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The epidemiological feedbacks critical to the evolution of host
immunity.

R. Donnelly1,∗ , A. White1, M. Boots2

1Department of Mathematics and the Maxwell Institute for Mathematical Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK.
2College of Life and Environmental Sciences, University of Exeter Cornwall Campus,
Penryn, TR10 9EZ, UK.

We examine in detail how epidemiological feedbacks combine with costs and benefits to

determine the evolution of resistance by systematically analysing continuously stable strategies

(CSS) for different host parasite frameworks. The mode of resistance (innate versus acquired),

the nature of the host (i.e. life-history and immunological memory) and the nature of the

disease (effects on fertility or mortality) all impact on the feedbacks that are critical to

the evolution of resistance. By identifying relationships between CSS investment and the

underlying epidemiological feedback for each mode of resistance in each framework, we distil

complex feedbacks into simple combinations of selection pressures. When the parasite does

not affect fertility, CSS investment reflects only the benefit of resistance and we explain why

this is markedly different for innate and acquired resistance. If infection has no effect on host

fertility, CSS investment in acquired immunity increases with the square of disease prevalence.

While in contrast for evolving innate resistance CSS investment is greatest at intermediate

prevalence. When disease impacts fertility only a fraction of the host population reproduce,

this introduces new ecological feedbacks to both the cost of resistance and the damage from

infection. The multiple feedbacks in this case leads to the alternative result that the higher

the abundance of infecteds the higher the investment in innate resistance. A key insight is

that maximal investment occurs at intermediate lifespans in a range of different host parasite

interactions, but for disparate reasons which can only be understood by a detailed analysis of

the feedbacks. We discuss the extension of our approach to structured host populations and

parasite community dynamics.

Key words: epidemiology, ecology, resistance, density dependence.
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1. Introduction

During evolution changes in the dominant genotypes within a population lead to phenotypes1

that may alter population ecological dynamics. Such ecological changes can in turn feedback2

to change the selective pressures on the genotypes. These feedbacks can be complex even3

in simple models, but by using an ecologically explicit approach to modelling evolution it4

is possible to distill complex feedbacks into simpler combinations of biologically meaningful5

selection pressures. In this study we analyse host resistance by reference to these feedbacks and6

systematically compare how ecology feeds back to CSS investment for different combinations7

of host and parasite interactions.8

There is substantial variation in host defence and this is likely to reflect the wide range9

of interactions between hosts and parasites. For example, parasites can damage their hosts10

by causing a loss of fertility or increasing mortality and hosts may differ in their capacity11

for immune memory. Despite the immunological complexity of defence, functionally it is12

achieved through just a few routes (Boots & Bowers, 1999; Schmid-Hempel, 2002). ‘Tolerance’13

mechanisms reduce the damage that infection causes while on the other hand, ‘resistance’14

mechanisms including avoidance, recovery and acquired immunity directly counter the parasite15

(Miller et al., 2007). Genes conferring resistance, since they reduce parasite fitness, in addition16

to increasing host fitness, cause the prevalence of infection, a dynamic ecological variable,17

to decline and so reduce the advantage of resistance (Haldane, 1949; Bowers et al., 1994;18

Antonovics & Thrall, 1994; Boots & Haraguchi, 1999). On the other hand, genes conferring19

tolerance may cause prevalence to rise, if they lengthen the infectious period, increasing the20

advantage of tolerance as it spreads through the population (Roy & Kirchner, 2000; Miller21

et al., 2007). This is a clear instance of the central role that ecological feedbacks play in the22

evolution of immune defence.23

Approaches to modelling evolution by natural selection differ in their treatment of24

explicit ecology and genetics (Haldane, 1927; Dobzhansky, 1937; Cole, 1954; Maynard Smith25

∗Author for correspondence (rd118@hw.ac.uk).
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& Price, 1973; Lande, 1982; Charlesworth, 1994). In this study we use an evolutionary26

invasion analysis approach (Metz et al., 1996; Geritz et al., 1998) in which density-dependent27

ecological dynamics are explicitly modelled with feedbacks to fitness (but at the expense28

of genetic detail). The framework assumes a separation of ecological and evolutionary time29

scales as well as rare mutations of small effect with quantitative continuous phenotypes.30

The advantage of these simplifying assumptions is that density and frequency dependent31

selection emerge naturally from these eco-evolutionary models and this has proved effective32

in understanding how population level processes determine evolutionary outcomes. The33

assumption of quantitative continuous phenotypes is also a good one for the majority of34

immune mechanisms that are characteristically associated with quantitative trait loci (for35

example, cytokine activation in Dupuis et al. (2000), porcine leukocyte regulation in Edfors-36

Lilja et al. (1998) and rodent Th1 development in Gorham et al. (1996)).37

There is a large body of theoretical research focused on the evolution of resistance in38

the context of ecological feedbacks (Antonovics & Thrall, 1994; Bowers et al., 1994; Boots39

& Haraguchi, 1999; Boots et al., 2009). Nevertheless, understanding the patterns of CSS40

investment in host defence for different host-parasite systems remains a key challenge. For41

example, Van Boven & Weissing (2004) and Miller et al. (2007) showed that CSS investment42

in resistance in hosts with permanent immune memory can be low for long-lived species43

and Boots et al. (2013) demonstrated that this is due to low prevalence as a result of low44

population turnover at high lifespans. However, there are many counter-intuitive patterns in45

CSS resistance (Miller et al., 2007) and it remains unclear how ecological feedbacks determine46

these outcomes. For instance, the key dynamic feedback to resistance has been identified as47

force of infection in Van Baalen (1998), Boots & Haraguchi (1999) and Van Baalen (2002)48

yet disease prevalence is emphasised in Miller et al. (2007). Here, we determine the eco-49

evolutionary feedbacks for different host-parasite interactions and use these to explain how50

key differences in epidemiological context and mode of host defence leads to fundamentally51

distinct patterns in CSS resistance. Although our study is focused on host parasite systems52

the methods apply more generally and we emphasise that uncovering complex feedbacks is53

key to understanding the biological processes that underpin evolutionary behaviour.54
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2. Methods55

(a)Epidemiological Model56

Following the methods of Anderson & May (1979), we consider a system of non-linear57

ordinary differential equations that compartmentalises total host population density, H into58

susceptible, S, infected, I and immune/recovered, R, densities59

dS

dt
= a(S + µI +R)− q(S + µI +R)H − bS − βSI + (1− ν)γI + δR (1)

dI

dt
= βSI − (α+ b+ γ)I (2)

dR

dt
= νγI − (b+ δ)R (3)

All parameters are non-negative and µ, ν ∈ [0, 1]. Hosts die at natural death rate b. Hosts60

produce susceptible offspring at rate a which is limited by intra-specific crowding, q, so that61

the carrying capacity in the absence of disease is given by K = (a− b)/q. It follows from this62

host-only equilibrium (i.e. Ĥ0 =K) that b > a is a necessary condition for a non-zero host63

population. The parasite is maintained at endemic levels when the host-only equilibrium Ĥ064

becomes unstable. Analysis of the eigen-values shows that this occurs when R0 > 1 where65

R0 = βĤ0/(α+ b+ γ). Pathogens alter the fecundity of infected hosts such that hosts do not66

reproduce while infected when µ= 0 or there is no effect on host reproduction when µ= 1.67

Transmission of infecteds is a mass action process between susceptible and infected types, with68

transmission coefficient β. Infected hosts suffer additional disease induced mortality (virulence)69

at rate α. Infected hosts recover at rate γ, and a proportion of these recoveries, ν, acquire70

immunity to the pathogen which wanes at rate δ, while the remaining individuals return to a71

susceptible state.72

This model captures several infection scenarios of interest. If ν = 0 the model represents73

a Susceptible-Infected-Susceptible (SIS) framework, where there is no immune memory and74

recovered individuals are completely susceptible to the infection. On the other hand if ν = 1 and75

δ = 0 it represents a Susceptible-Infected-Recovered (SIR) model with life-long immunity (or76
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SIRS with waning immunity if δ > 0). Host resistance can be achieved through the following77

routes. Avoidance, which decreases the rate of transmission (β). Recovery, which increases78

the rate of clearance of infection (γ). Finally, acquired immunity, which either increases the79

probability of inducing acquired immunity (ν) or increases the expected duration of acquired80

immunity through changes in δ (Miller et al., 2007).81

(b)Evolutionary Model82

The association of resistance with physiological costs through the development and83

maintenance of resistance capability has a firm empirical basis (Fuxa & Richter, 1989; Boots84

& Begon, 1993; Kraaijeveld & Godfray, 1997; Poulsen et al., 2002). Following these studies we85

assume that costs are paid through decreased host fecundity (i.e. we make avoidance, recovery86

and acquired immunity decreasing functions of host reproduction rate).87

In evolutionary invasion analysis (Metz et al., 1996; Geritz et al., 1998), invasion fitness,88

Θ, is the asymptotic growth rate of a population of mutant hosts introduced at low density89

into an environment set by a population of resident hosts at equilibrium, i.e.90

Θr(m) =
1

Hm

dHm

dt

∣∣∣∣∣
Hr=Ĥr,Hm=0

(4)

In equation 4 r and m denote resident and mutant, and we are evaluating the resident91

population at its dynamic equilibrium (i.e. Hr = Ĥr) while in contrast the mutant population92

is so rare it has no impact on the dynamics (i.e. Hm = 0). Equations 1-3 can be extended93

to encompass both resident and mutant sub-populations. The ODEs for the mutant strain94

differs to equations 1-3 in two respects. Infection occurs upon contact with both resident and95

mutant infecteds (i.e. βm(Ir + Im)) and host birth rate is reduced by a factor depending on96

total host density (i.e. q(Sm + µIm +Rm)(Hr +Hm)). The rate of change of the mutant host97

population, dHm/dt, is then the sum of the mutant equations, i.e.98
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dHm

dt
= Sm(am − qHtot − b) + Im(µ(am − qHtot)− b− α) +Rm(am − qHtot − b)

∣∣∣∣∣
Hr=Ĥr,Hm=0

(5)

whereHtot =Hr +Hm. The expressions in parentheses in equation 5 are the per capita growth99

rates of the mutant host population when the rare mutants are in the respective classes,100

denoted σmS , σmI and σmR . Invasion fitness can therefore be written101

Θr(m) = pmS σ
m
S + pmI σ

m
I + pmRσ

m
R

∣∣∣∣∣
Hr=Ĥr,Hm=0

(6)

where pmS is the proportion of mutant hosts who are susceptible (i.e. pmS = Sm/Hm and102

similarly for pmI and pmR ). Substituting the relation pmS = 1− pmI − pmR into equation 6 and103

noticing in equation 5 that σmS = σmR leads to104

Θr(m) = (σmS − pmI ((1− µ)(am − qHr) + α))

∣∣∣∣∣
Hr=Ĥr,Hm=0

(7)

Since the first term in equation 7 is equivalent to the fitness of uninfected hosts, the second105

term provides an exact expression for the fitness loss due to infection. It is equal to the product106

of prevalence in the mutant population and harm caused by infection, henceforth denoted D107

i.e.108

D= (1− µ)(am − qHr) + α (8)

This shows that infection can be fought with two distinct strategies that offset fitness loss,109

pmI D. Resistance reduces prevalence, pmI , on the other hand, tolerance reduces damage D (by110

alleviating either disease induced mortality or loss of fertility). For simplicity, we henceforth111

omit the Ĥ notation, but it will be understood that all resident densities are evaluated at112

their endemic attractor and any mutant density is small enough to be evaluated as zero.113
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We introduce a trait, ω, that is useful in the analysis, determining the phenotypic114

value of quantitative resistance (i.e. ω= f(a) where mutant values of resistance are given115

by ωm = f(am)) which can represent avoidance, recovery or acquired immunity. The host116

population evolves in the direction of the mutant gradient of invasion fitness until it reaches an117

evolutionary singularity. There, by definition, the fitness gradient is zero so that singularities,118

a∗, satisfy119

∂Θ

∂am

∣∣∣∣∣
∗

= 0 (9)

where the vertical bar indicates that the expression is evaluated at the evolutionary equilibrium120

where resident equals mutant (i.e. r=m= ∗). A singularity, a∗, is evolutionary stable (ES)121

if ∂2Θ/∂am2 < 0 and convergence stable (CS) if ∂2Θ/∂ar2 − ∂2Θ/∂am2 > 0. A singularity122

that is both ES and CS is uninvadable as well as attracting in an evolutionary sense (i.e. a123

Continuously Stable Strategy, CSS, (Eshel, 1983) - an end point of evolution). In this study124

we analyse the dependence of CSS investment in resistance on the underlying ecological model125

for a range of model formulations. Our results are based on the assumption of diminishing126

returns for a host investing in resistance, i.e. a continuous trade-off between resistance and127

reproduction of any shape provided that reproduction is a decreasing function of resistance128

and that costs accelerate. When the parasite causes a loss of fertility, CSS investment in129

resistance with accelerating costs is a CSS (Hoyle et al., 2008), and hence an end-point of130

evolution. When the parasite has no effect on fertility, CSS investment in resistance with131

accelerating costs is a CSS when costs are sufficiently strongly accelerating (de Mazancourt132

& Dieckmann, 2004; Bowers et al., 2005). The results presented in this study assume a trade-133

off that makes the singularity studied a CSS (i.e. figures 1-4 are generated from trade-offs134

with strongly accelerating cost structures), however, the analysis outlined in this work applies135

more generally for any trade-off with an accelerating cost structure (but note that once the136

singularity is reached branching can occur if costs accelerate only weakly).137

Solving equation 9 for the invasion fitness given by equation 7 and rearranging indicates138

that evolutionary singularities of evolving resistance satisfy139
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dωm

dam

∣∣∣∣∣
∗

=
(pS + µpI + pR)−D ∂pmI

∂am

D
∂pmI
∂ωm

∣∣∣∣∣
∗

(10)

=−C
B

∣∣∣∣∣
∗

(11)

where the numerator in equation 10 represents net cost and is therefore denoted by C, i.e. C140

represents the change in fitness induced by a reduction in reproduction that follows from an141

increased investment in resistance. Since ∂pmI /∂ω
m < 0, i.e. prevalence is a decreasing function142

of resistance, the denominator in equation 11 represents minus benefit and is denoted −B, i.e.143

B represents the change in fitness induced by an increased resistance capability.144

Equation 10 gives the position on the resistance-reproduction trade-off which corresponds145

to a singularity. As a consequence of costs rising with increasing investment with diminishing146

returns, any increase in the right hand side of equation 11 results in the location of the147

singularity shifting to low values of mutant reproduction. This corresponds to high investment148

in resistance, see figure S1.1 in Supporting Information S1. This implies that singular resistance149

is the result of a cost benefit analysis so that CSS investment in resistance, ψ∗ (ω(a) represents150

the phenotypic value of resistance while ψ represents investment in the phenotype), is high151

whenever the benefit is large relative to the cost, i.e.152

ψ∗ ∼
B

C

∣∣∣∣∣
∗

(12)

where we use the symbol ∼ to indicate that the left hand side is a non−linear monotonically153

increasing function of the right hand side feedback, i.e. in equation 12, ψ∗ increases when B
C154

increases and similarly ψ∗ decreases when B
C decreases. A strength of our analysis is that the155

results are not specific to a particular functional form of trade-off, but rather hold for any156

trade-off that features diminishing returns on investment. Since our results allow for flexibility157

in trade-off shape the relationship between feedback and CSS investment will not generally158

be linear.159
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The exact expression for host fitness is key to explaining the role of costs and benefits.160

However, the terms pmS and pmI that appear in cost and benefit (see equation 10) in practice161

are too complex to calculate. A proxy for invasion fitness is a fitness criterion that shares162

the same singularities and evolutionary behavior. Following the biologically inspired proxy of163

Bowers & Turner (1997) we replace the proportion of mutants who are infected, pmI , with164

the proportion of the expected lifespan a mutant spends infected, p̃mI = TI/TH , and similarly165

p̃mS for pmS . The proxy replacements, p̃mS and p̃mI allow CSS investment in resistance to be166

expressed solely in terms of state variables and parameters of the epidemiological model. See167

Supporting Information S3 for an explanation of why this replacement produces a proxy for168

invasion fitness.169

Example: avoidance resistance. To provide a concrete example of how we determine the170

feedback on investment we consider in detail the evolution of avoidance in a host population.171

For simplicity we assume that the host has no ability to recover from infection (γ = 0) and172

that an infected host does not reproduce (µ= 0).173

A mutant host will be born susceptible and will either die susceptible or become infected.174

Infected individuals remain in that state until death. The average time a mutant host is175

susceptible, denoted TS , is the inverse of the rates at which individuals leave the mutant176

susceptible class i.e. TS = 1/(b+ βm(Im + Ir)), see equation 1. The average time a mutant host177

is infected, denoted TI , is the probability the susceptible mutant becomes infected multiplied178

by the average time the infected host remains infected i.e. TI = [βmIr/(b+ βmIr)] × [1/(α+179

b)], see equation 2.180

From the expressions for TS and TI we find proxy terms for prevalence and susceptible181

frequency (Boots & Bowers, 1999)182

p̃mS =
TS

TS + TI
=

α+ b

α+ b+ βmIr
(13)

p̃mI =
TI

TS + TI
=

βmIr

α+ b+ βmIr
(14)
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Differentiating the proxy for prevalence, equation 14, with respect to resistance (in this case183

transmission, β), and using equation 13 leads to184

∂p̃mI
∂βm

=
1

βm
p̃mS p̃

m
I (15)

Therefore, substituting equation 15 into the expression for the benefit of resistance in equation185

11 and using the definition of D in equation 8, the benefit for this model evaluated at the186

singularity is187

B =
(a− qH + α)

β∗
p̃I p̃S (16)

where for simplicity we have dropped the mutant symbol, m, from the mutant frequency188

expressions. The equilibrium condition for equation 1 with γ = 0 and µ= 0 is a− qH = b+ βI,189

so that benefit can be further simplified to190

B =
(α+ b+ β∗I)

β∗
p̃I p̃S (17)

=
(β∗S + β∗I)

β∗
p̃I p̃S (18)

= Ip̃S (19)

where equation 18 follows from equation 17 because of the equilibrium condition from equation191

2, i.e. α+ b= βS. Furthermore, equation 19 follows from 18 since S + I =H in the numerator192

of 18 and this cancels with H in the denominator of pI . On the other hand recalling the193

definition of cost from equation 11, the cost evaluated at the singularity is194

C = p̃S (20)
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since µ= 0 and since p̃mI is independent of a (see equation 14). Finally, since CSS investment

in resistance is a cost benefit analysis

ψ∗ ∼
B

C
= I (21)

Equation 21 indicates that CSS investment in avoidance is governed by a density of infecteds195

feedback. As long as costs increase with resistance such that diminishing returns apply then196

the relationship depends on the exact form of the trade-off in a quantitative sense only. It has197

no qualitative impact on the pattern of CSS investment with respect to life-history which in198

the above example increases when the density of infecteds increases and decreases when that199

density decreases.200

3. Results201

Following the procedure outlined in the previous section we present expressions in table 1202

for CSS investment in resistance for various host-parasite frameworks and the main routes203

to resistance (more detail on deriving the expressions is provided in Supporting Information204

S2). Table 1 indicates that CSS investment for each resistance model is governed by a simple205

function of a single key population feedback. This leads to clear qualitative patterns for each206

model. This is supported by plots of CSS investment against the dynamic feedback, see figures207

1-4 i). We additionally show how CSS investment varies with life-history in figures 1-4 ii) (for208

host lifespan, 1/b), and figures 1-4 iii) (for host crowding, q). The closed circles and diamonds209

represent results of ODE-solving simulations of the adaptive dynamics process throughout210

(and the simulation results are in agreement with our analytical findings, see Boots et al.211

(2012) for more information on the simulation procedure).212

We first consider pathogens that both prevent host reproduction when infected (i.e. µ= 0)213

and increase mortality (α> 0). Since previous model studies have often not considered loss214

of fertility when infected we limit these results to innate resistance in hosts lacking immune215

memory (i.e. ν = 0). When the parasite prevents host fertility, CSS investment is governed216

by a feedback consisting of equilibrium infecteds density, I, scaled by case mortality, (α+217
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b)/(α+ b+ γ), see table 1 A2 and figure 1 (b) i). Both the cost and benefit of resistance vary218

with life-history parameters, see equation 10, and therefore the expressions in A1 and A2 of219

table 1 reflect an interaction of cost and benefit.220

When the parasite has no effect on fertility, the dynamic feedback is disease prevalence for221

all forms of resistance, see table 1 B1-B4. In particular, when resistance is innate (through222

either recovery or avoidance) in a host lacking immune memory, investment is always greatest223

at intermediate prevalence, see table 1 B1 SIS and B2 SIS and figure 2 (a) i) and (b) i).224

Here, when prevalence is low, few transmission events are occurring and enhancement to225

avoidance or recovery has little impact on prevalence. When prevalence is high, the likelihood226

of the transmission of infection is high for susceptible individuals so that it is relatively futile227

to maintain or return individuals to a susceptible state. Therefore there is little benefit to228

increased innate resistance when prevalence is either low or high and this lies at the heart229

of the humpbacked dependence of investment on prevalence. Furthermore, when the parasite230

does not alter fertility, the direct cost of fitness is 1, see equation 10 (i.e. it does not depend231

on model details such as life-history values). Therefore the humpbacked relationship in table232

1 B1 SIS and B2 SIS reflects only variation in the benefit of innate resistance. The strongly233

contrasting relationships seen between table 1 A2 (i.e. innate resistance with loss of fertility)234

and table 1 B1 and B2 (i.e. innate resistance without loss of fertility) are a consequence of235

costs also varying with life-history when the parasite reduces host fertility (where cost depends236

on the proportion of mutants who are susceptible, as it is only they who pay the cost - infecteds237

do not reproduce).238

When acquired immunity evolves to counter pathogens that have no effect on fertility239

investment is always higher for high prevalence, see table 1 B3 and B4. CSS investment240

is qualitatively the same whether resistance is through probability of acquiring immunity or241

through duration of acquired immunity, see figure 3 (c) i) and 4 (c) i) for illustration. Since the242

parasite has no effect on fertility, direct cost does not vary with model parameters. However,243

benefit now reflects an increase in proportion of immunes rather than an increase in proportion244

of susceptibles (amounting to a reduction in prevalence in both cases). As long as prevalence is245
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not low it is always beneficial to boost immunity and this is particularly true when prevalence246

is high.247

In the absence of immune memory, CSS investment in the two modes of innate resistance248

is qualitatively the same. However, with immune memory, investment patterns in avoidance249

and recovery are markedly different, compare figure 3 (b) i) and 4 (b) i) with figure 3 (a) i)250

and 4 (a) i). This is because the benefit of recovery and avoidance is similar in an SIS251

population since they both increase the susceptible frequency at the expense of infecteds252

frequency. However, in an SIR or SIRS population, recovery mainly boosts immune frequency253

relative to prevalence while avoidance mainly boosts susceptible frequency. The parameter ν,254

mediates between these two outlets (i.e. for low ν CSS recovery resembles avoidance, for high255

ν it resembles acquired immunity).256

The question of how CSS investment varies with life-history is entwined with how it varies257

with the dynamic feedback. In some cases CSS investment features a density independent258

coefficient term involving parameters from the host or parasite life-history, as, for example,259

with the density independent case mortality coefficient in table 1 A2. Intra-host crowding,260

q, which acts to reduce host births (or equivalently reduces juvenile survival), however, does261

not appear directly in any of the expressions in table 1. It can be shown that prevalence and262

infected density have a monotonic dependency on crowding (i.e. ∂I/∂q < 0 and ∂(I/H)/∂q < 0,263

results not included). Therefore, the variation in CSS investment due to variation in crowding264

mimics the relationship between CSS investment and the dynamic feedback (though the trend265

will be opposite since the dynamic feedback decreases with crowding). The result is that CSS266

investment has a humpbacked dependence on crowding when resistance is innate in an SIS267

population or when it is innate through avoidance in an SIRS population, see figure 2 (a) iii),268

2 (b) iii), 3 (a) iii) and 4 (a) iii). Investment decreases with increasing crowding when infecteds269

do not reproduce or when resistance is through acquired immunity or through recovery in an270

SIRS population, see figure 1 A iii), 1 (b) iii), 3 (b) iii), 3 (c) iii), 4 (b) iii) and 2 (c) iii).271

Wherever CSS investment depends on the natural mortality parameter through a272

coefficient term and not just through its implicit role in the dynamic feedback, there are273

distinct curves depending on the level of natural mortality, see figure 1 (b) i), 2 (b) i), 3274
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(b) i)− (c) i) and 4 (b) i)− (c) i). As natural mortality changes, and hence host lifespan275

changes, a conflict may arise between the directions of change of the coefficient term and the276

dynamic feedback term. This is one reason for maximal investment at intermediate lifespan, see277

figure 1 (b) ii), 3 (b) ii) and 3 (c) ii). Another reason is the natural hump-backed relationship278

between CSS investment and the population feedback, see figure 2 (a) ii), 2 (b) ii) and 3 (a) ii).279

Yet another reason requires life-long immunity, for then prevalence can be low at high lifespans280

(as immunes dominate the population), see figure 3 (b) ii) and 3 (c) ii). Of course maximal281

investment can occur for a combination of these reasons, see figure 3 (a) ii).282

Finally, the results can be extended to models incorporating age structure. For simplicity283

we do not include this material in the main body of the text but we outline the direction of284

the analysis in Supporting Information S4 through the example of evolving innate resistance285

in a host population incapable of immune memory. The analysis indicates that our results are286

broadly generalisable to models incorporating age structure, see equation S4.12 which is the287

analogue of equation 10 for an age structured host (with no immune class for simplicity). The288

bigger the reduction of prevalence in each of the age classes, scaled by infection damage in289

those age classes, the higher the level of resistance that we expect to evolve. However, they290

also highlight that there are additional, distinct interactions that arise from the inclusion of291

age structure. In particular, if resistance shifts the age profile of the host population in favour292

of classes with a greater contribution to overall mutant growth then we predict selection for293

higher CSS investment. Similarly, a shift in favour of classes with lower contribution to mutant294

growth then we expect this to select for lower investment than would otherwise be the case.295

This analysis indicates that our techniques are generalisable to other more complex model296

frameworks.297
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4. Discussion298

It is clear that evolutionary change impacts population dynamics and that this in turn299

alters selection pressures. Such ecological feedbacks are particularly clear in host-parasite300

interactions where it is recognised that host resistance will impact on parasite prevalence,301

and that prevalence impacts the selection for resistance (Haldane, 1949; Bowers et al., 1994;302

Antonovics & Thrall, 1994; Boots & Haraguchi, 1999; Roy & Kirchner, 2000). However, we303

have shown here that the details matter, so for example, the relationship between resistance304

and prevalence is contingent on the epidemiological scenario. For instance, when infection305

causes a loss of fertility CSS investment in resistance varies with force of infection. While,306

in contrast, when infection causes only increased death rate, investment varies with disease307

prevalence. A striking result, which can be explained simply by our analysis, is that when it308

is prevalence that determines investment in innate resistance (i.e. when there is no effect of309

infection on fertility), CSS investment does not always increase with prevalence. In cases where310

infection has no effect on fertility, investment in innate resistance (i.e. avoidance or recovery311

in an SIS model or avoidance in an SIR model) is highest at intermediate prevalence while312

investment in immune memory (i.e. recovery, duration of immunity as well as probability of313

clearance to immunity in SIR and SIRS models) always increases with prevalence. Therefore314

our work emphasises the importance of ecological feedbacks to evolutionary outcomes and315

shows that quite distinct feedbacks arise for different ecological interactions between host and316

parasite. We now discuss the insights and implications from this work.317

A key finding is that the presence of parasite associated loss of fecundity radically alters318

the way that the epidemiology feeds back into the evolutionary process. Specifically, CSS319

investment in immunity is the result of a cost-benefit analysis in host fitness. The cost is320

proportional to the fraction of hosts who experience the loss of fecundity associated with321

costly resistance. When infected individuals reproduce normally all individuals experience the322

costs of resistance equally, and crucially therefore, CSS investment reflects only variation in323

the benefit of resistance. When only susceptibles experience the cost (i.e. infected individuals324

do not reproduce) the cost is proportional to the frequency of susceptibles so that variation325
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in the cost as well as the benefit determines the outcome (a similar result holds if infecteds326

reproduce at a reduced rate).327

When infecteds reproduce normally and it is innate resistance that evolves, the328

humpbacked relationship between CSS investment and prevalence that arises reflects a329

humpbacked relationship between the benefit of resistance and prevalence. In our model330

framework with no immune class the patterns of investment in innate resistance are the same331

whether the route is through avoidance or recovery and this emphasises that the feedback332

differs with the type of immunity but not the precise mechanism. The benefit of resistance is333

the reduction in prevalence weighted by the damage from infection (when infecteds reproduce334

normally damage equals disease induced mortality, i.e. virulence). Innate resistance through335

recovery or avoidance achieves only a very slight reduction in prevalence, and hence has little336

benefit, if prevalence is already low or high. If prevalence is low, few transmissions occur337

because there are relatively few infecteds, therefore neither avoidance nor recovery has a big338

effect on prevalence. If prevalence is high, returning individuals to a susceptible state (i.e.339

recovery) or maintaining them in a susceptible state (i.e. avoidance) only serves to feed the340

flames of future transmission and therefore has little effect on prevalence. This is an effect341

that has been noted in Van Baalen (1998), in relation to the force of infection in a model with342

no reproduction of infecteds or density-dependence in host demography (Van Baalen (1998)343

describe this as a “give-up-hope effect” and point out a corresponding effect in optimal anti-344

predator traits in Abrams (1990)). Therefore, the hump-backed relationship between CSS345

investment and prevalence is actually a hallmark of the evolutionary dynamics of innate346

resistance.347

The more complex cost benefit relationship of investment in immunity when infection348

causes a loss of fertility has received less attention. Once again, the benefit of resistance349

follows a humpbacked relationship with prevalence. However, cost is now proportional to350

the frequency of susceptibles (as compared to unity when infecteds reproduce). Furthermore,351

damage consists of the rate of disease induced mortality plus the density dependent rate of352

reproduction whose loss now also constitutes damage due to infection. When we look at the353

evolution of avoidance, the interplay between the cost and benefit reduces this complexity354
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so that CSS investment is a simple increasing function of the abundance of infecteds. This355

result echoes that of Boots & Bowers (1999) whose model features a parasite causing a loss356

of fertility and SI dynamics without recovery that are analogous to a predator−prey system.357

However a key factor that distinguishes between predator−prey and disease interactions is the358

possibility of recovery from an infected state to a susceptible state. At first sight the inclusion of359

recovery (i.e. SIS dynamics) might be thought to lead to dynamics that are more like the case360

where infection has no impact on fertility (since recovering infecteds are functionally similar361

to new-borns/juveniles coming from infected adults). However this is not the case. In fact the362

more general pattern is that CSS investment is governed by a complex interaction of cost,363

damage and benefit, all of which vary with the equilibrium state of the host population (and364

obscure the humpbacked relationship of the benefit of resistance with prevalence). Instead,365

these factors combine to produce the deceptively simple increasing relationship between CSS366

investment and the abundance of infecteds scaled by case mortality.367

We model investment in immune memory in two ways: a) through increased probability of368

recovering to a permanent immune state (for convenience we call this CSS life-long immunity)369

or b) by an increased duration of immunity when recovery always leads to immunity (for370

convenience, CSS waning immunity). We show that in both of these cases CSS investment371

always increases with disease prevalence. However, it is important to note that despite the372

expressions for CSS waning and CSS life-long immunity being the same, the models in which373

they evolve produce different patterns in equilibrium prevalence at high lifespans due to the374

impact of waning immunity. In particular, a waning immunity term means that there is no very375

long-lived class and this means that it is harder for the host density to approach the carrying376

capacity which would reduce prevalence (by reducing the supply of susceptibles). Avoidance377

and recovery exhibit remarkably similar CSS investment relationships when the host lacks378

immune memory yet markedly different relationships when immune memory is present. The379

key result is that recovery without immune memory is functionally different to recovery with380

immune memory (i.e. recovery to an immune state is a route to acquired immunity). In the381

former case it acts to increase the proportion of susceptible hosts who are vulnerable to382

reinfection (and therefore follows a humpbacked relationship with disease prevalence), in the383
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latter case it increases the proportion of immunes (and therefore increases with increasing384

prevalence). This highlights the generality of our results. There are very clear patterns to CSS385

investment in resistance that are distinct for innate and acquired immunity but within these386

categories the route is unimportant.387

CSS investment has a complex relationship with host lifespan. Accounts of how the various388

forms of resistance respond to lifespan have been given in Van Boven & Weissing (2004)389

and Miller et al. (2007) and this has been reviewed in Boots et al. (2013). Maximal CSS390

investment at intermediate lifespans appears to be a result that is found across models and391

across resistance forms (though see also the acute cost scenario of Van Boven &Weissing (2004)392

which leads to maximal investment at long lifespans). The key exception is the duration of393

acquired immunity where CSS investment always increases with increasing host lifespan, see394

Miller et al. (2007) and Boots et al. (2013). Our analysis makes it clear that this consistent395

pattern is not an outcome inherent to the evolution of resistance for any one reason. For396

example, it occurs for innate resistance when immune memory is lacking and the parasite has397

no effect on fertility because investment responds to benefit which is small at low and high398

prevalence, and in general high lifespan means high prevalence. In contrast, when resistance is399

through permanent acquired immunity, prevalence can be low when hosts have long lifespans400

(long-lived populations become dominated by immunes) leading to maximal investment at401

intermediate lifespans. In a third, contrasting example when innate resistance evolves to402

combat parasites causing a loss of host fertility, investment is governed by the abundance403

of infecteds scaled by case mortality. As lifespan increases abundance increases, but case404

mortality decreases, so that investment can be maximal at intermediate lifespan. This is an405

important point, although the findings such as maximal investment at intermediate lifespan406

that we see may be consistent, these three examples show that they result from very different407

combinations of cost and benefit that arise through ecological feedbacks.408

We have shown how the combination of host and parasite characteristics, and the ecological409

interactions between them, lead to distinct ecological feedbacks to the evolution of host410

resistance. Understanding the ecological feedback is essential in accounting for the role that411

variation in life-history characters such as host lifespan plays in patterns of host resistance.412
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However, intuitive understanding is inevitably gained at the expense of model complexity. It413

is important to consider the likely effect of additional key interactions like parasite diversity414

and host age structure on the phenomena that we describe. For example, the hallmark of415

innate resistance i.e. the lowering of prevalence and increase of susceptible frequency, is likely416

to be complicated by the presence of additional pathogens and their community dynamics. We417

have also pointed the way to a fuller model of the host population by including age structure.418

Our analysis indicates that the main results generalise to age-structured host populations419

but we additionally identify distinct feedbacks arising due to the age-structure. Therefore,420

although the results that we present here give a thorough explanation of CSS investment421

in host resistance in standard epidemiological models, they are only a foundation for the422

understanding of resistance in real world scenarios.423
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1

SIS SIR SIRS

ν = 0 ν = 1 B3 ν(a) & δ= 0

or B4 δ(a) & ν = 1

avoidance infertile infecteds

A1 no recovery ψ∗ ∼ I − −

A2 with recovery ψ∗ ∼ α+b
α+b+γ

I − −

all forms fertile infecteds

B1 avoidance ψ∗ ∼ α I
H

(
1− I

H

)
ψ∗ ∼ α I

H
(1− ( b+γ

b
) I
H
) −

B2 recovery ψ∗ ∼ α I
H

(
1− I

H

)
ψ∗ ∼ α I

H

(
αI
bH

+ 1
) −

B3 acquired immunity (prob.) − − ψ∗ ∼ αγ
b

(
I
H

)2
B4 acquired immunity (length) − − ψ∗ ∼ αγ

(
I
H

)2
Table 1. Feedbacks to CSS investment in resistance, ψ∗. We define a ∼ b to represent non−linear monotonic
dependence of a on b i.e. any increase in b results in an increase in a, and any decrease in b results in a decrease
in a. In the case of evolving recovery, ψ∗ represents investment in reducing the infectious period. In the case
of evolving acquired immunity through the waning immunity rate, ψ∗ represents investment in the duration of
immunity. Column 1 corresponds to host populations without immune memory and therefore ν = 0 for A1-B4
column 1. Column 2 corresponds to host populations with immune memory and for simplicity immunity is
life-long and therefore ν = 1 and δ= 0. In B4 column 3 ν = 1 with δ > 0 while in column 3 δ= 0 with ν > 0.
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Figure 1. CSS investment in innate resistance to an infection associated with loss of fertility. In (a) there is
no recovery from infection i.e. γ = 0. In (b) there is recovery from infection γ = 5. In both (a) i) and (b) i)
CSS investment depends on the density of infecteds, I, while ii) and iii) throughout show the variation in
investment as lifespan and crowding change. Closed circles and diamonds in each figure represent the final level
of evolved resistance from ODE simulations of the evolutionary process. The resistance-reproduction trade-off
was ω(a) = (1− exp(−Q ∗ (amax− a)))/(1− exp(−Q ∗ (amax− amin))) with Q= 5, amax= 5, amax= 3 for
β = β0(1− 0.4ω(a)). Parameters were: µ= 0 β0 = 1 in (a) and (b) and α= 4 in (a) and α= 0.1 in (b). CSS
investment relies on case mortality which is always 1 when γ = 0 but depends on natural mortality when γ > 0
leading to curves for different values of natural mortality in (b) i). The value of b for each curve corresponds
to the location of the red simulation marker in (b) ii), i.e. 1 corresponds to L= 0.5, 2 to L= 1, 3 to L= 2, 4
to L= 5, 5 to L= 10 and 6 to L= 20 where lifespan, L, equals 1/b.
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Figure 2. CSS investment in innate resistance to an infection that has no impact on host fertility where the
host has no capacity for immune memory i.e. SIS population. In (a) the resistance is through avoidance
while in (b) it is through recovery. In both (a) i) and (b) i) CSS investment depends on disease prevalence,
I/H, while ii) and iii) throughout show the variation in investment as lifespan and crowding changes. Closed
circles and diamonds in each figure represent the final level of evolved resistance from ODE simulations of the
evolutionary process. See caption of figure 1 for the trade-off, ω(a) which affects transmission in (a) according
to β = β0(1− 0.4ω(a)) and affects recovery in (b) according to γ = γ0(1 + ω(a)). In both (a) and (b) µ= 1. In
(a): β0 = 1, α= 4, γ = 0.1 and b= 1. In (b): α= 3, γ0 = 2.5 and b= 2. In the case of recovery CSS investment is
in the length of the infectious period which depends on natural mortality leading to curves for different values
of natural mortality in (b) i). The value of b for each curve corresponds to the location of the red simulation
marker in (b) ii), i.e. 1 corresponds to L= 1/4, 2 to L= 1/2, 3 to L= 1/1.5, 4 to L= 1, 5 to L= 2.5, 6 to
L= 10 and 7 to L= 20 where lifespan, L, equals 1/b.
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Figure 3. CSS investment in resistance to an infection that has no impact on host fertility where the host
possesses life-long immune memory i.e. SIR population except in (c) which is SIRS (in the sense that an
SIR or SIS route is taken depending on ν) since recovereds return to a susceptible state with a probability
that is evolving. In panel (a), resistance is through avoidance, in (b) through recovery, and in (c) through the
probability of acquiring immunity. See caption of figure 1 for the trade-off, ω(a) which effects transmission
in (a) according to β = β0(1− 0.4ω(a)), recovery in (b) according to γ = γ0(1 + ω(a)) and the probability of
recovering to immunity in (c) according to ν = ν0(1 + ω(a)). In (a), (b) and (c): µ= 1. In (a): β0 = 1, α= 10
and γ = 0.1, ν = 1, q= 0.1, b= 0.05. In (b) α= 3, γ0 = 2.5, ν = 1, q= 0.1 and b= 2.5. In (c): α= 3, γ = 2.5,
ν0 = 1, q= 0.1, and b= 2.5. CSS investment relies directly on natural mortality when avoidance or recovery
evolves in a host population containing immune individuals or when acquired immunity evolves. This leads
to curves for different values of natural mortality in figure (a) i), (b) i), and (c) i). The value of b for each
curve corresponds to the location of the red simulation marker in figure (a) ii), i.e. 1 corresponds to L= 1/2,
2 to L= 1/1.5, 3 to L= 1, 4 to L= 2, 5 to L= 10 and 6 to L= 20. In (b) ii) and (c) ii) the red markers also
correspond to values of lifespan i.e. 1 corresponds to L= 1/4, 2 to L= 1/2, 3 to L= 1/1.5, 4 to L= 1, 5 to
L= 2.5, 6 to L= 5, 7 to L= 10 and 8 to L= 100 where lifespan, L, equals 1/b. Closed circles and diamonds in
each figure represent the final level of resistance from ODE simulations of the evolutionary process.
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Figure 4. CSS investment in resistance to an infection that has no impact on host fertility where the host
possesses waning immune memory i.e. SIRS population. In panel (a) resistance is through avoidance, in (b)
through recovery, and in (c) through duration of acquired immunity. Note that while waning immunity is by
necessity variable in (c) it is fixed in (a) and (b) (i.e. δ= 0.5) and ν = 1 throughout. See caption of figure 1 for
the trade-off, ω(a), which effects transmission in (a) according to β = β0(1− 0.4ω(a)), recovery in (b) according
to γ = γ0(1 + ω(a)) and waning immunity in (c) according to δ= δ0(1− ω(a)). In (a), (b) and (c): µ= 1. In a:
β0 = 1, α= 5, γ = 5, ν = 1, q= 0.1 and b= 0.05. In (b): α= 3, γ0 = 2.5, ν = 1, q= 0.1 and b= 2. In (c): α= 5,
γ = 5, ν = 1, q= 0.025, δ0 = and b= 1. CSS investment relies directly on natural mortality when avoidance or
recovery evolves in a host population containing immune individuals or when acquired immunity evolves. This
leads to curves for different values of natural mortality in figure (a) i), (b) i), and (c) i). The value of b for each
curve corresponds to the location of the red simulation marker in figure (a) ii), i.e. 1 corresponds to L= 1/2,
2 to L= 1, 3 to L= 2, 4 to L= 5, 5 to L= 10 and 6 to L= 20. In (b) ii) the red markers also correspond to
values of lifespan i.e. 1 corresponds to L= 1/2, 2 to L= 1, 3 to L= 2, 4 to L= 5, 5 to L= 10, 6 to L= 20 and
7 to L= 50 and in (c) ii) 1 corresponds to L= 1/2, 2 to L= 1/1.5, 3 to L= 1, 4 to L= 2, 5 to L= 5 and 6
to L= 10 where lifespan, L, equals 1/b. Closed circles and diamonds in each figure represent the final level of
resistance from ODE simulations of the evolutionary process.
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Appendix S1, CSS investment is governed by a benefit / cost feedback

In main text equation 10 we show that,1

dωm

dam

∣∣∣∣∣
a∗

=−C
B

∣∣∣∣∣
a∗

(S1.1)

which reveals the correspondence between the singular trait value (through its gradient value2

dωm/dam|∗) and the underlying epidemiological processes. Any resistance singularity on a3

trade-off with accelerating costs represents CSS investment, ψ∗. The graphical argument in4

figure S1.1 illustrates why this implies5

ψ∗ ∼
B

C

∣∣∣∣∣
a∗

(S1.2)

Where the relation ∼ is as defined in the main text. Our intention is to show how CSS6

investment decreases or increases with changes in the parameters and population dynamics7

of the underlying epidemiological model. One approach would be to specify a trade-off form8

and derive exact expressions for CSS investment in resistance. However, our emphasis here is9

on generality and therefore our results are not limited to specific trade-off forms. Our results10

imply that for different trade-offs the qualitative patterns are the same, though naturally11

there will be quantitative differences for different trade-off shapes. This is why our results are12

expressed as feedback expressions (through a graphical argument) and not exact proportional13

forms (through implicit differentiation), see equation S1.2.14

Appendix S2, CSS investment in resistance when the pathogen has no effect on fertility15

In the main text we consider pathogens who prevent fertility in infected hosts (i.e. µ= 0).16

In this appendix we consider both innate and acquired resistance to pathogens who have no17

impact on host fertility (i.e. µ= 1). We assume that recovery leads to waning immunity and18
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 B ↑ or C ↓ ⇒ d ω/d a |* ↑  

 i.e. investment, ψ*, ↑  

 B ↓ or C ↑ ⇒ d ω/d a |* ↓ 

 i.e. investment, ψ*, ↓  

CSS

host reproduction, a

re
s
is

ta
n
c
e
, 

ω

Figure S1.1. The gradient of the resistance reproduction trade-off where the singularity can be found is
expressed in terms of parameters of the ecological model in the equation dω/da|∗=−C/B|∗. The gradient
is negative everywhere (investment is costly) and takes large negative values for high reproduction and small
negative values for low reproduction (costs are accelerating). CSS investment, ψ∗, is therefore high or low
depending on the ratio of benefit to cost.

never in an immediate return to a susceptible state (i.e. ν = 1). Equation 10, main text, with19

µ= 1 is,20

dωm

dam

∣∣∣∣∣
a∗

=
1−D ∂pmI

∂am

D
∂pmI
∂ωm

∣∣∣∣∣
a∗

(S2.1)

The next step is to use the proxy for mutant prevalence p̃mI = TI/TH . When γ > 0 a mutant can21

make infinitely many return visits to the epidemiological states i.e. TI/TH =
∞∑
i=1

TIi/TH where22

the i’s represent the mutant host’s successive visits to the infected state. However, following23

Van Baalen (1998), the equations for the probability that the rare mutant invader is in each24

of the classes, i.e.25

d~p

dt
=A~p
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are linear, where ~p is the vector of these probabilities ordered according to S, I,R, and the26

expected times spent in each class are the elements of27

∫∞
0
~p(t)dt=−A−1~p(0)

where28

A=


−b− βmIr (1− νm)γm δm

βmIr −(α+ b+ γm) 0

0 νmγm −(b+ δm)



Since we are interested in p̃mS , p̃mI and p̃mR and since p(0) is necessarily (1 0 0)T , it follows29

(for the SIR model) that we need only calculate certain cofactors of the matrix A. In30

particular, denoting the ith row and jth column entry of A as aij31

p̃mS =
a22a33 − a23a32

(a22a33 − a23a32) + (a23a31 − a21a33) + (a21a32 − a22a31)

=
(α+ b+ γm)(b+ δm)

(α+ b+ γm)(b+ δm) + βmIr(b+ δm) + νmγmβmIr
(S2.2)

p̃mI =
a23a31 − a21a33

(a22a33 − a23a32) + (a23a31 − a21a33) + (a21a32 − a22a31)

=
(βmIr)(b+ δm)

(α+ b+ γm)(b+ δm) + βmIr(b+ δm) + νmγmβmIr
(S2.3)
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p̃mR =
a21a32 − a22a31

(a22a33 − a23a32) + (a23a31 − a21a33) + (a21a32 − a22a31)

=
νmγmβmIr

(α+ b+ γm)(b+ δm) + βmIr(b+ δm) + νmγmβmIr
(S2.4)

so that,32

dωm

dam

∣∣∣∣∣
a∗

=−
(
α
∂p̃mI
∂ωm

)−1
(S2.5)

for ω ∈ (β, γ, δ), since the proxy for mutant prevalence does not depend directly on am.33

Differentiating equation S2.3 with respect to the various forms of resistance leads to,34

∂p̃mI
∂βm

=
1

βm
p̃mI − p̃mI

1

βm
p̃mI − p̃mI

1

βm
p̃mR =

1

βm
p̃mI p̃

m
S (S2.6)

∂p̃mI
∂γm

=−p̃mI
1

α+ b+ γm
p̃mS − p̃mI

1

γm
p̃mR =− 1

α+ b+ γm
p̃mI (p̃mS +

α+ b+ γm

γm
p̃mR ) (S2.7)

∂p̃mI
∂δm

=
1

b+ δm
p̃mI − p̃mI

1

b+ δm
p̃mS − p̃mI

1

b+ δm
p̃mI =

1

b+ δm
p̃mI p̃

m
R (S2.8)

and substituting into equation S2.5 leads to CSS investment in the different routes to35

resistance.36

Avoidance37

dβm

dam

∣∣∣∣∣
a∗

=−
(
α
∂p̃mI
∂βm

)−1

⇐⇒ 1

βm
dβm

dam

∣∣∣∣∣
a∗

=− (αp̃mI p̃
m
S )−1

=⇒ψ∗ ∼ αp̃mI p̃
m
S (S2.9)
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where investment, ψ∗, is in the natural logarithm of avoidance resistance (since38

1/βm(dβm/dam) = d lnβm/dam) but the log transformation has only a quantitative effect39

and not a qualitative one since it is monotonic with respect to its argument. Equation S2.940

for CSS investment in avoidance resistance appears as the B1 SIR in table 1, i.e. ν = 1 so41

recovery always results in immunity (but note that equation S2.9 is correct regardless of the42

value of ν). The SIS entry requires analogous work for the model which assumes that ν = 0).43

Recovery44

In the case of recovery, for the SIRS model, we also assume that δ= 0 (i.e. recovery to a45

permanent immune state)46

dγm

dam

∣∣∣∣∣
a∗

=−
(
α
∂p̃mI
∂γm

)−1
(S2.10)

⇐⇒ 1

α+ b+ γm
dγm

dam

∣∣∣∣∣
a∗

=−(p̃mI (p̃mS +
α+ b+ γm

γm
p̃mR ))−1

=−(p̃mI p̃
m
S (1 +

α+ b+ γm

γm
p̃mR
p̃mS

))−1

=−(
1

b
p̃mI p̃

m
S (b+ βI)−1

=−(
1

b
p̃mI p̃

m
S (b

H

S
+ α

I

S
)−1

=−(p̃mI (1 +
α

b
p̃mI )−1

=⇒ψ∗ ∼ p̃mI (
α

b
p̃mI + 1) (S2.11)

where investment, ψ∗, is in the natural logarithm of the infectious period and hence recovery47

resistance (since 1/(α+ b+ γm)(dγm/dam) = d ln (α+ b+ γm)/dam). Equation S2.11 for48

CSS investment in recovery resistance appears as C1 SIR in table 1 (the SIS entry requires49

analogous work for the model which assumes that ν = 0).50
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Duration of immunity51

dδm

dam

∣∣∣∣∣
a∗

=−
(
α
∂p̃mI
∂δm

)−1

⇐⇒ dδm

dam

∣∣∣∣∣
a∗

=−
(

αγ

(b+ δ)2
p̃mI p̃

m
I

)−1
=⇒ψ∗ ∼ αγp̃mI p̃

m
I (S2.12)

where investment, ψ∗, is in the duration of immunity, 1/(b+ δ). Equation S2.12 for CSS52

investment in avoidance resistance appears as B4 in table 1 (B3 in table 1 requires analogous53

work for the model that assumes that δ= 0 and ν = ν(a)).54

Appendix S3, Fitness criteria and the proxy replacements for mutant frequencies55

In this section we demonstrate that replacing mutant prevalence by the expected proportion of56

lifespan invading mutants spend infected (and similarly for susceptible frequency and immune57

frequency) is a proxy for invasion fitness.58

Firstly, if the lifetime reproduction of an invading mutant phenotype, R, is greater than59

1, then the invading mutant population will grow. Therefore the condition, R> 1, must be60

met for a mutant to succeed and for this reason it is an established proxy for invasion fitness61

Hurford et al. (2010). The full condition for the model given by equations 1− 3, main text, is62

R= Tm
S (am − qHr) + Tm

I (am − qHr) + Tm
R (am − qHr)> 1 (S3.1)

On the other hand, we have the actual expression for invasion fitness, see equation 6 main63

text. Here we show that equivalence of the two criteria implies that we can replace the rare64

mutant frequencies with the expected proportion of the rare mutant’s life that is spent in the65

various classes.66

Beginning with the lifetime reproduction criteria:67
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Tm
S (am − qHr) + Tm

I (am − qHr) + Tm
R (am − qHr)> 1 (S3.2)

⇔ Tm
S (am − qHr) + Tm

I (am − qHr) + Tm
R (am − qHr)− 1> 0 (S3.3)

⇔ Tm
S (am − qHr − b) + Tm

I (am − qHr − b− α) + Tm
R (am − qHr − b)

+ Tm
S b+ Tm

I (b+ α) + Tm
R b− 1> 0 (S3.4)

⇔
Tm
S

Tm
H

(am − qHr − b) +
Tm
I

Tm
H

(am − qHr − b− α) +
Tm
R

Tm
H

(am − qHr − b)

+
Tm
S

Tm
H

b+
Tm
I

Tm
H

(b+ α) +
Tm
R

Tm
H

b− 1

Tm
H

> 0 (S3.5)

⇔
Tm
S

Tm
H

(am − qHr − b) +
Tm
I

Tm
H

(am − qHr − b− α) +
Tm
R

Tm
H

(am − qHr − b)

b+
Tm
I

Tm
H

α− 1

Tm
H

> 0 (S3.6)

It can now be seen that replacing Tm
S /T

m
H with S/H (and similarly for the other frequencies)68

links the lifetime reproduction criteria, R> 1, and invasion fitness. This is the case because69

the final term of S3.6 (the inverse of the mutant lifespan) is the death rate of mutant hosts.70

Once the frequency replacements are made, the preceding terms in the second line of equation71

S3.6 are also the death rate of mutant hosts and the terms cancel leading to72

Tm
S

Tm
H

(am − qHr − b) +
Tm
I

Tm
H

(am − qHr − b− α) +
Tm
R

Tm
H

(am − qHr − b)> 0 (S3.7)

which upon making the frequency replacements is the invasion fitness split into classes as per73

equation 6 of the main text. Therefore, assuming the equivalence of the lifetime reproduction74

criteria (evaluated at rare invasion) and invasion fitness is consistent with replacement of rare75

mutant frequencies with the expected proportion of a rare mutant’s lifespan spent in those76

classes.77
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Appendix S4, Ecological feedbacks due to host age structure78

In this appendix we illustrate the extension of our results to a host population structured by79

C age classes, using the example of evolving innate resistance. We assume that recovery leads80

to immediate return to a susceptible state. A model of C age classes is given by,81

dS1
dt

= a
C∑

j=1

κj(Sj + µjIj)− q
C∑

j=1

κj(Sj + µjIj)H − b1S1 − β1S1
C∑

j=1

Ij + γ1I1 − q1S1 (S4.1)

dI1
dt

= β1S1

C∑
j=1

Ij − (α1 + b1 + γ1)I1 − q1I1 (S4.2)

dSn
dt

= qn−1Sn−1 − bnSn − βnSn
C∑

j=1

Ij + γnIn − qnSn, (2≤ n≤C − 1) (S4.3)

dIn
dt

= qn−1In−1 + βnSn

C∑
j=1

Ij − (αn + bn + γn)In − qnIn, (2≤ n≤C − 1) (S4.4)

dSC
dt

= qC−1SC−1 − bCSC − βCSC
C∑

j=1

Ij + γCIC (S4.5)

dIC
dt

= qC−1IC−1 + βCSC

C∑
j=1

Ij − (αC + bC + γC)IC (S4.6)

i.e. a total of C age classes, all of which are vulnerable to infection with different levels82

of susceptibility. For simplicity, the transmission rate, βj , depends on the age class of the83

susceptible host but not the age class of the infected host.The rate ql governs age transitions84

of individuals between the l − 1th and the lth age classes. 0≤ κj ≤ 1 is the proportion of the85

maximum reproduction rate, a, that is achieved by individuals of age class j. 0≤ µj ≤ 1 is the86

reduction of host fertility (of age class j) due to infection. All other parameters are as described87

in the main text, though now they are particular to the age class represented by the subscript88

that they bear. As per Appendix S2, equations S4.1-S4.6 can be extended to represent mutants89

in a population of residents. Where mutants bear a small phenotypic change along a trade-off90
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axis between resistance, ω and maximum reproduction, a. As per the main text, by taking a91

rare mutant approximation, the invasion fitness can be written as92

Θr(m) =
1

Hm

dHm

dt

∣∣∣∣∣
Hr=Ĥr,Hm=0

(S4.7)

=
C∑

j=1

(
Sm
j

Hm
(amκj − qκjHtot − bj) +

Imj
Hm

(κjµj(a
m − qHtot)− bj − αj))

∣∣∣∣∣
Hr=Ĥr,Hm=0

(S4.8)

=

C∑
j=1

(pmAj
σj − pmIj ((1− κjµj)(a

m − qHtot) + αj))

∣∣∣∣∣
Hr=Ĥr,Hm=0

(S4.9)

=

C∑
j=1

(pmAj
σj − pmIjDj)

∣∣∣∣∣
Hr=Ĥr,Hm=0

(S4.10)

where pAj is the proportion of time a mutant spends in the jth age class (i.e. regardless of93

infection status). Where σj represents the instantaneous host growth rate when the mutant is94

uninfected and in age class j. Additionally, Dj = (1− κjµj)(am − qHtot) + αj , represents the95

damage caused by infection to hosts of age class j. Applying the singularity equation96

dΘr(m)

dam
= 0

∣∣∣∣∣
a∗

(S4.11)

to invasion fitness S4.9 yields the following expression describing the position of the CSS97

singularity98

dωm

dam

∣∣∣∣∣
a∗

=

∑C
j=1(κjp

m
Sj

+ κjµjp
m
Ij

)∑C
j=1(Dj

∂pmIj
∂ωm − σj

∂pmAj

∂ωm )

∣∣∣∣∣
a∗

(S4.12)

Note that we have omitted terms relating to derivatives of frequencies with respect to am99

since it should be clear from Appendix S2 that the proxy terms are always independent of100
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reproduction rate (because they represent the proportion of its life that the new mutant spends101

in the particular classes).102

The next step would be to calculate the proxies for mutant prevalence p̃mIj = TIj/TH and for103

mutant age profile p̃mAj
= (TSj + TIj )/TH , but we omit these workings here. As per Appendix104

S2 they can be calculated by reference to elements of the vector −A−1~p(0) (A is a CxC105

vector and ~p(0) is Cx1). All the elements of the column vector ~p(0) are zero except for the106

first (representing birth of hosts into only the first age class and no vertical transmission)107

and therefore one needs only to calculate the first column of A−1. The elements of the vector108

−A−1 ~p(0) represent expected duration of the mutant in each class and we therefore divide109

each element by the sum of all the elements in order to calculate the frequencies. This means110

that we do not need to calculate the determinant of A but only three of the minors of A111

(results omitted here).112

From equation S4.12 we see that if there is no effect of the infection on fertility and if birth113

rate does not vary between classes (i.e. setting κj = 1 and µj = 1 for all j ∈C), then114

ψ∗ ∼
C∑

j=1

(αj

∂pmIj
∂ωm

− σj
∂pmAj

∂ωm
)

∣∣∣∣∣
a∗

(S4.13)

Equation S4.13 shows that the single age class result of equation S2.5 in Appendix S2 is115

generalisable to multiple age classes (i.e. see the first term on the right hand side of equation116

S4.13). However, now there is an additional term due solely to age structure (i.e. the second117

term on the right hand side of equation S4.13) which indicates that CSS investment is relatively118

greater when resistance alters the age profile of the population in such a way that ages with119

a greater contribution to instantaneous growth of the overall mutant population are more120

favoured.121
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