case modelling via the
Event-B [1] formal modelling notation. We also extend use case modelling to

1 http://www.baesystems.com
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include the notion of an accident case, which provides a way of representing
accident scenarios. We selected Event-B because it promotes a layered style of
formal modelling, where a design is developed as a series of abstract models
– level by level concrete details are progressively introduced via provably cor-
rect refinement steps. Sometimes referred to as posit-and-prove, this style of
modelling can increase the clarity of design decisions as well as simplify the
complexity of the verification task. We argue that use case modelling exhibits a
series of natural abstract models. Our approach exploits this mapping. That is,
for a given use case we automatically generate a skeleton Event-B development.
The completion of the development relies upon the user formalizing the details
of their use case, e.g. constants, variables, pre- postcondition, invariants, assign-
ments. Our prototype tool allows the user to specify their informal and formal
descriptions of the a use case side-by-side. As a consequence inconsistencies and
defects identified by formal verification can be mapped back onto the informal
level.

The paper is structured as follows. Section 2 provides background on both use
case modelling and Event-B, along with the details of a simple control system
that we use to illustrate our approach. In Section 3 we introduce our notion
of an accident case while in Section 4 the formalization of use case modelling
is described. Section 5 deals with the mapping of our extended notion of use
case modelling onto an Event-B development. Section 6 focuses on the benefits
that formal verification at the level of Event-B brings to use case modelling and
describes a prototype tool support. Related work and conclusion is described in
Sections 7 and 8 respectively.

2 Preliminaries

2.1 Water Tank Controller Case Study

A case study of a water tank controller is used to describe our approach on
formalising UML use cases. The design intent for the controller is to maintain
the water level between the high (H) and low (L) limits of a water tank, as seen
in Fig. 1. To achieve this intent, the controller communicates with two external
components: sensor system and pump. The sensor system monitors the water
level in the tank with respect to the high threshold (HT) and low threshold
(LT) sensor readings. Based on these readings, the controller either activates or
deactivates the pump. When the pump is active, its motor is switched on which
increase the water level in the tank. When the pump is inactive the motor is
switched off and the water level gradually decreases in the tank. The additional
components drain is later introduced in Sect. 3.

2.2 Use Case Modelling

A use case model [2] is composed of a collection of use cases and actors that are
of interest to the system being designed. A use case diagram is used to show the
relationships between actors and use cases within a system, where-each use case
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Fig. 1. A description of the Water Tank system.

captures the intended function of the system while the associated actors play a
role in achieving them. An actor may represent a human, software or hardware
component external to the system.

In Fig. 2a, a use case diagram for the water tank controller captures a use case
MaintainH which denotes the desired functionality of the controller to maintain
the water level below the H limit. The pump, sensor system and water tank are
represented as actors that play a role in achieving the functionality of this use
case. Each use case can be further detailed in a use case specification2. The use
case specification for MaintainH can be seen in Fig. 2b.

Controller

Water 
Tank

Sensor
System

Pump

MaintainH

(a) Use case diagram.

Use case: MaintainH

Pre-condition: Water level above HT.

Post-condition: Water level between L and
HT.

Invariant: Water level between L and H.

Main Flow:

Trigger : Water level above HT.

B1. Sensor System activates sensor HT.

B2. Controller deactivates pump.

B3. Pump switches its motor off.

B4. Water level in tank gradually reduces.

(b) MaintainH - Use Case Specification.

Fig. 2. A Use Case Model of the Boiler System.

The use case specification captures a sequence of action steps, where each
step is a discrete unit of interaction between an actor (human or machine) and
the system. This sequence of steps is known as a flow and every use case has
one main flow. The main flow describes a sunny day scenario where there are
no failures or exceptions. The flow can initiate if its trigger condition is enabled.
The specification also captures the pre-, post-condition and invariant for the use
case. These can be described as a contract specified by the designer where given

2 There is no standard template for use case specifications. The one used in the paper
is kept simple as possible and is in common use in industry [3], with the exception
of the invariant field.
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the pre-condition, if the main flow of the use case executes and completes, then
the result described by the post-condition must be achieved. The invariant must
be maintained throughout the execution of the use case’s flow.

2.3 Event-B

Event-B [1] is a refinement-based formalism for system-level modelling and anal-
ysis. An Event-B model is composed of contexts and machines where a context
expresses the static information about the model while a machine represents the
dynamic aspects. A machine models the state space by variables v, and state
transition are modelled by events. The state variables v are constrained by laws
specified by invariants I(v). An event evt is of the following form:

evt =̂ where G(v) then S(v, v′) end

In event evt, G(v) specifies the enableness conditions of the event while S(v, v′)
defines the state transition associated with the event. A dedicated initialisation
event with no guards defines the states of the variables v at start-up. S(v, v′)
contains several assignments that are supposed to happen simultaneously. Each
assignment may take following forms: v := E(v), v :∈ E(v), or v : |P (v, v′).
The first form deterministically assigns the values of expression E(v) to v, the
second form non-deterministically assigns to v some value from E(v). The last
assignment form is the most general as it assigns to v some value satisfying the
before-after predicate P (v, v′). A machine is consistent if its invariants hold at
any given time. In practice, this is guaranteed by proving that the invariant is
established by the initialisation and maintained by all its events.

An Event-B model supports refinement and allows details to be added in a
stepwise manner. This helps manage the complexities of design and improve the
degree to which verification can be automated. Correctness of the refinement is
ensured by a set of generated proof obligations. The Rodin platform provides
tool support for Event-B. It is based on the Eclipse framework and is further
extensible via plugins.

3 Accident Scenarios in Use Case Modelling

Accidents or losses are considered early in the development of safety-critical
systems. An accident can be defined as “an undesired or unplanned event that
result in a loss, including loss of human life or human injury, property damage,
environmental pollution, mission loss, etc” [4]. In the water tank controller case
study, an accident (A1) that results in damage to the water tank is considered:

A1: Water level in tank exceeds the high (H) limit (physical damage to tank).

It is necessary for hazardous causal scenarios that lead to an accident to
be considered along side the proposed system behaviour in order to agree upon
appropriate design recommendations that may help mitigate them. We argue
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that if the design intent, i.e. the expected behaviour of a system, can be captured
and conveyed via use cases (e.g. MaintainH), then it should be possible for the
unexpected scenarios that result in an accident to be conveyed in a similar
manner. To our knowledge, this has not yet been considered for use cases and
we have extended use case modelling to incorporate a use case type known as
accident case.

3.1 Accident Case

Leveson [4] describes the cause of an accident as follows:

Hazard (Action) + Environmental Conditions (State)⇒ Accident (Event)

A hazard is a system action that together with a particular set of worst-case
environmental conditions, constitutes an accident. What constitutes a hazard
depends on where the boundaries of the system are drawn. The use case model
establishes the actors and system boundary via the use case diagram which
determines what the designer has control over. If one expects the designer to
create systems that eliminate or control hazards, then those hazards must be in
their design space.

For the water tank controller, the designer has control over the increase and
decrease of the water level in the tank (albeit not directly). A hazardous action
would be for the water level to continue increasing in the water tank even after
the water level has exceeded the high threshold (HT) limit and the controller
has deactivated the pump. The cause of the accident for A1 can be written as
follows:

Water level increases (Hazard) + Water level above HT and Pump signal is Off (Env. condition)

⇒ Water level exceeds H limit (Accident)

It is the role of the safety engineer to apply hazard analysis in order to determine
the hazardous causal scenarios that can lead to the hazardous action, given the
environmental conditions. We extend UML use cases with an accident case to
help capture this hazardous causal scenario while relating them to use cases via
a disrupt relationship. An accident case is defined as follows:

Definition 1 (Accident Case) An accident case is a sequence of actions that
a system or other entity can perform that result in an accident or loss to some
stakeholder if the sequence is allowed to complete.

The specification of an accident case contains the accident flow, where its trigger
captures the environmental condition for the cause of an accident, while its final
step captures the hazardous control action. The preceding steps capture the
hazardous causal scenario identified from hazard analysis. The accident case
may disrupt a use case by providing an alternate route resulting in an accident
if allowed to complete.

The use case model of the water tank system is updated to introduce the
accident A1 via an accident case ExceedH (Fig. 3a). It disrupts the MaintainH
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use case by introducing its accident flow. The accident flow’s trigger captures
the environmental condition where the water level is above HT and the pump is
off. The final step in the flow captures the hazardous control action of increasing
the water level, while the preceding step capture a causal scenario leading to the
hazardous action, i.e. where the motor remains switched on (Fig. 4b).

Controller

Water 
Tank

Sensor
System

Pump

MaintainH

ExceedH

<<disrupt>>

(a) Use Case Diagram.

Accident Case: ExceedH

Accident Flow:

Trigger: Water level above HT and Pump signal is Off.

F1. Pump’s motor remains switched on.

F2. Water level in the tank increases.

(b) Accident Case Specification.

Fig. 3. Updated Use Case Model with Accident Case.

3.2 Safety Guided Design

The purpose of the accident case is to provide a means to communicate appro-
priate design recommendations after hazard analysis between system and safety
engineers. One of the aims of a safety engineer is to ensure that no single fault
or failure may result in an accident. In order to strengthen the safety of the the
water tank, the system is extended with the additional component drain as seen
in Fig. 1. The controller may activate the drain if it detects a fault where the
motor remains switched on even after the pump has been deactivated. When
the drain is active it opens an exit valve in the water tank which can drain to
the water level to the low threshold (LT) limit.

In use case modelling exceptional behaviour can be introduced to the system
via an extension use case [2]. An extension use case is used to describe how
a system can respond to when things do not go as expected. The structure of
extension use case specification is the same as a regular use case, however it is
dependant on the base use case it extends. It places an extension-point between
the steps of the base use case and if its trigger condition is true then its flow
will initiate.

An extension use case MonitorPump is introduced in the use case model of
the water tank controller (see Fig. 4a). It extends the MaintainH use case by
mitigating the accident flow provided by ExceedH. An extension-point is placed
between steps F1 and F2 (as seen in Fig. 6a) of the accident flow. This captures
a relationship, mitigate, between the extension use case and accident case. The
mitigate relationship ensures that if the accident case triggers then the extension
use case will prevent its accident flow from completing. The extension-point
captures a return-after step that returns the extension use case flow after the
final step of the use case MaintainH.
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(a) Updated Use Case Diagram.

Accident Case: ExceedH

...

F1. Pump motor remains switched on.

extension-point: MonitorPump [return-after: B4]

F2. Water level in the tank increases.

(b) Updated Accident Case Specification.

Extension Use Case: MonitorPump

Pre-condition: Pump is deactivated and motor re-
mains switched on.

Post-condition: Water level at LT.

Extension Flow:

Trigger: Pump is deactivated and motor remains
switched on.

E1. Controller activates the drain.

E2. Drain opens the exit valve.

E3. Water level in the tank is drained.

(c) Extension Use Case Specification.

Fig. 4. Use case model updated with MonitorPump extension use case.

4 A Formal Use Case Specification

We aim to perform formal verification of use cases by automatically transforming
its specification to Event-B. To do so, we first introduce a formal use case spec-
ification to represent the informal use cases MaintainH (Fig. 2b), ExceedH (Fig.
4b) and MonitorPump (Fig. 4c) formally written with Event-B’s mathematical
language.

Use case: UC

A:

i :: T (i)

j :: T (j)

Pre-condition: P (i)

Post-condition: Q(i)

Invariant: I(i)

Main-flow:

Trigger : R(i, j)

S1. E1(i, j, j′)
.
.
.

Sn. En(i, i′, j)

(a) Generic use case UC.

Use case: MaintainH

Water Tank:

wl :: wl ∈ N
H :: H > HT

HT :: HT > LT

LT :: LT > L

L :: L < H

DEC ::

DEC ∈ (H −HT )..(HT − L)

Sensor System:

senHT :: senHT ∈ BOOL

Controller:

pump :: pump ∈ BOOL

Pump:

motor :: motor ∈ BOOL

Pre-condition:

wl > HT

Post-condition:

wl ≥ L ∧ wl ≤ HT

Invariant:

wl ∈ L..H

Main-flow:

Trigger : wl > HT

B1. senHT := TRUE

B2. pump := FALSE

B3. motor := FALSE

B4. wl := wl −DEC

(b) MaintainH.

Fig. 5. Formal use case specifications.

Fig. 5a shows a formal use case specification of a generic use case, UC, where
its pre-condition, post-condition, and invariant describe constraints on the vari-
ables i. These variables i model a state space associated to the domain of actor,
A, that plays a role in UC. Variables that are written in capital indicate that
they are ‘static’, i.e. they cannot be modified by the use case’s flow. The vari-
ables along with their types T (i) for each associated actor is provided on the
left-hand side of the formal use case specification. This is done to help guide the
designer when detailing the right-hand side of the formal use case specification
which provides the pre-condition, post-condition, invariant and flow.

The flow contain steps S1..Sn that capture actions that describe state tran-
sition to the variables of UC. The flow is expected to reveal more of the state
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space, which we model by variables j. The variables i and j are kept distinct as
the steps S1 to Sn−1 capture actions, E(i, j, j′), that describe some state tran-
sitions to variable j. However, we work on the assumption that there will be
some step, Sn, that will capture the necessary action, E(i, i′, j), that modifies
the variable i in order to achieve the post-condition Q(i).

This template is applied to the use cases of the water tank controller. The
formal use case specification can be seen for MaintainH (Fig. 5b), ExceedH (Fig.
6a) and MonitorPump (Fig. 6b). In MaintainH, the actor, Water Tank, captures
the variable wl that denotes the water level in the tank. Its state space represents
a numerical value hence the type wl ∈ N. The pre-, post-condition and invariant
capture the necessary constraint on wl with respect to the limits of the water
tank H,HT,LT,L. The limits are written in capital indicate that they are ‘static’
and they cannot be modified by the use case’s flow. The static variable DEC is
a discrete representation of the decrease in the water level by the water tank.

Accident Case: ExceedH

Pump:

INC :: INC ∈
(LT−L)..(H−LT )

Main-flow:

Trigger : wl > HT ∧
Pump = FALSE

F1. motor := TRUE

extension-point: MonitorPump

[return-after: B4]

F2. wl := wl + INC

(a) ExceedH.

Extension Use Case: MonitorPump

Controller:

drain :: drain ∈ BOOL

Drain:

valve :: valve ∈ BOOL

DRN :: DRN = LT

Pre-condition:

motor = TRUE ∧
pump = FALSE

Post-condition:

wl = LT

Main-flow:

Trigger : motor = TRUE ∧
pump = FALSE

E1. drain := TRUE

E2. valve := TRUE

E3. wl := DRN

(b) MonitorPump.

Fig. 6. Formal use case specifications.

The flow of MaintainH reveals more of the state space which are modelled
by variables pump, senHT (sensor reading for high threshold limit) and motor.
They are of type BOOL, where TRUE indicates ‘active’ while FALSE indicate
‘inactive’, i.e. when pump = TRUE denotes the pump is active. The steps B1 to
B3 modify these variable, while the final step B4 captures the necessary modifi-
cation to the variable wl that should achieve the post-condition. The formal use
case specification helps bring the benefit of precision and clarity when detailing
the use case while enabling the designer to relate informal and formal notation.

The static variable DRN in ExceedH indicates the level at which the water
level will be drained in the water tank. In this instance, the designer has set the
drain to the low threshold limit (LT). Once the use cases are specified formally,
it is possible to map their content to a formal model via refinement for purpose
of verification.

5 Mapping Use Cases to Event-B via Refinement

In this section we describe how the formal use case specification of UC is mapped
to an Event-B model. We then apply this mapping to the MaintainH use case of
the water tank controller. ExceedH and MonitorPump are also taken into account
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as they are dependent on MaintainH by providing alternate scenarios to its flow.
The verification performed for the use cases from their corresponding Event-B
models is discussed in Sect. 6.

5.1 Generic Use Case

We consider the use case specification to have a contract and body. The con-
tract is composed of the pre-condition, post-condition and invariant, while the
body contains the flow. Our mapping introduces the contract of UC in an ab-
stract Event-B machine, uc m0, while the body is introduced by its refinement
in uc m1. The contract is the specification of the body and we use refinement
to relate them accordingly.

Variables

i

Invariants

I(i), T (i)

Event UC

when

P (i)

then

i : | Q(i, i
′
)

(a) Event of machine uc m0.

Event

UC Trigger

when

R(i, j)

then

flow := S1

Event S1

when

flow = S1

then

E1(i, j, j
′
)

flow := S2

...

Event Sn

refines UC

when

flow = Sn

then

En(i, i
′
, j)

flow = UC Final

(b) Events of refined machine uc m1.

Fig. 7. Refinement of UC’s use case specification

UC’s Contract: In uc m0, we introduce a key abstraction of what is to be
achieved by the use case without specifying how. UC’s pre- and post-condition
are modelled by an event, UC, as its guard and action, respectively (see Fig.
7a). This event introduces a state transition in the model where given the pre-
condition it is possible for the post-condition to be achieved. The event does not
reveal how this is done and emphasises only on what is achieved. The variables
i associated to the pre- and post-conditions are introduced along with its type
T (i) and invariant I(i). The invariants ensures that the state transition of event
UC maintains these constraint.

UC’s Body: The machine uc m0 is refined to uc m1 to introduce UC’s flow
which describes how the use case achieves and maintains its contract. Each step
of UC’s flow along with its trigger is mapped to a corresponding event in um m1
(see Fig. 7b). The variables j (revealed by the flow) and its associated types T (j)
are introduced in this refinement. The flow is mediated between steps S1 to Sn

by an auxiliary variable s that act as a program counter. The event UC Trigger
initiates the use case’s flow (s := S1) given the trigger condition R(i, j). The
steps S1 to Sn−1 capture actions that modify the variables j, however the final
step Sn capture the necessary modification on variables i and refines the abstract
event UC. By proving the refinement we show that the contract of is satisfied by
the flow. Moreover, it allows to reason about the contract in the initial model
while temporarily ignoring how they are implemented till refinement.

To illustrate the execution we use an event-flow diagram (see Fig. 8). The
event-flow diagram is read from left-to-right, where each line is an execution of an
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event in the formal model. The diagram helps to show the refinement of events,
where any event in bold indicates it refines an event from the abstract model.
Suppose if the name of the event in the abstract model is different to that of
its concrete counter part, then we show the name abstract event in parenthesis,
e.g. Sn (UC).

UC UC_Trigger S1 …
Sn (UC)

Machine: uc_m0 Machine: uc_m1

refines

Fig. 8. Event-flow diagram of UC in Event-B.

5.2 Water Tank Controller

The mapping from UC is applied to MaintainH to produce two layers of refine-
ment mh m0 and mh m1. The MaintainH use case has a disrupt relationship
which introduces the accident flow of ExceedH in mh m1. This accident flow
captures a extension-point that introduces the extension use case MonitorPump.
The mapping from UC is applied to MonitorPump to introduce its contract in
mh m1 while its body (containing the extension flow) is introduced via refine-
ment in mh m2. The event-flow diagram for MaintainH’s Event-B model can be
seen in Fig. 10.

Initial Model: In mh m0, the contract of MaintainH use case is intro-
duced. The event MaintainH models the pre- and post-condition as its guard
(wl > HT ) and action (wl : | wl′ ≥ L ∧ wl′ ≤ HT ), respectively. The event
captures what the use case MaintainH achieves, by allowing the water level to be
reduced between the L and HT limits if it exceeds the HT limit. The variable
wl associated with the pre- and post-condition is introduced along with its type
wl ∈ N and invariant wl ∈ L..H. The static variables (written in capitals) are
captured in a context component of the Event-B model, which can be seen by
the machine.

First Refinement: In mh m1, the flow of MaintainH is introduced which
describes how the water level is reduced when it exceed the HT limit. The flow’s
trigger and steps B1 to B4 are mapped to events (as seen in machine mh m1
in Fig. 10). The variables pump, senHT and motor revealed by the flow is
introduced in this machine along with their types. The events B1 to B3 perform
actions that modify these variables according to the main flow. The final event
B4 describes the decrease in the water level (wl := wl −DEC) after the motor
has been deactivated. This final event B4 refines the abstract event MaintainH.

The accident flow of ExceedH is also introduced in this refinement due to the
disrupt relationship with MaintainH. The accident flow of ExceedH is introduced
by the events ExceedH Trigger, F1 and F2. The event ExceedH Trigger may
initiate the accident flow at any point during the flow of MaintainH, provided its
trigger condition is true. If the accident flow is allowed to terminate, then the
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water level would exceed above the H limit which would violate the invariant
(wl ∈ L..H).

The extension-point between the steps F1 and F2 introduces the extension use
case MonitorPump by two events: MonitorPump and MonitorPump False. An
auxiliary boolean variable ext is used to insert both these events between events
F1 and F2 (see Fig. 9). The event MonitorPump captures the contract of the
extension use case. If the motor remains active while the pump has been deacti-
vated, then the water level is reduced to the low threshold (LT) and the flow is
returned after the final B4 of the main flow. The event MonitorPump refines the
abstract event MaintainH, since the post-condition describes a desired stated
(wl = LT ) on the abstract variable wl. On the other hand, MonitorPump False
captures the negation of the extension use case’s precondition as its guards. Sup-
pose if the extension use case’s precondition is not true, then this event returns
the flow back into the accident flow. This requires the right fault condition to
be specified by the extension use case in order to prevent the accident flow from
completing.

Event F1

when

flow = F1

then

flow := F2

motor := TRUE

ext := FALSE

Event MonitorPump

refines MaintainH

when

flow = F2

ext = FALSE

(pump = FALSE ∧

motor = TRUE)

then

flow = MaintainH Final

ext := TRUE

wl : | wl’ = LT

Event

MonitorPump False

when

‘ flow = F2

ext = FALSE

¬(pump = FALSE ∧

motor = TRUE)

then

flow := F2

ext := TRUE

Event F2

when

flow = F2

ext = TRUE

then

wl := wl + INC

Fig. 9. Extension-point inserted between steps F1 and F2 of ExceedH.

Second Refinement: In the final refinement, we introduce the body of
the extension use case MonitorPump. The body reveals more of the system by
introducing the variables drain and valve. The flow of MonitorPump is mapped
to events MonitorPump Trigger, E1, E2 and E3. It introduces the scenario
of the controller activating the drain which opens an exit valve on the water
tank. This is done to reduce the water level if the controller detects the motor
remains active even after the pump being deactivated. The action of the final
event E3 drains the water level in the tank, which refines the now abstract event
MonitorPump.

6 Verification and Tool Support

6.1 Generic Use Case

UC’s Contract: The main mathematical judgement in the initial model of
the use case is to determine whether the invariant, I(i), is guaranteed to be
maintained by what is achieved, Q(i, i′), by event UC. Proving this ensures that
the flow introduced by refinement must meet this contract.
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MaintainH

MaintainH_Trigger B1

Machine: mh_m0

Machine: mh_m1

refines

B2 B3 B4 (MaintainH)

ExceedH_Trigger F1 MonitorPump_False F2

MonitorPump (MaintainH)

MaintainH_Trigger B1

Machine: mh_m2

B2 B3 B4

ExceedH_Trigger F1 MonitorPump_False F2

MonitorPump
_Trigger E1 E2 E3 (MonitorPump)

refines

Fig. 10. Event-flow diagram of the MaintainH’s corresponding Event-B model.

UC’s Body: The model checks whether UC’s flow achieves the post-condition
Q(i), given the pre-condition P (i). We are required to prove that the pre-
condition must be maintained before the execution of step S1 to Sn−1. The
following invariant is automatically introduced to help prove this:

∀s · s ∈ {S1, .., Sn} ∧ flow = s⇒ P (i) (1)

The event Sn refines the abstract event UC. This refinement must prove that
the abstract event’s behaviour of what the use case achieves, corresponds to the
concrete behaviour of its flow.

Mitigate: For any accident flow introduced via the disrupt relationship,
there is expected to be a extension-point between its steps. As discussed in Sect.
3, the extension-point in an accident flow is required to ensure the steps after its
point of insertion can never be executed. In Event-B, we introduce invariants that
negate the guards of the events that model these steps. This allows the model to
automatically prove that the steps can never be enabled, i.e. the accident case
will be unable to complete.

6.2 Water Tank Controller

Initial Model In the initial model we are able prove what is achieved by the
MaintainH use case’s post-condition, i.e. the reduction of water level, is within
constraints of its invariant wl ∈ L..H. The following proof is generated by the
model and automatically proved:

wl′ ≥ L ∧ wl′ ≤ HT ` wl′ ∈ L..H

First Refinement The model is refined to introduce the flow of MaintainH
which ensures the contract introduced in the abstract model is preserved. The
invariant (1) is applied to MaintainH to automatically produce the following
invariant:

∀s · s ∈ {B1, B2, B3, B4, F1, F2} ∧ flow = s⇒ wl > HT
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This is used to ensure the pre-condition is true before the flow can execute. The
event B4 refines the abstract event MaintainH. A proof obligation is gener-
ated to ensure the action of event B4 is maintained between L and HT limits,
given that the water level is above HT. The following proof is generated and
automatically discharged:

flow = B4 ` wl −DEC ≥ L ∧ wl −DEC ≤ HT

The event MonitorPump (which represents the extension-point) also refines
the abstract event MaintainH. The model checks what the extension use case
achieves, i.e. the water level reduced to LT, corresponds to what is achieved by
MaintainH event in the abstract model. In addition, the model proves that
the accident flow of ExceedH is not allowed to complete. The guards of the
events after the extension-point, MonitorPump False and F2, are negated and
introduced as invariants (3) and (2) respectively.

¬(flow = F2 ∧ ext = FALSE ∧ ¬(pump = FALSE ∧motor = TRUE)) (2)

The model is able to prove these events invariants as the accident flow introduces
the necessary conditions for the extension use case, MonitorPump to trigger
instead of MonitorPump False.

¬(flow = F2 ∧ ext = TRUE) (3)

Second Refinement The model is able prove that the extension use case’s flow
which drains the water level correspond to MaintainH, as the drain is set to the
LT limit of the water tank (DRN = LT ) which is between the L and HT limits.

6.3 UC-B Tool Support

Fig. 11. UC-B tool on Rodin.

Our approach is currently being im-
plemented as a tool UC-B3 (Use Case
Event-B) for the Rodin platform (Fig.
11). It supports the authoring and
management of UML use case models
with the inclusion of accident cases.
It allows the use case specifications to
be detailed with Event-B mathemati-
cal language and provides support for
the automatic generation of Event-B
models from a target use case. The
generated Event-B models are imme-
diately subjected Event-B’s verifica-
tion tools (syntax checks and provers) that run automatically providing an
immediate display of problems. Our aim is for inconsistencies in the Event-B
models to reflected back to their parent use case model. We have considered two
other case studies, anti-lock braking system (ABS) and sense and avoid (SAA),
that fit the same control pattern as the water tank controller.

3 Tool information can be found at https://sites.google.com/site/rajivmkp/uc-b
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7 Related Work

A majority of the related work in the area of capturing negative or forbidden
scenarios for UML use case have focused on security concerns, whereas our focus
has been towards considering safety concerns from potential accidents. Ellison
et al. [5] introduce intruders and intrusion scenarios in their case study as
part of a large-scale distributed health care system. The intrusion scenarios are
similar to accident flow, but they do not provide a diagrammatic notation, a
specification, or guidelines for what constitutes an intrusion scenario. McDermott
and Fox [6] propose abuse cases which focus on security requirements and their
relation to design and testing. They capture the abuse case and regular use
cases in separate use case diagrams. This differs from our approach where we
provide relationships between accident case and regular use cases in the same
use case diagram. Potts [7] introduce obstacles from goal-oriented requirements
engineering (KAOS). These obstacles are exceptional condition that prevent goal
fulfilment. In relation to our work with UML use cases, a general goal can be
related to a use case while an obstacle can be related to our use of accident case.

Several groups have investigated a rigorous approach to capturing UML use
case [8–10]. In comparison the novelty of our approach comes from the use of re-
finement to introduce key abstractions that are captured naturally by the struc-
ture of the use case specification and its relationships to other use cases. In [8],
Soussa and Russo provide a mapping from the flow of a use case to operations in
B. They rely upon the flow to be written in accordance to a transaction pattern
between the actor and the system as follows: (1) an actors request action, (2)
a system data validation action, (3) a system expletive action, and finally (4)
a system response action. We consider this pattern would require the designer
to focus more on the solution rather than understanding the problem domain,
which steps away from some of the benefits and simplicity of using UML use
case. In [10], Whittle presents a precise notation using interaction overview di-
agrams (IOD) for specifying use cases based on three levels of abstraction: use
case charts, scenario charts and interaction diagrams. The motivation to this
approach is similar to ours which also consider the use of negative scenarios,
however we have focused on adding rigour to the existing textual specification
of use cases.

A rigorous approach to requirements capture techniques such as Problem
Frames [11] and KAOS [12] have also been considered. However, these tech-
niques are not a de-facto industry standard and their notations don’t share the
same popularity as UML use case, which we consider a major disincentive when
convincing industry practitioners to adopt a more rigorous approach during re-
quirements capture.

8 Conclusion and Future Work

The work presented here is part of an on-going effort to help in the industrial
adoption of formal methods and of a more specific effort to consider safety con-
cerns. We have extended UML use cases to consider potential accidents via the
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use of accident cases, that is aimed to improve communication between system
and safety engineers. For the purpose of formal analysis of use cases, we have
provided a formal use case specification to detail use cases with Event-B’s math-
ematical language. From this, we use the structure and relationship of use cases
to derive a natural abstraction when mapping them to an Event-B model. Proof
automation is possible which helps identify inconsistencies and defects in the
formal model that can be mapped back onto the use case model. Our tool im-
plementation supports the authoring and management of UML use case models
on the Rodin platform while enabling automatic generation of Event-B models
from a target use case.

For future work, we are investigating links between the hazard analysis tech-
niques with our notion of an accident case. Our tool is currently being extended
to support traceability between the generated Event-B model and its parent use
case. Patterns of inconsistencies identified by proofs could be used to meaning-
fully guide an engineer while detailing use cases.
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