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We present a methodology for obtaining explicit solutions to infinite time horizon optimal stopping
problems involving general, one-dimensional, Itô diffusions, payoff functions that need not be smooth
and state-dependent discounting. This is done within a framework based on dynamic programming tech-
niques employing variational inequalities. The aim of this paper is to facilitate the solution of a wide
variety of problems, particularly in finance or economics.
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1. Introduction

A fundamental problem in finance, economics or management science is concerned with determining
the optimal time to execute an action that results in some payoff in a random environment. Examples of
these types of problems include buying or selling an asset in a market, making a decision based on noisy
economic data or operating a manufacturing facility in response to consumer demand. To address these
types of problems, the theory of discretionary stopping has been widely employed in finance following
Karlin (1962) and the development of so-called ‘real options’ theory, introduced by McDonald & Siegel
(1986).

In order to address some problems of this type, this article presents a framework for obtaining
explicit solutions to a wide variety of infinite time horizon optimal stopping problems. We assume that
the stochastic system we study is driven by the Itô diffusion given by the stochastic differential equation
(SDE)

dXt = b(Xt) dt + σ(Xt) dWt, X0 = x ∈ I, (1)

where the functions b, σ : I → R satisfy Assumptions 2.1 and 2.2 and I is an open interval with left
endpoint α � −∞ and right endpoint β � ∞. Our objective is to select the (Ft)-stopping-time, τ , that
maximizes

Ex[e−Λτ g(Xτ )1{τ<∞}],

where g is subject to the conditions in Assumption 2.4 and Λ is a state-dependent discounting factor
defined by

Λt =
∫ t

0
r(Xs) ds, (2)

for some function, r, satisfying the conditions of Assumption 2.3.
The majority of financial and real options models in the current literature assume that the underlying

asset’s value dynamics are modelled by a geometric Brownian motion, the associated payoff function
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is affine and the discounting rate is constant. The objective of this paper is to significantly relax all of
these assumptions and to provide a much more realistic modelling framework within which results of
an explicit nature can be obtained.

Apart from offering economic modellers additional flexibility, developing the existing theory so
that it can account for asset price dynamics driven by general Itô diffusions becomes essential once
one recognizes that the value of assets that exist in equilibrium market conditions tend to fluctuate
about some long-term mean level, rather than, on average, grow or fall exponentially, as modelled by
a geometric Brownian motion. This observation, which is supported by empirical evidence (e.g. see
Metcalf & Hassett, 1995; Sarkar, 2003), suggests that real asset dynamics should be modelled by mean-
reverting diffusions rather than by a geometric Brownian motion.

Introducing state-dependent discounting enables a more realistic modelling framework for invest-
ment decisions in the presence of default risk. In practice, investment decision making involves the
choice of a discounting rate that accounts for the time-value of money and the associated investment’s
depreciation rate as well as for the likelihood of the investment’s default. In view of this observation, dis-
counting should reflect the dependence of default likelihood of an investment project on the economic
environment affecting the project, which, in an economic setting, might be related to the underlying
asset’s value or demand. In particular, the events of 2007–2008 highlighted the importance of including
a state-dependent discount factor.

Considering general payoff functions, rather than affine ones, plainly provides significant additional
modelling flexibility, which allows for the incorporation of tax effects on payoffs and enables utility
based decision making, which, apart from the work of Henderson & Hobson (2002), and despite its
fundamental importance, has hardly found its way into real options theory. Indeed, the accommodation
of general utility functions into real option models is a major economic contribution of this paper.

However, the main benefit of accommodating general payoffs in the modelling framework is the
ability to incorporate decisions to enter and exit a project that pays running payoffs, such as in Duck-
worth & Zervos (2000, 2001), Johnson & Zervos (2010) or Guo & Tomecek (2008), for example. The
simplest manifestation of this decision problem is when a project is initiated at a cost, G(Xt), and pro-
vides a running payoff, H(Xt) and the objective is to select the (Ft)-stopping-time, τ , that maximizes

Ex

[
e−Λτ

(
−G(Xτ )+

∫ ∞

τ

e−Λs H(Xs) ds

)
1{τ<∞}

]
. (3)

For example, Xt could represent the demand for electricity and H is the ‘stack’, a discontinuous function,
representing the value of supplying the demand.

The theory of discretionary stopping has numerous applications and has attracted the interest of
many researchers. important, older accounts of this theory include Dynkin (1963), Shiryaev (1978),
El-Karoui (1979), Krylov (1980), Bensoussan & Lions (1982) and Salminen (1985). More recent con-
tributions include Davis & Karatzas (1994), Beibel & Lerche (1997, 2000)), Guo & Shepp (2001),
Alvarez (2001), Dayanik & Karatzas (2003), Dayanik (2008), Lerche & Urusov (2007), Lempa (2010),
Christensen & Irle (2011) and Matomäki (2012). An extensive presentation of the theory can be found in
Peskir & Shiryaev (2006), for example. The use of optimal stopping models has become widespread in
finance and economics since the introduction of so-called ‘real options’ theory by McDonald & Siegel
(1986), and has been described in Merton (1990), Dixit & Pindyck (1994), Trigeorgis (1996) and Shreve
(2004). The approach taken in this paper is similar to that in Rüschendorf & Urusov (2008), Lamberton
(2009), Johnson & Zervos (2010) and Lamberton & Zervos (2013).
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The paper is organized as follows. Section 2 is concerned with a formulation of the optimal stopping
problem and a set of assumptions for our problem to be well-posed while in Section 2.5 we discuss the
practical implications of these assumptions. In Section 3, we present the methodology for identifying
the boundaries for six ‘elementary’ problems and then, in Section 4, we demonstrate how these ‘elemen-
tary’ problems can be employed in solving stopping problems with non-standard payoffs. An Appendix
provides the proof of a key result in solving the problem when a continuation region lies between two
stopping regions.

2. Problem formulation and technical foundations

2.1 Notation

We denote by I a given open interval with left endpoint α � −∞ and right endpoint β � ∞, and by
B(I) the Borel σ -algebra on I. Given a point c ∈ I, we adopt the convention ]c, c[=]c, c] = [c, c[= ∅.
Throughout the paper, we consider signed Radon measures, and we refer to them simply as ‘measures’.
Given such a measure, μ, on (I, B(I)) we denote the total variation of μ by |μ| =μ+ + μ−, where
μ=μ+ − μ− is the Jordan decomposition of μ.

A function F : I → R is the difference of two convex functions if and only if its left-hand side
derivative, F ′

−, exists and is of finite variation, and its second distributional derivative is a measure,
which we denote by F ′′(dx). In this case, we have the Lebesgue decomposition

F ′′(dx)= F ′′
ac(x) dx + F ′′

s (dx),

where F ′′
ac(x) dx is absolutely continuous with respect to the Lebesgue measure and F ′′

s (dx) is mutually
singular with the Lebesgue measure.

2.2 The underlying Itô diffusion

We assume that the data of the one-dimensional Itô diffusion given by (1) in the introduction satisfy the
following two assumptions.

Assumption 2.1 The functions b, σ : I → R are B(I)-measurable,

σ 2(x) > 0 for all x ∈ I,∫ β̄

α

1 + |b(s)|
σ 2(s)

ds<∞ and sup
s∈[α,β̄]

σ 2(s) <∞ for all α < α < β̄ < β.

With reference to Karatzas & Shreve (1991, Section 5.5.C), the conditions appearing in this assump-
tion are sufficient for the SDE (1) to have a weak solution Sx that is unique in the sense of probability
law up to a possible explosion time, for all initial conditions x ∈ I.

Assumption 2.2 The solution of (1) is non-explosive.

This assumption means that the boundaries α and β are inaccessible to the diffusion starting in I.
We denote by Ly the local-time process of X at level y ∈ I. Given a measure μ on (I, B(I)) such that

σ−2 is locally integrable with respect to |μ|, we define the finite variation, continuous process Aμ by

Aμt =
∫ β

α

Ly
t

σ 2(y)
μ(dy). (4)
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4 of 28 T. C. JOHNSON

We also make the following assumption in relation to the discounting factor Λ, defined by (2).

Assumption 2.3 The function r : I →]0, ∞[ is B(I)-measurable, there exists r0 > 0 such that r(x)� r0,
for all x ∈ I, and ∫ β̄

α

r(s)

σ 2(s)
ds<∞ for all α < α < β̄ < β.

2.3 The solution of an associated ordinary differential equation (ODE)

In the presence of Assumptions 2.1–2.3, the general solution of the second-order linear homogeneous
ODE,

1
2σ

2(x)f ′′(x)+ b(x)f ′(x)− r(x)f (x)= 0, x ∈ I (5)

is given by

f (x)= Aφ(x)+ Bψ(x), (6)

for some constants A, B ∈ R. The functions φ and ψ are C1, their first derivatives are absolutely contin-
uous functions,

0<φ(x) and φ′(x) < 0 for all x ∈ I, (7)

0<ψ(x) and ψ ′(x) > 0 for all x ∈ I (8)

and

lim
x↓α

φ(x)= lim
x↑β

ψ(x)= ∞. (9)

In this context, φ and ψ are unique, modulo multiplicative constants and given any points x1 < x2 in I

and weak solutions Sx1 , Sx2 of the SDE (1), the functions φ and ψ satisfy

φ(x2)= φ(x1)Ex2 [e−Λτx1 ] and ψ(x1)=ψ(x2)Ex1 [e−Λτx2 ], (10)

where τz denotes the first hitting time of {z}, defined by

τz = {t � 0 | Xt = z}.

All of these claims are standard and can be found in various forms in references, such as Feller (1952),
Breiman (1968), Itô & McKean (1974), Karlin & Taylor (1981), Rogers & Williams (1994) and Borodin
& Salminen (2002).

The framework we adopt accommodates the commonly encountered Itô diffusions, including: the
standard Brownian motion; the Ornstein–Uhlenbeck process; the geometric Brownian motion; the
geometric Ornstein–Uhlenbeck process and the so-called Feller, square-root mean-reverting or Cox–
Ingersoll–Ross process. When r is constant, the expressions for the general solutions (6) to the ODEs
associated with all of these diffusions are all well known. In situations where φ and ψ are not known, it
is possible to approximate them through simulation, for example, by employing (10).
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THE SOLUTION OF SOME DISCRETIONARY STOPPING PROBLEMS 5 of 28

Central to our analysis is the solution of the non-homogeneous ODE

LRμ + μ= 0, (11)

where μ is a measure on (I, B(I)) and the measure-valued operator L is defined by

LF(dx)= 1
2σ

2(x)F ′′(dx)+ b(x)F ′
−(x) dx − r(x)F(x) dx (12)

on the space of all functions F : I → R that are the difference of two convex functions. In addition, we
recall the definition of (φ,ψ)-integrable measures (Johnson & Zervos, 2007, Definition 2.5).

Definition 2.1 A measure μ on (I, B(I)) is a (φ,ψ)-integrable measure if∫
]α,γ [

Ψ (s)|μ|(ds)+
∫

[γ ,β[
Φ(s)|μ|(ds) <∞ for all γ ∈ I,

where Φ and Ψ are defined by

Φ(x)= 2φ(x)

σ 2(x)W(x)
and Ψ (x)= 2ψ(x)

σ 2(x)W(x)
, (13)

and here W is the Wronskian of φ,ψ , defined by

W(x) := φ(x)ψ ′(x)− φ′(x)ψ(x) > 0 for all x ∈ I.

Necessary and sufficient conditions for a measure μ on (I, B(I)) to be (φ,ψ)-integrable are (Lam-
berton & Zervos, 2013, Theorem 4.2)

∫ β̄

α

1

σ 2(s)
|μ|(ds) <∞ and Ex

[∫ ∞

0
e−Λt dA|μ|

t

]
<∞ (14)

for all α < α < β̄ < β and all x ∈ I, where A|μ| is defined as in (4).

2.4 The objective of the optimization problem

We adopt a weak formulation of the optimal stopping problem that we solve.

Definition 2.2 Given an initial condition x ∈ I, a stopping strategy is a pair (Sx, τ) such that Sx =
(Ω , F, Ft, Px, X , W) is a weak solution to (1) and τ is an (Ft)-stopping-time. We denote by Sx the set of
all such stopping strategies.

With each stopping strategy, we associate the performance criterion

J(Sx, τ)= Ex[e−Λτ g(Xτ )1{τ<∞}].

The objective of the optimal stopping problem is to maximize J(Sx, τ) over all stopping strategies
(Sx, τ). Accordingly, we define the value function v by

v(x)= sup
(Sx,τ)∈Sx

J(Sx, τ) for x ∈ I. (15)
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6 of 28 T. C. JOHNSON

To ensure that our optimization problem is well-posed, we make the following assumption on the
payoff, g.

Assumption 2.4 The function g : I → R is the difference of two convex functions, and the measure Lg
is (φ,ψ)-integrable. In addition,

lim
x↓α

|g(x)|
φ(x)

= lim
x↑β

|g(x)|
ψ(x)

= 0, (16)

and the limits limx↑β g(x)/φ(x) and limx↓α g(x)/ψ(x) exist in [−∞, ∞].

Note that this assumption accommodates cases where g(x) < 0, for some x ∈ I. Without loss of
generality, our subsequent analysis could be developed by assuming that g is positive. However, within
the context of finance and economics, it is important to be able to explicitly accommodate cases where
the payoff is negative. For example, a widget might be sold at a price x, but the cost of production of
the widget means the value to the producer of the widget might be negative.

2.5 Implications of the problem formulation

Under Assumptions 2.1–2.4 and setting μ(dx)= −Lg(dx), the following results have been established
in Johnson & Zervos (2007, 2010) or in Lamberton & Zervos (2013).

The payoff function g can be expressed analytically as

g(x)= −
(
φ(x)

∫
]α,x[

Ψ (s)Lg(ds)+ ψ(x)
∫

[x,β[
Φ(s)Lg(ds)

)

≡ −
(
φ(x)

∫
]α,x]

Ψ (s)Lg(ds)+ ψ(x)
∫

]x,β[
Φ(s)Lg(ds)

)
, (17)

and probabilistically as the r(·)-potential of A−Lg, specifically

g(x)= Ex

[∫ ∞

0
e−Λt dA−Lg

t

]
,

where A−Lg is defined as in (4).
The payoff function g satisfies Dynkin’s formula, i.e. given any (Ft)-stopping times ρ1 <ρ2 <∞,

Ex[e−Λρ2 g(Xρ2)] = Ex[e−Λρ1 g(Xρ1)] + Ex

[∫ ρ2

ρ1

e−Λt dALg
t

]
. (18)

In addition, we have a transversality condition, namely, given an increasing sequence of (Ft)-stopping
times (ρn) such that limn→∞ ρn = ∞,

lim
n→∞ Ex[e−Λρn |g(Xρn)|1{ρn<∞}] = 0.

This condition implies that our value function should be finite.
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THE SOLUTION OF SOME DISCRETIONARY STOPPING PROBLEMS 7 of 28

Furthermore, using (17), we can calculate that

g′
+(x)φ(x)− g(x)φ′(x)= −W(x)

∫
]x,β[

Φ(s)Lg(ds), (19)

g′
−(x)φ(x)− g(x)φ′(x)= −W(x)

∫
[x,β[

Φ(s)Lg(ds), (20)

g′
+(x)ψ(x)− g(x)ψ ′(x)= W(x)

∫
]α,x]

Ψ (s)Lg(ds), (21)

g′
−(x)ψ(x)− g(x)ψ ′(x)= W(x)

∫
]α,x[

Ψ (s)Lg(ds). (22)

Also, given a C1 function f , the calculation

(
g

f

)′

±
(x)= g′

±(x)f (x)− g(x)f ′(x)
f 2(x)

(23)

reveals that (19) and (20) are related to the slope of the function g/φ, while (21) and (22) relate to the
slope of g/ψ .

The methodology we employ to solve the stopping problem is based on the results in Lamberton &
Zervos (2013, Section 6), where it is established that under Assumptions 2.1–2.4, the value function, v,
associated with the optimal stopping problem and defined by (15), is of the form

v(x)=
{

Ajφ(x)+ Bjψ(x) if x ∈ Cj ⊆ C,

g(x) if x ∈ D.
(24)

Here D represents the stopping region, a closed set, while the continuation, or waiting, region is given
by C = I \ D and Aj, Bj � 0 are specific to each component of the partition that makes up C. In addition,
v is the unique solution to the variational inequality

max {Lv(x), g(x)− v(x)} = 0, x ∈ I, (25)

in the sense of Definition 2.3, that satisfies the boundary condition

lim
x↓α

v(x)

φ(x)
= lim

x↓α
g(x)

φ(x)
= 0 and lim

x↑β
v(x)

ψ(x)
= lim

x↑β
g(x)

ψ(x)
= 0 (26)

(see also (16)).

Definition 2.3 A function v : I → [0, ∞[ is a solution of the variational inequality (25) if v(x) is the
difference of two convex functions, the measure Lv is (φ,ψ)-integrable,

the measure Lv does not charge the set C = {x ∈ I | v(x) > g(x)}, (27)

−Lv is a positive measure on (I, B(I)) (28)
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8 of 28 T. C. JOHNSON

and

g(x)− v(x)� 0 for all x ∈ I. (29)

3. The solution to six elementary stopping problems

3.1 The cases

This section of the paper considers six elementary cases distinguished by the behaviour of Lg, g/φ
and g/ψ . These cases are not exhaustive but can be seen as the basic building blocks for addressing
more complex situations (as in Example 4.3). In what follows, we denote by xφ (respectively, xψ ) the
location at which a global maximum of the extension of g/φ (respectively, g/ψ) in [α,β], suggested by
Assumption 2.4, occurs. The first two cases are the most basic ones, Cases III and IV are constructed
by developing Cases I and II while Cases V and VI are, in turn, further developments of Cases III and
IV. The function g is strictly positive at some point in all cases apart from in Case I.
Case I: g(x)� 0 for all x ∈ I.

Given (16), this implies that

lim
x↓α

g(x)

φ(x)
= 0 � g(y)

φ(y)
and lim

x↑β
g(x)

ψ(x)
= 0 � g(y)

ψ(y)
for all y ∈ I, (30)

and suggest the definitions

xφ = α and xψ = β.

The economic intuition behind this case is that given we have the choice of waiting forever, with a zero
payoff, or taking a negative payoff in finite time, the optimal strategy would be to wait indefinitely.
Case II: −Lg is a positive measure.

In view of (19–22) and (23), we can see that g/φ (respectively, g/ψ) is an increasing (respec-
tively, decreasing) function, and given (16), these imply that g is everywhere positive. In this case,
we define

xφ = β and xψ = α.

Economically, (4), (18) and the inequality Lg< 0 imply that waiting destroys value. Therefore, in this
case, there is no point in I where waiting enhances value, and the optimal strategy is to stop immediately.
This case is symmetric to Case I.
Case III: There exists xr ∈ I such that

the restriction of − Lg in ([xr,β[, B([xr,β[)) is a positive measure, (31)

g(x)

ψ(x)
� g(xr)

ψ(xr)
for all x ∈ ]α, xr[ (32)

and

g(x) > 0 for some x ∈ [xr,β[. (33)
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THE SOLUTION OF SOME DISCRETIONARY STOPPING PROBLEMS 9 of 28

In view of (22) and (23), (
g

ψ

)′

−
(x)= W(x)

ψ2(x)

∫
]α,x[

Ψ (s)Lg(ds).

Therefore, a simple sufficient condition for (32) to be true is that the restriction of Lg in
(]α, xr[, B(]α, xr[)) is a positive measure. Also, combining this identity with (16) and (31–33), we can
see that there exists xψ ∈ I such that

(
g

ψ

)′

−
(x)

{
� 0 for all x ∈ [xr, xψ ],

< 0 for all x ∈ ]xr,β].

These inequalities and (32) imply that g/ψ has a global maximum at xψ . In addition, since ψ is a strictly
increasing function, (32) implies that g(x) < g(xψ) for all x ∈ ]α, xψ [. Combining this observation and
the fact that φ is strictly decreasing, (19–20), (23) and (31), we can see that

g(x)

φ(x)
� g(xψ)

φ(xψ)
� lim

x↑β
g(x)

φ(x)
for all x ∈ ]α, xψ [,

and we define xφ = β.
As we are going to see, the economic interpretation of this case is of a call option-type payoff.

Case IV: There exists xl ∈ I such that

the restriction of − Lg in (]α, xl], B(]α, xl])) is a positive measure,

g(x)

φ(x)
� g(xl)

φ(xl)
for all x ∈ ]xl,β[

and

g(x) > 0 for some x ∈ ]α, xl].

This case is symmetric to Case III, we similarly deduce that g/φ has a global maximum at some xφ ∈
]α, xl] and we define xψ = α. The simplest example that falls under this case occurs when the restrictions
of −Lg in (]α, xl], B(]α, xl])) and Lg in (]xl,β[, B(]xl,β[)) are both positive measures and g(x) > 0 for
some x ∈ ]α, xl]. Economically, this case represents a put option-type payoff.
Case V: There exists Eb := [xl, xr] ⊂ I such that

the restriction of − Lg in (Eb, B(Eb))) is a positive measure,

g(x)

ψ(x)
<

g(xl)

ψ(xl)
for all x ∈ ]α, xl[

and
g(x)

ψ(x)
<

g(xr)

ψ(xr)
for all x ∈ ]xr,β[,

while
g(x)

φ(x)
<

g(xl)

φ(xl)
for all x ∈ ]α, xl[
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10 of 28 T. C. JOHNSON

and
g(x)

φ(x)
<

g(xr)

φ(xr)
for all x ∈ ]xr,β[.

Also, g(x) > 0 for some x ∈ Eb.
With reference to the discussion of Case III, these conditions imply that there exists an xψ ∈ [xl, xr]

such that g/ψ is increasing for x ∈ ]xl, xψ ] and then strictly decreasing in ]xψ , xr] so that the point xψ
represents a global maximum. In addition, (19) and (20) mean that there exists a point xφ ∈ [xl, xr] such
that g/φ is strictly increasing for x ∈ [xl, xφ[ and then decreases in [xφ , xr].

Since ψ is a strictly increasing function, we have that g(y) < g(xψ) for all y ∈ ]α, xψ [, and, since φ
is strictly decreasing, the implication is that

g(y)

φ(y)
<

g(xψ)

φ(xψ)
for all x ∈ ]α, xψ [,

and so xψ � xφ .
The simplest manifestation of this case would be when the restriction of −Lg in Eb and the restric-

tion of Lg in I \ Eb are positive measures and g(x) > 0 for some x ∈ Eb. The case is a combination of
Case III to the left of Case IV and economically it represents a butterfly option-type payoff.
Case VI: There exists Es :=]xl, xr[ ⊂ I such that

the restriction of Lg in (Es, B(Es)) is a positive measure with Lg(Es) > 0, (34)

while,
the restriction of − Lg in (I \ Es, B(I \ Es)) is a positive measure. (35)

In addition, the limits limx↓α g(x)/ψ(x), limx↑β g(x)/φ(x) exist,

lim
x↓α

g(x)

ψ(x)
>

g(y)

ψ(y)
and lim

x↑β
g(x)

φ(x)
>

g(y)

φ(y)
for all y ∈ I, (36)

while g(x) > 0 for some x ∈ I. (37)

Together, (36) and (37) imply that limx↓α g(x) > 0 and limx↑β g(x) > 0 and as in Case II, we define
xφ = β and xψ = α. However, unlike Case II we cannot stop for some x ∈ Es by (28) given (34). This
suggests that the stopping problem related to this case is one of the first exit time of the diffusion from
an interval, rather than one of locating the first hitting time of a point, which characterize Cases I–V.
The economic interpretation is of a straddle-type payoff.

Remark 3.1 We have ordered the six cases we consider by their increasing complexity. We could have
ordered them by the locations of xφ and xψ :

Location of xφ Location of xψ Case
xφ = α xψ = β Case I
α < xφ < xψ = β xψ = β Case IV
α < xψ < xφ < β α < xψ < xφ < β Case V
xφ = β α < xψ < xφ = β Case III
xφ = β xψ = α If: −Lg is positive, then Case II;

otherwise Case VI.
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THE SOLUTION OF SOME DISCRETIONARY STOPPING PROBLEMS 11 of 28

3.2 Analytic considerations for solving Cases III and VI

Case III is associated with call option-type payoffs and, in this case, we would expect that there is a
single boundary point, x∗, so that C =]α, x∗[ and D = [x∗,β[. In this context, the calculation

v(x)= Ex[e−Λτx∗ g(x∗)] = g(x∗)
ψ(x∗)

ψ(x) for all x< x∗, (38)

implies that

A = 0 and B = g(x∗)
ψ(x∗)

. (39)

Furthermore, the observation that

v(x)� Ex[e−Λτz ]g(z)= g(z)

ψ(z)
ψ(x) for all x< x∗ and z � x,

combined with (38) suggests that x∗ = xψ . The fact that g/ψ has a global maximum at xψ (see the dis-
cussion after the statement of Case III in the previous subsection), gives rise to the system of inequalities

(
g

ψ

)′

+
(x∗)� 0 �

(
g

ψ

)′

−
(x∗), (40)

which are equivalent to ∫
]α,x∗]

Ψ (s)Lg(ds)� 0 �
∫

]α,x∗[
Ψ (s)Lg(ds).

It is worth noting that (39) and (40) are equivalent to

Bψ(x∗)= g(x∗),

g′
+(x

∗)� Bψ ′(x∗)� g′
−(x

∗),

which reduce to the system of equations

Bψ(x∗)= g(x∗) and Bψ ′(x∗)= g′(x∗),

associated with the so-called ‘smooth-pasting’ of optimal stopping if g is C1, in particular at the point x∗.
We associate Case VI with straddle option-type payoffs and the continuation and stopping regions

are given by

C =]a, b[ and D =]α, a] ∪ [b,β[

for some a ∈ ]α, xl[, b ∈ ]xr,β[. The intuition that we developed in the discussion of Case III, above,
suggests the system of inequalities

Aφ(a)+ Bψ(a)= g(a), Aφ(b)+ Bψ(b)= g(b), (41)

Aφ′(a)+ Bψ ′(a)� g′
−(a), Aφ′(b)+ Bψ ′(b)� g′

−(b), (42)

Aφ′(a)+ Bψ ′(a)� g′
+(a), Aφ′(b)+ Bψ ′(b)� g′

+(b). (43)
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12 of 28 T. C. JOHNSON

It is worth noting that these are equivalent to the identities

g(a)

Aφ(a)+ Bψ(a)
= g(b)

Aφ(b)+ Bψ(b)
= 1

and the requirement that the function

g(x)

Aφ(x)+ Bψ(x)
for x ∈ I

has maxima at a and b. Indeed this equivalent characterization has been central to the approach to
solving optimal stopping problems developed in Beibel & Lerche (1997, 2000) and Christensen & Irle
(2011).

In order to identify a and b, and hence the values for A and B, observe that by using (19–22), (41–43)
can be rearranged into the following set of inequalities:

−
∫

]a,β[
Φ(s)Lg(ds)� B � −

∫
[a,β[

Φ(s)Lg(ds), (44)

−
∫

]b,β[
Φ(s)Lg(ds)� B � −

∫
[b,β[

Φ(s)Lg(ds), (45)

−
∫

]α,a]
Ψ (s)Lg(ds)� A � −

∫
]α,a[

Ψ (s)Lg(ds), (46)

−
∫

]α,b]
Ψ (s)Lg(ds)� A � −

∫
]α,b[

Ψ (s)Lg(ds). (47)

These are equivalent to the following system of inequalities:

qo
φ(a, b)� 0 and qc

φ(a, b)� 0, (48)

qo
ψ(a, b)� 0 and qc

ψ(a, b)� 0, (49)

where

qc
φ(y, z) :=

∫
[y,z]∩I

Φ(s)Lg(ds), (50)

qo
φ(y, z) :=

∫
]y,z[

Φ(s)Lg(ds), (51)

qo
ψ(y, z) :=

∫
]y,z[

Ψ (s)Lg(ds) (52)

and

qc
ψ(y, z) :=

∫
[y,z]∩I

Ψ (s)Lg(ds), (53)

for α � y< z � β.
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THE SOLUTION OF SOME DISCRETIONARY STOPPING PROBLEMS 13 of 28

We prove the following result in the Appendix.

Lemma A.3 Suppose that the problem data is such that the conditions of Case VI, (34–37), hold. Then
there exist a ∈ I \ Es and b ∈ I \ Es satisfying the system of equations (48) and (49).

Remark 3.2 Note that the condition (34) in the statement of Case VI can be relaxed to∫
Es

Φ(s)Lg(ds) > 0 and
∫

Es

Φ(s)Lg(ds) > 0

if the inequalities (A.7) and (A.8) in Lemma A.2 can be shown to be true. If the relaxed condition holds
but either of (A.7) or (A.8) fail, the implication is that there is a subset of the stopping region in Es. We
give an example of applying this observation in Section 4.2.

3.3 The solution of the problems

We now solve the various control problems described in Cases I–VI by constructing explicit solutions of
the variational inequalities (25) of the form (24) that satisfies the requirements of (26) and Definition 2.3.

Theorem 3.1 Suppose that Assumptions 2.1–2.4 hold. We have the following solutions to the discre-
tionary stopping problem we have formulated as Cases I–VI.
Case I. Given any initial condition x ∈ I, the value function v is given by v(x)= 0 and C = I. In this
case, the stopping strategy (S∗

x , ∞) ∈ Sx is optimal.
Case II. Given any initial condition x ∈ I, then the value function v is given by v(x)= g(x), D = I and
the stopping strategy (S∗

x , 0) ∈ Sx is optimal.
Case III. Given any initial condition x ∈ I, the value function v is given by

v(x)=
{

Bψ(x) if x ∈ C =]α, xψ [,

g(x) if x ∈ D = [xψ ,β[,
(54)

with B = g(xψ)/ψ(xψ)� 0. Furthermore, given any initial condition x ∈ I, the stopping strategy
(S∗

x , τ ∗) ∈ Sx, where S
∗
x is a weak solution to (1) and

τ ∗ = inf{t � 0 | Xt ∈ D}

is optimal.
Case IV. Given any initial condition x ∈ I, the value function v is given by

v(x)=
{

g(x) if x ∈ D =]α, xφ],

Aφ(x) if x ∈ C =]xφ ,β[,
(55)

with A = g(xφ)/φ(xφ)� 0. Furthermore, given any initial condition x ∈ I, the stopping strategy
(S∗

x , τ ∗) ∈ Sx, where S
∗
x is a weak solution to (1) and

τ ∗ = inf{t � 0 | Xt ∈ D}

is optimal.
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Case V. Given any initial condition x ∈ I, then C =]α, xψ [∪]xφ ,β[ and the value function v is given by

v(x)=

⎧⎪⎨
⎪⎩

Bψ(x) if x ∈ C1 =]α, xψ [,

g(x) if x ∈ D = [xψ , xφ],

Aφ(x) if x ∈ C2 =]xφ ,β[,

(56)

with B = g(xψ)/ψ(xψ)� 0 and A = g(xφ)/φ(xφ)� 0. Furthermore, given any initial condition x ∈ I, the
stopping strategy (S∗

x , τ ∗) ∈ Sx, where S
∗
x is a weak solution to (1) and

τ ∗ = inf{t � 0 | Xt ∈ D}

is optimal.
Case VI. If (34–37) hold, then there exists a unique pair a ∈ ]α, xl] ⊂ I \ Es and b ∈ [xr,β[⊂ I \ Es such
that (48) and (49) are true. In these circumstances, given any initial condition x ∈ I, then C =]a, b[ and
the value function v is given by

v(x)=

⎧⎪⎨
⎪⎩

g(x) if x ∈ D1 =]α, a],

Aφ(x)+ Bψ(x) if x ∈ C =]a, b[,

g(x) if x ∈ D2 = [b,β[,

(57)

with

A = g(b)ψ(a)− g(a)ψ(b)

φ(b)ψ(a)− φ(a)ψ(b)
, (58)

B = g(a)φ(b)− g(b)φ(a)

φ(b)ψ(a)− φ(a)ψ(b)
. (59)

Furthermore, given any initial condition x ∈ I, the stopping strategy (S∗
x , τ ∗) ∈ Sx, where S

∗
x is a weak

solution to (1) and

τ ∗ = inf{t � 0 | Xt ∈ D1 ∪ D2}
is optimal.

Proof of Case I. In view of (30), the function v ≡ 0 plainly satisfies the variational inequality (25). �

Proof of Case II. Since C = ∅, (27) is true while (28) is satisfied because Lg is negative for all x ∈ I.
Since v(x)= g(x) for all x ∈ I, (26) and (29) are satisfied. �

Proof of Case III. Firstly, (26) holds by (16) and since limx↓α(ψ(x)/φ(x))= 0 by (9). Because xψ ∈
[xr,β[ and Lg< 0 in this interval, (27) and (28) are true. Since xψ represents a strictly positive global
maximum of g/ψ (see the discussion following the statement of Case III), we have that

g(x)� g(xψ)

ψ(xψ)
ψ(x)= Bψ(x) for all x ∈ ]α, xψ [

and (54) satisfies (29). �
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THE SOLUTION OF SOME DISCRETIONARY STOPPING PROBLEMS 15 of 28

Proof of Case IV. Firstly, (26) holds by (16) and since limx↑β(φ(x)/ψ(x))= 0 by (9). Because xφ ∈
]α, xl[ and Lg< 0 in this interval, (27) and (28) are true. Since xφ represents a strictly positive global
maximum of g/φ we have that

g(x)� g(xφ)

ψ(xφ)
φ(x)= Aφ(x) for all x ∈ ]xφ ,β, [

and (29) is satisfied. �

Proof of Case V. We can regard Case V as being composed of sub-problems (moving from α to β)
Case III, Case II and then Case IV. The proof of this case is constructed, on the Bellman principle,
by identifying the optimal solution to the sub-problems and ‘pasting’ these together at points in the
stopping region.

We note that since xφ , xψ ∈ Eb, and Lg< 0 in this interval, (27) and (28) are true. As in Cases III
and IV, A, B> 0 and (56) satisfies (29) while (26) holds by (16) and (9). �

Proof of Case VI. We begin by noting that Lemma A.3 proves the existence of a unique pair a ∈
]α, xl] ⊂ I \ Es and b ∈ [xr,β[⊂ I \ Es such that (48) and (49) are true. To see that A, B> 0 observe
that, from (47–44)

A = −
∫ a

α

Ψ (s)Lg(ds) > 0,

B = −
∫ β

b
Φ(s)Lg(ds) > 0,

with the inequalities being a consequence of (35).
To see that (57) satisfies (29), recall that (48) and (49) imply that the points a, b define maximal

turning points of the function
g(x)

Aφ(x)+ Bψ(x)
for x ∈ I

(see, for example, Beibel & Lerche, 2000; Lempa, 2010) and so

Aφ(x)+ Bψ(x)� g(x) for all x ∈ C.

Also, for v given by (57), (26) holds by (16), (27) is true and, similarly while (28) is true since
a, b ∈ I \ Es. �

4. Three examples based on a geometric Brownian Motion

Now we present some concrete examples. In each case, X is a geometric Brownian motion such that

dXt = bXt dt + σXt dWt,

for constants b, σ and r is a constant and it is well known that in these cases

φ(x)= xm and ψ(x)= xn,
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where m< 0< n are given by

(
1

2
− b

σ 2

)
±

√(
1

2
− b

σ 2

)2

+ 2r

σ 2
.

4.1 Some payoffs involving φ and ψ

Consider a payoff function of the form

g(x)=

⎧⎪⎨
⎪⎩
ψ(x) if x< 1,

1 if x = 1,

φ(x) if x> 1.

This payoff satisfies Assumption 2.4 and the conditions of Case II and the value function is given by

v(x)=

⎧⎪⎨
⎪⎩
ψ(x) if x< 1,

1 if x = 1,

φ(x) if x> 1.

Now consider the payoff

g(x)= min{ψ(x), c}
for c ∈ I. This payoff also satisfies Assumption 2.4 and the conditions of Case II. The strategy will not
be changed as c increases, and so by taking the limit as c ↑ ∞ we can argue that the case g(x)=ψ(x)
conforms to Case II, despite the fact that the payoff does not satisfy (16). Similar arguments can be
applied to the payoff

g(x)= min{φ(x), c},
inferring that g(x)= φ(x) also conforms to Case II.

Finally in this section consider the payoff

g(x)=

⎧⎪⎨
⎪⎩

min{φ(x), c} if x< 1,

1 if x = 1,

min{ψ(x), c} if x> 1.

for c ∈ ]1,β[.

This payoff satisfies a the conditions of Case VI with

Es = ]φ−1(c),ψ−1(c)[

and the value function associated with the problem is given by

v(x)=

⎧⎪⎨
⎪⎩

c if x ∈ D1 =]α, a],

Aφ(x)+ Bψ(x) if x ∈ C =]a, b[,

c if x ∈ D2 = [b,β[,
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THE SOLUTION OF SOME DISCRETIONARY STOPPING PROBLEMS 17 of 28

with a = φ−1(c) and b =ψ−1(c) and

A = c(ψ(b)− ψ(a))

cψ(b)− φ(b)ψ(a)
> 0,

B = c(φ(a)− φ(b))

cφ(a)− φ(b)ψ(a)
> 0.

4.2 Relaxing condition (34)

Consider the case when b = 0 and σ = 0.2 and there is a constant discount rate of r = 0.01. In this case,
we have that

φ(x)= x1/2−√
3/4 and ψ(x)= x1/2+√

3/4.

If we have a relatively straightforward payoff function given by

g(x)= max(5 − x, 1)

with

Lg(x)=

⎧⎪⎨
⎪⎩

0.01(x − 5), x ∈ ]α, 4[,

0.32, x = 4.0,

−0.01, x ∈ ]4,β[,

we cannot define Es :=]xl, xr[⊂ I such that (34) holds. However, we can relax (34) as identified in
Remark 3.2.

On this basis, we can define xl = 3.95 and xr = 4.05 and calculate that∫
Es

Ψ (s)Lg(ds)≈ 3.82,
∫

Es

Φ(s)Lg(ds)≈ 0.346.

If we define u∗ = xl, we deduce that v∗ = 166.97, while if we set v∗ = xr, we deduce that u∗ = 0.06. We
now need to check that these choices satisfy (A.7) and (A.8) of Lemma A.2 and calculate

qc
φ(u∗, v∗)= −23.54< 0 while, qo

φ(u
∗, v∗)= 0.157> 0.

These results establish the existence and uniqueness of the points (a, b) appearing in (57).
It is relatively easy to approximate (a, b) numerically, deducing a = 1.34, b = 88.6 so that

v(x)=

⎧⎪⎨
⎪⎩

5 − x if x ∈ D1 =]α, 1.34],

4.0731x1/2−√
3/4 + 0.0004612x1/2+√

3/4 if x ∈ C =]1.34, 88.6[,

1 if x ∈ D2 = [88.6,β[.

4.3 Two staircase payoffs

Our third example involves two functions that do not satisfy Assumption 2.4, but never the less demon-
strate the usefulness of considering complex stopping problems in terms of Cases I–VI. Consider the
case when b = 0 and σ = 0.2 and there is a constant discount rate of r = 0.01 and two ‘staircase’ type
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payoffs, as discussed in Bronstein et al. (2005),

g1(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x< 2,

1 if 2 � x< 4,

4 if 4 � x< 6,

9 if 6 � x< 8,

16 if 8 � x< 10,

25 if 10 � x,

g2(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x< 2,

2 if 2 � x< 4,

4 if 4 � x< 6,

6 if 6 � x< 8,

8 if 8 � x< 10,

10 if 10 � x.

Since these functions are not continuous, they do not satisfy the conditions of Assumption 2.4 apart
from (16). However, any points at which the payoff function is discontinuous will be part of the contin-
uation region. On this basis, it is possible to construct a value function associated with these ‘staircase’
payoff functions that conform to Definition 2.3 by considering the sign of Lg and stationary points of
the functions g/φ and g/φ.

There are turning points of g(1,2)/ψ at 2, 4, 6, 8 and 10, and we note that

0.3880 = g1

ψ
(2) <

g1

ψ
(4) <

g1

ψ
(6) <

g1

ψ
(8) <

g1

ψ
(10)= 1.1.0763,

while

0.7759 = g2

ψ
(2) >

g2

ψ
(4) >

g2

ψ
(6) >

g2

ψ
(8) >

g2

ψ
(10)= 0.4305.

These sequences mean that the solutions to the two problems are very different. With g1 there is a
global maximum turning point at x = 10, and we have Case III with

v1(x)=
{

1.1.0763x1/2+√
3/4 if x ∈ C =]α, 10[,

25 if x ∈ D = [10,β[,

and (26), (28) and (29) are satisfied.
Now, with g2 we have the situation of a series of sub-intervals, as described in the proof of Case V.

We have Case III in the interval ]0, 2], Case VI for the intervals [2, 4], [4, 6], [6, 8], [8, 10] and Case II
for [10,β[. For the four versions of Case VI, we employ the relaxation in Remark 3.2 and define each
jump location as j = 4, 6, 8, 10. The right-hand boundary of the four intervals must be continuous fit at
j, while, employing (41–43), the left-hand boundary will satisfy smooth fit (see also Bronstein et al.,
2005, Lemma 4) if

ψ ′(j − 2)

φ′(j − 2)
� jψ(j − 2)− (j − 2)ψ(j)

jφ(j − 2)− (j − 2)φ(j)
.

If this condition is not satisfied, we will also have only continuous fit at the left-hand boundary, (j − 2).
In the case under consideration, it can be deduced that D = {{2}, {4}, {6}, {8}, {10}} and it is easy to
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establish that

v2(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.7759x1/2+√
3/4 if x ∈ ]α, 2[,

2 if x = 2,

0.8263x1/2−√
3/4 + 0.5272x1/2+√

3/4 if x ∈ ]2, 4[,

4 if x = 4,

1.8162x1/2−√
3/4 + 0.4375x1/2+√

3/4 if x ∈ ]4, 6[,

6 if x = 6,

2.9443x1/2−√
3/4 + 0.3868x1/2+√

3/4 if x ∈ ]6, 8[,

8 if x = 8,

4.1899x1/2−√
3/4 + 0.3528x1/2+√

3/4 if x ∈ ]8, 10[,

10 if x � 10,

and (26), (28) and (29) are satisfied.
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Appendix. The existence and uniqueness of a, b appearing in (48) and (49)

We first establish the following preliminary result.

Lemma A.1 If the problem data are such that the conditions of Case VI hold, then

qc
φ(α,β)≡ qo

φ(α,β)= lim
u↓α

∫
]u,β[

Φ(s)Lg(ds) < 0 (A.1)

and

qc
ψ(α,β)≡ qo

ψ(α,β)= lim
v↑β

∫
]α,v[

Ψ (s)Lg(ds) < 0. (A.2)

Furthermore, if qo
φ(α,β) >−∞, then

qc
φ(α,β)≡ qo

φ(α,β)= − lim
x↓α

g(x)

ψ(x)
∈ ] − ∞, 0[, (A.3)

while, if qo
ψ(α,β) >−∞, then

qc
ψ(α,β)≡ qo

ψ(α,β)= − lim
x↑β

g(x)

φ(x)
∈ ] − ∞, 0[. (A.4)

Proof. First we note that all the limits in (A.1) and (A.2) exist thanks to (35) and the monotone con-
vergence theorem. Also we note that (36) and (37) imply that g(x) > 0 for all x sufficiently close to α.
Combining this observation with (16), we can see that g(x)/φ(x) is decreasing to zero as x decreases to
α. Therefore, (19), (20) and (23) imply that (A.1) is true. Similarly, we can see that (A.2) is also true.

The (φ,ψ)-integrability of Lg (see Definition 2.1) implies that the inequality qo
φ(α,β) >−∞ is

equivalent to the inequality ∫
]α,x[

Φ(s)Lg(ds) >−∞ for all x>α.

In this case, (35) implies that

−∞<

∫
]α,x[

Φ(s)Lg(ds)� 0 for all x ∈ ]α, xl].
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It follows, from the definition (13) of Φ,Ψ , the fact that φ/ψ is a decreasing function, (35) and the
dominated convergence theorem, that

0 = lim
x↓α

∫
]α,x[

Φ(s)Lg(ds)= lim
x↓α

∫
]α,x[

φ(s)

ψ(s)
Ψ (s)Lg(ds)

� lim
x↓α

φ(x)

ψ(x)

∫
]α,x[

Ψ (s)Lg(ds)� 0.

Combining the final limit with (17), we obtain (A.3).
We can derive (A.4) following similar reasoning. �

Lemma A.2 Suppose that the problem data are such that the conditions of Case VI hold. Suppose also
that there exist points

α � u∗ � u∗ � xl

and
xr � v∗ � v∗ � β

such that

qc
ψ(u∗, v∗)� 0 � qo

ψ(u∗, v∗), (A.5)

qc
ψ(u

∗, v∗)� 0 � qo
ψ(u

∗, v∗), (A.6)

qc
φ(u∗, v∗) < 0 (A.7)

and
qo
φ(u

∗, v∗) > 0 (A.8)

all hold. Then there exist a ∈ ]α, u∗] ⊂ I \ Es and b ∈ [v∗,β[⊂ I \ Es satisfying the system of inequalities
(48) and (49).

Proof. With each u ∈ [u∗, u∗], we associate the set

Sψ(u)= {v ∈ [v∗, v∗] | qc
ψ(u, v)� 0},

which is non-empty thanks to the inequalities

qc
ψ(u, v∗)� qc

ψ(u
∗, v∗)� 0

that follow from (35) and (A.6). If we define

l(u)= inf Sψ(u) for u ∈ [u∗, u∗], (A.9)

then we can see that (A.5) and (A.6) imply that

l(u∗)= v∗ and l(u∗)� v∗. (A.10)

Furthermore, l is increasing because the function u → qc
ψ(u, v) (respectively, v → qc

ψ(u, v)) is increasing
in ]α, xl] (respectively, decreasing in [xr,β[) thanks to (35). In particular, the definition of l in (A.9)
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implies that

l(u1)= l(u2) for all u1 < u2 such that Lg([u1, u2[)= 0. (A.11)

Given any u ∈ [u∗, u∗] and any decreasing sequence (vn) in Sψ(u) such that

lim
n→∞ vn = l(u),

we use (35) and the dominated convergence theorem to calculate

qc
ψ(u, l(u))= lim

n→∞ qc
ψ(u, vn)� 0. (A.12)

If l(u)= v∗, then (35) and (A.5) imply that

qo
ψ(u, l(u))= qo

ψ(u, v∗)� qo
ψ(u∗, v∗)� 0. (A.13)

On the other hand, if l(u) > v∗, then the definition of l and the monotone convergence theorem imply that

qo
ψ(u, l(u))�

∫
[u,l(u)[∩I

Ψ (s)Lg(ds)= lim
v↑l(u)

qc
ψ(u, v)� 0. (A.14)

For future reference, we also note that,

if l(u∗)= v∗ = β, then l(u1) < β for all u1 < u∗ such that − Lg([u1, u∗[) > 0. (A.15)

To see this claim, we argue by contradiction. To this end, we consider any u1 < u∗ such that
−Lg([u1, u∗[) > 0 and we assume l(u1)= β. In this context, (35) implies that

qc
ψ(u1, l(u1))= qc

ψ(u1,β) < qc
ψ(u

∗,β)� 0.

In view of this inequality and the monotone convergence theorem, we can see that

0> qc
ψ(u1,β)= lim

v↑β
qc
ψ(u1, v).

It follows that there exists v1 <β such that qc
ψ(u1, v)� 0 for all v ∈ [v1,β[, which combined with the

definition of l, implies that l(u1)� v1 <β and the contradiction has been established.
We now consider the set

Sφ = {u ∈ [u∗, u∗] | qc
φ(u, l(u))� 0},

which is non-empty thanks to (A.7) and (A.9), and we define

a = sup Sφ > α. (A.16)

If u∗ = α, then the inequality here is a consequence of the inequalities

lim
u↓α

qc
φ(u, l(u))� lim

u↓α
qc
φ(u, v∗)= qc

φ(u∗, v∗) < 0,

which follows from (35), the monotone convergence theorem and (A.7).
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We next define

b = l(a) < β.

If we establish this inequality as well as the inequalities

qc
φ(a, l(a))� 0 � qo

φ(a, l(a)),

then the proof of existence will be complete thanks to (A.12–A.15). To this end, observe that since a>α
(see (A.16)), we can use (35), the fact that l is increasing and the dominated convergence theorem to
calculate

qc
φ(a, l(a))�

∫
[a,limε↓0 l(a−ε)[

Φ(s)Lg(ds)

= lim
ε↓0

qc
φ(a − ε, l(a − ε))� 0. (A.17)

In particular, this inequality and (A.7) imply that l(a) < β. In the case that a = u∗, we can also see that

qo
φ(u

∗, l(u∗))� qo
φ(u

∗, v∗) > 0 (A.18)

thanks to (35), (A.8) and (A.10).
To proceed further, we note that the inequality a< u∗ can only be true if Lg([a, u∗[) < 0 because

otherwise the inequalities

qc
φ(a, l(a))= qc

φ(u
∗, l(a))� qc

φ(u
∗, v∗)� qo

φ(u
∗, v∗) > 0

would contradict (A.17). Therefore, if a< u∗, then the inequality l(a) < β holds true thanks to (A.15).
Finally, if a< u∗, then (35), the fact that l is increasing, the inequality l(a) < β, the dominated conver-
gence theorem and the definition of a imply that

qo
φ(a, l(a))� qc

φ(a, lim
ε↓0

l(a + ε))

=
∫

]a,limε↓0 l(a+ε)]
Φ(s)Lg(ds)

= lim
ε↓0

qc
φ(a + ε, l(a + ε))� 0

and the proof is complete. �

Remark A.1 While a and b may not be unique, the definitions (A.16) and (A.9) mean that they are
defined uniquely.

Remark A.2 Many practical problems in finance and economics will need to be modelled by diffusions
for which there are no analytic expressions for φ and ψ . If this is the case, then the conditions of
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Lemma A.2 can be checked by noting that, as a consequence of (19–23) combined with (50–53),

qc
ψ(u, v)= ψ2

W
(v)

(
g

ψ

)′

+
(v)− ψ2

W
(u)

(
g

ψ

)′

−
(u),

qo
ψ(u, v)= ψ2

W
(v)

(
g

ψ

)′

−
(v)− ψ2

W
(u)

(
g

ψ

)′

+
(u),

qc
φ(u, v)= φ2

W
(v)

(
g

φ

)′

+
(v)− φ2

W
(u)

(
g

φ

)′

−
(u)

and

qo
φ(u, v)= φ2

W
(v)

(
g

φ

)′

−
(v)− φ2

W
(u)

(
g

φ

)′

+
(u).

The functions φ,ψ can be estimated over the interval of interest by applying Monte–Carlo simulation
to (10). The accuracy of these estimates can then be measured by observing that we should have Lφ =
Lψ = 0.

We are now in a position to give the main result in this Appendix.

Lemma A.3 Suppose that the problem data are such that the conditions of Case VI, (34–37), hold. Then
there exist a ∈ I \ Es and b ∈ I \ Es satisfying the system of equations (48) and (49).

Proof. In view of Lemma A.2, it suffices to find points u∗ � u∗ in ]α, xl] and v∗ � v∗ in [xr,β[ satisfying
(A.5–A.8). To this end, we consider four possible cases.
Case (a): If

qo
ψ(α, xr)≡

∫
]α,xr[

Ψ (s)Lg(ds) < 0 and qo
ψ(xl,β)≡

∫
]xl ,β[

Ψ (s)Lg(ds) < 0, (A.19)

then we define
u∗ = xl and v∗ = xr.

Combining the inequality ∫
]xl ,xr[

Ψ (s)Lg(ds) > 0,

which follows from (34), with (35), (A.2) and the second inequality in (A.19) we can see that there exist
unique u∗ ∈ ]α, xl] and v∗ ∈ [xr,β[ such that∫

[u∗,xr[
Ψ (s)Lg(ds)� 0 � qo

ψ(u∗, xr)

and ∫
]xl ,v∗]

Ψ (s)Lg(ds)� 0 � qo
ψ(xl, v∗).

The inequalities (A.5) and (A.6) with u∗, u∗ = xl, v∗ = xr and v∗ hold true because Lg({xl})� 0 and
Lg({xr})� 0.
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To see the inequalities in (A.7) and (A.8), we recall that φ (respectively, ψ) is strictly decreasing
(respectively, increasing), the definition (13) of Φ,Ψ and we note that (34) and (35) imply that

0 � φ(xl)

ψ(xl)

∫
[u∗,xr[

Ψ (s)Lg(ds)

=
∫

[u∗,xl]

ψ(s)φ(xl)

ψ(xl)φ(s)
Φ(s)Lg(ds)+

∫
]xl ,xr[

ψ(s)φ(xl)

ψ(xl)φ(s)
Φ(s)Lg(ds)

>

∫
[u∗,xl]

Φ(s)Lg(ds)+
∫

]xl ,xr[
Φ(s)Lg(ds)

� qc
φ(u∗, v∗)

and (A.7) is satisfied. Similarly, we can see that

0 � φ(xl)

ψ(xl)
qo
ψ(u

∗, v∗)

= φ(xl)

ψ(xl)

∫
]xl ,v∗[

Ψ (s)Lg(ds)

=
∫

]xl ,xri [

ψ(s)φ(xl)

ψ(xl)φ(s)
Φ(s)Lg(ds)+

∫
[xr ,v∗[

ψ(s)φ(xl)

ψ(xl)φ(s)
Φ(s)Lg(ds)

<

∫
]xl ,xri [

Φ(s)Lg(ds)+
∫

[xr ,v∗[
Φ(s)Lg(ds)

= qo
φ(u

∗, v∗)

and (A.8) is satisfied.
Case (b): If

qo
ψ(α, xr)≡

∫
]α,xr[

Ψ (s)Lg(ds) < 0 and qo
ψ(xl,β)≡

∫
]xl ,β[

Ψ (s)Lg(ds)� 0, (A.20)

then we define

v∗ = xr and v∗ = β.

We can show that there exists a point u∗ ∈ ]α, xl] such that the inequalities (A.5) and (A.7) hold true
in exactly the same way as in Case (a). Combining the second inequality in (A.20), the inequality

qo
ψ(xl, xr)=

∫
]xl ,xr[

Φ(s)Lg(ds) > 0,

which follows from (34), with (35) and (A.2) we can also see that there exists u∗ ∈ ]u∗, xl] such that

qc
ψ(u

∗,β)� 0 � qo
ψ(u

∗,β).

To show that the points u∗ and v∗ = β are such that the inequality (A.8) is true, we first note that,
without loss of generality, we may assume that the integral in (A.2) is not equal to −∞. In this context,
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we combine (A.4) in Lemma A.1 with (17) to calculate that

lim
x↑β

g(x)

φ(x)
= −

∫
]α,β[

Ψ (s)Lg(ds)

= −
∫

]α,u∗[
Ψ (s)Lg(ds)+

∫
[u∗,β[

Ψ (s)Lg(ds)

= −
∫

]α,u∗[
Ψ (s)Lg(ds)+ qc

ψ(u
∗, v∗)

implying that ∫
]α,u∗[

Ψ (s)Lg(ds)= qc
ψ(u

∗, v∗)− lim
x↑β

g(x)

φ(x)
.

Combining this result with (17), we obtain

− g(u∗)
φ(u∗)

=
∫

]α.u∗[
Ψ (s)Lg(ds)+ ψ(u∗)

φ(u∗)

∫
[u∗,β[

Φ(s)Lg(ds),

= qc
ψ(u

∗, v∗)− lim
x↑β

g(x)

φ(x)
+ ψ(u∗)
φ(u∗)

∫
[u∗,β[

Φ(s)Lg(ds),

yielding
ψ(u∗)
φ(u∗)

∫
[u∗,β[

Φ(s)Lg(ds)= lim
x↑β

g(x)

φ(x)
− g(u∗)
φ(u∗)

− qc
ψ(u

∗, v∗) > 0,

with the inequality being a consequence of the second inequality in (36) and (A.6). Using (35), this
result implies that

0<
∫

[u∗,β[
Φ(s)Lg(ds)� qo

φ(u
∗,β)

and the inequality (A.8) is true.
Case (c): If

qo
ψ(α, xr)≡

∫
]α,xr[

Ψ (s)Lg(ds)� 0 and qo
ψ(xl,β)≡

∫
]xl ,β[

Ψ (s)Lg(ds) < 0, (A.21)

then we define
u∗ = α and u∗ = xl.

We can show that there exists a point v∗ ∈ [xr,β[ such that the inequalities (A.6) and (A.8) hold true
in exactly the same way as in Case (a). Combining the first inequality in (A.21), the inequality

qo
ψ(xl, xr)=

∫
]xl ,xr[

Φ(s)Lg(ds) > 0,

which follows from (34), with (35) and (A.2) we can also see that there exists v∗ ∈ ]xr, v∗[ such that

qc
ψ(α, v∗)� 0 � qo

ψ(α, v∗).

 at H
eriot-W

att U
niversity L

ibrary on A
pril 19, 2016

http://im
am

ci.oxfordjournals.org/
D

ow
nloaded from

 

http://imamci.oxfordjournals.org/


28 of 28 T. C. JOHNSON

To show that the points u∗ = α and v∗ are such that the inequality (A.7) is true, we first note that,
without loss of generality, we may assume that the integral in (A.2) is not equal to −∞. In this context,
we combine (A.4) in Lemma A.1 with (17) to calculate that

− g(v∗)
ψ(v∗)

= φ(v∗)
ψ(v∗)

∫
]α,v∗]

Ψ (s)Lg(ds)+
∫

]v∗,β[
Φ(s)Lg(ds)

and so

qc
φ(u∗, v∗)=

∫
]α,v∗]

Φ(s)Lg(ds)

=
∫

]α,β[
Φ(s)Lg(ds)−

∫
]v∗,β[

Φ(s)Lg(ds)

= g(v∗)
ψ(v∗)

+ φ(v∗)
ψ(v∗)

∫
]α,v∗]

Ψ (s)Lg(ds)− g

ψ
(α)

� g(v∗)
ψ(v∗)

− g

ψ
(α)

< 0,

given that, by (A.5), ∫
]α,v∗]

Ψ (s)Lg(ds)� 0

and employing the second inequality in (36).
Case (d): If

qo
ψ(α, xr)≡

∫
]α,xr[

Ψ (s)Lg(ds)� 0 and qo
ψ(xl,β)≡

∫
]xl ,β[

Ψ (s)Lg(ds)� 0,

then we define
u∗ = α and v∗ = β.

We can show the inequalities in (A.5) and (A.7) in exactly the same was as in Case (c) and the inequal-
ities in (A.6) and (A.8) in exactly the same was as in Case (b). �
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