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Abstract

The Galerkin method can fail dramatically when applied to eigenval-
ues in gaps of the extended essential spectrum. This phenomenon, called
spectral pollution, is notoriously difficult to predict and it can occur in
models from relativistic quantum mechanics, solid state physics, magne-
tohydrodynamics and elasticity theory. The purpose of this survey paper
is two-folded. On the one hand, it describes a rigourous mathematical
framework for spectral pollution. On the other hand, it gives an account
on two complementary state-of-the-art Galerkin-type methods for eigen-
value computation which prevent spectral pollution completely.
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1 Introduction

The Galerkin method can fail dramatically when applied to eigenvalues in
gaps of the extended essential spectrum. This phenomenon, called spec-
tral pollution, is notoriously difficult to predict and it can occur in models
from relativistic quantum mechanics, solid state physics, magnetohydro-
dynamics, electromagnetism and elasticity theory. This survey paper has
two specific purposes. On the one hand, it describes a rigourous frame-
work for spectral pollution. On the other hand, it gives an account on
two complementary state-of-the-art Galerkin-type methods for eigenvalue
computation which prevent spectral pollution completely.

Introductory material is to be found in §2 and §3. The former is de-
voted to the basic notation around the classical Galerkin method. The
latter includes a few canonical examples which illustrate the many sub-
tleties of spectral pollution.

The main body of the text is §4-6. In §4 a generalisation of the well-
known theorem by H. Weyl on the stability of the essential spectrum is
closely examined. This result implies a striking fact: the spectral pollution
set is stable under compact perturbations.

The text then turns to the formulation of two complementary pollution-
free techniques for computation of bounds for eigenvalues. One of these
techniques is related to the classical Temple-Lehmann inequality and is
considered in §5. It has a local character, meaning that it just allows
determination of eigenvalue bounds in the vicinity of a given parameter.
These bounds are optimal in a suitable setting.

The other technique, discussed in §6, does not lead to optimal spectral
bounds but it has a global character. Given any trial subspace of the
domain, it always renders true information about the spectrum. Moreover,
it converges under fairly general conditions.

These two approaches have recently been tested in various practical
settings with successful outcomes. In order to show their implementation
and range of applicability, various numerical experiments are included.
These experiments are performed on two benchmark models, the two-
dimensional Dirichlet Laplacian and the three-dimensional isotropic reso-
nant cavity. They illustrate a few new features of the theory which have
not been reported elsewhere. They are mostly elementary, however they
may serve as a motivation for more serious investigations.

The exposition is intentionally made short and concise. It only includes
the very basic aspects of both theory and applications. The material is
fairly self-contained, so it must be accessible to non-specialist and PhD
students in Analytical and Computational Spectral Theory. A guide for
further reading is found in §7.

This survey paper began as notes from a four-weeks lecture course
which I delivered at the Université de Franche-Comté Besançon in the
Spring of 2012. I am duly grateful to Nabile Boussäıd and colleagues
from the Laboratoire de Mathématiques for countless stimulating discus-
sions during my visit. Financial support was provided by the Université
de Franche-Comté, and the British Engineering and Physical Sciences Re-
search Council (grant EP/I00761X/1).
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2 The spectrum and the Galerkin method

The classical setting around the notions of discrete and essential spectra
for self-adjoint operators, leads naturally to the framework of the Galerkin
method. In this classical setting the Weyl Theorem on the stability of the
essential spectrum plays a prominent role.

2.1 Nature of the spectrum for self-adjoint oper-
ators

Let A : domA −→ H be a densely defined self-adjoint operator on the
infinite-dimensional separable Hilbert space H. The spectrum of A,

specA = {λ ∈ R : (A− λ) does not have a bounded inverse} ,

can be characterised by Weyl’s criterion:

λ ∈ specA ⇐⇒ ∃{uj}j∈N ⊂ domA, ∥uj∥ = 1, ∥(A− λ)uj∥ → 0 .

The sequence of vectors (uj) ≡ (uj)
∞
j=1 is called a Weyl sequence (as-

sociated to λ). The singular Weyl sequences are the ones such that in
addition are weakly convergent to zero1, uj ⇀ 0. They determine the
classical decomposition of the spectrum into two disjoint components,

specA = [specdsc A] ∪ [specess A] .

The essential spectrum are those λ for which there is a singular Weyl
sequence,

λ ∈ specess A ⇐⇒

{
∃{uj}j∈N ⊂ domA, ∥uj∥ = 1,

uj ⇀ 0 & ∥(A− λ)uj∥ → 0 .

The discrete spectrum is then defined as the complementary set

specdsc A = [specA] \ [specess A] .

The latter comprises only those λ ∈ R which are eigenvalues of A of finite
multiplicity,

1 ≤ dimker(A− λ) < ∞ ,

and are isolated from the rest of the spectrum. See for example [38,
§VII.3].

From the above classification of the spectrum, it is readily seen that if
B = B∗ is another self-adjoint operator such that2 (A−B) ∈ K(H), then

(1) specess B = specess A .

This observation highlights a fundamental property: the essential spec-
trum is a stable part of the spectrum. More generally, if A and B are
relatively compact perturbations of each other, that is

(2) (A− c)−1 − (B − c)−1 ∈ K(H)

1Meaning ⟨uj , v⟩ → 0 for all v ∈ H.
2Here and everywhere below K(H) is the algebra of compact operators in H.
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for at least one3 c ̸∈ R, then once again (1) holds true. This stability
character of the essential spectrum, and other further generalisations, are
usually identified in the literature as Weyl’s Theorems, see [39, Theo-
rem XIII.14].

Weyl’s Theorems as well as other classical tools in Spectral Theory
such as Floquet-Bloch decompositions, allow the analytical determination
of the essential spectrum for a large class of self-adjoint operators arising
in applications. By contrast, only in a small handful of cases the discrete
spectrum can be found explicitly. A fundamental problem in Computa-
tional Spectral Theory is the numerical estimation of eigenvalues (isolated
or otherwise).

2.2 The Galerkin method

Given a linearly independent set {bk}nk=1 ⊂ domA and its corresponding
trial subspace Ln = span{bk}nk=1.

a) Can we obtain rigourous spectral information about the operator A,
from the action of A on Ln?

b) If so, how can we extract this information in an optimal manner?

A partial answer to this question for semi-bounded operators is provided
by the classical Galerkin method which is based on the Min-max Principle.
See [18, Chapter 4] or [39, Theorem XIII.1].

Assume momentarily that A = A∗ ≥ b > −∞. Let the variational
eigenvalues of A be the non-decreasing sequence

µk(A) = inf
V⊂domA
dimV=k

sup
0̸=u∈V

⟨Au, u⟩
∥u∥2 = sup

V⊂domA
dimV⊥=k−1

inf
0 ̸=u∈V

⟨Au, u⟩
∥u∥2 .

Let
µ(A) = lim

k→∞
µk(A) ≤ ∞ .

By virtue of the Rayleigh-Ritz Theorem,

(−∞, µ(A)) ∩ specA = (−∞, µ(A)) ∩ specdsc A = {µk(A)}∞k=1 \ {µ(A)}

and
µ(A) = inf specess A .

Here we do not rule out the possibility of µk(A) being eventually constant
and so µ(A) becoming an eigenvalue of infinite multiplicity, isolated or
otherwise. It is routine to show that the “infimum” in the latter is a
“minimum” unless µ(A) = ∞, in which case A has a compact resolvent.
See [39, §XIII.1].

Let the n× n hermitian matrices

(3) Ln = [⟨Abj , bk⟩]njk=1 & Mn = [⟨bj , bk⟩]njk=1 .

The eigenvalues of the finite-dimensional spectral problem

(4) Lnu = λMnu 0 ̸= u ∈ Cn

3Hence for all c ̸∈ (specA) ∪ (specB).
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are exactly the (reduced) variational eigenvalues

µk(A,Ln) = min
V⊂Ln

dimV=k

max
0̸=u∈V

⟨Au, u⟩
∥u∥2 .

Indeed observe that the Gram matrix Mn is positive definite and identify
u ∼ u, where

u =

n∑
k=1

akbk ∈ Ln & u = (ak)
n
k=1 ∈ Cn .

Let Πn : H −→ Ln be the orthogonal projection Π2
n = Πn = Π∗

n onto
Ln and let An = ΠnA↾Ln : Ln −→ Ln be the reduced operator. Then

specAn = {µ1(A,Ln) ≤ . . . ≤ µn(A,Ln)}
= {µ1(An) ≤ . . . ≤ µn(An)} .

Therefore, as µk(A) ≤ µk(A,Ln), the kth eigenvalue of the reduced op-
erator is a guaranteed upper bound for the kth variational eigenvalues of
A. Moreover, under suitable conditions, µk(An) ↓ µk(A) in the large n
limit for any fixed k ∈ N. These two observations form the essence of the
classical Galerkin method.

The Galerkin method is of remarkable importance in the context of
semi-definite operators with a compact resolvent, as it provides certified
one-sided bounds for eigenvalues. The following is a canonical spectral
problem which is a benchmark in this, the simplest possible setting.

The eigenvalues of the Dirichlet Laplacian on a bounded polygon Ω in
R2 are determined by the boundary value problem

(5)

{
−∆u = λu in Ω

u = 0 on ∂Ω
.

The corresponding self-adjoint operator

L : H2
0 (Ω) −→ L2(Ω)

is positive definite and it has a compact (Hilbert-Schmidt) resolvent. Sup-

pose that {bk}n(h)
k=1 is a basis of finite elements4 on a regular simplicial de-

composition of Ω, say of Lagrange or Hermite type, of maximum element
diameter h > 0. Different upper estimates on the residual µk(Ah)−µk(A)
in terms of h have been extensively studied for well over 50 years. See
[42, Chapter 6] and the comprehensive list of references in [17, p.283-286].
Under suitable conditions on the basis of finite elements and the regime
at which the mesh becomes dense in Ω as h → 0, it is guaranteed that

specLh → specdsc L = specL .

4In the framework of the finite element method, here and elsewhere we will assume without
further mention that the small real parameter h is mapped into the large integer parameter
n = n(h). We will only write the former as the sub-index of operators, trial subspaces, etc.
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Remark 1. For an operator A which is semi-bounded above instead of
being semi-bounded below, say A = A∗ ≤ b < ∞, the Rayleigh-Ritz The-
orem can be formulated for the operator −A instead of A. Therefore,
the Galerkin method provides reliable means of computing the eigenvalues
which are outside the convex hull of the extended essential spectrum of any
self-adjoint operator5.

The simplest case where the Galerkin method turns out to be reliable
occurs when A ∈ K(H). In that case it is ensured that

specAn → specA

whenever Πn → I. In fact we can be more precise.

Proposition 1. Let A be a compact self-adjoint operator. Suppose that
An has l negative eigenvalues and m positive eigenvalues. Then

a) A has at least l negative eigenvalues and the first l of them counting
from −∞ are bounded above by µk(An) for k ∈ {1, . . . , l},

b) A has at least m positive eigenvalues and the first m of them counting
from +∞ are bounded below by µn+1−k(An) for k ∈ {1, . . . ,m}.

Convergence of these bounds occurs as n → ∞.

Proof. See [16, §5.4.2].

Note that the two statements in this proposition are not incompatible
with each other, because we are counting the sequence specAn starting
from its two extrema inwards.

Remark 2. In a large number of applications involving the Galerkin
method, the operator A is positive definite. In such case the weak eigen-
value problem,

find 0 ̸= u ∈ Ln and ν > 0 such that ⟨A1/2u,A1/2v⟩ = ν⟨u, v⟩ ∀v ∈ Ln ,

is equivalent to (4). The formulation of the former only requires that
Ln ⊂ domA1/2. From the Min-max principle and an argument involving
the fact that domA is dense in domA1/2, it can be shown that the bounds6

νk ≥ µk still hold true, if we impose this less restrictive condition on the
trial subspaces. This is certainly more convenient in e.g. applications
involving partial differential equations, as it means that less regularity
on the trial functions is required. We focus our attention here to the
more restrictive case Ln ⊂ domA, because this will be required in the
formulation of principles for the computation of complementary bounds
for eigenvalues discussed below.

5Here “extended” refers to adding topologically +∞ or −∞ to the essential spectrum,
whenever there is accumulation of spectrum there.

6The νk here denote the eigenvalues of the weak eigenvalue problem ordered non-
decreasingly.
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3 Spectral pollution

The Galerkin method might not provide reliable information about the
possible points of specdsc A which lie inside the convex hull of the extended
essential spectrum. This phenomenon can be illustrated at the practical
level by means of a few striking examples.

3.1 Dichotomies in the finite section of operators

Firstly consider a very simple model from the theory of truncated Toeplitz
operators [6].

Let S be the multiplication operator by the “sign” function,

(6) Sf(t) = sign(t)f(t) S : L2(−π, π) −→ L2(−π, π) .

Then
specS = specess S = {±1} .

The discrete Fourier transform U : L2(−π, π) −→ ℓ2(Z)

Uf = (f̂(n))n∈Z f̂(n) =
1√
2π

∫ π

−π

f(t)e−intdt

is an invertible isometry. The corresponding Laurent operator associated
to S is

L(sign) = USU−1 = [ŝign(j − k)]∞jk=−∞ : ℓ2(Z) −→ ℓ2(Z) .

Its spectrum coincides exactly with that of S.
Now let

(7) Sn = [ŝign(j − k)]njk=−n .

Then Sn is the reduced operator of S on

(8) Ln = span
{ eikt√

2π

}n

k=−n
⊂ L2(−π, π) .

Let T (sign) : ℓ2(N) −→ ℓ2(N) be the Toeplitz operator

T (sign) = [ŝign(j − k)]∞jk=0 .

Then Sn is also a matrix representation of ΠnT (sign)↾Ln now on

Ln = {(vk)∞k=1 ∈ ℓ2(N) : vk = 0 ∀k > 2n+ 1} ⊂ ℓ2(N) .

Note that
spec(T (sign)) = [−1, 1]

[6, §1.8].
Which spectrum does Sn capture in the large n limit? Is it the one

of the Laurent operator, the one of the Toeplitz operator or something in
between? Since

ŝign(j − k) =

{
0 k ≡2 j

2i
(k−j)π

k ̸≡2 j
,
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Figure 1. Computation of specSn for 100 ≤ n ≤ 500 where n ≡50 0.
Observe that spec(S,L) = [−1, 1]. However the eigenvalues of the reduced
matrix accumulate at a much faster rate near specS = {±1}. See §4.1.

then Sn ∈ C(2n+1)×(2n+1) has n + 1 columns with odd entries equal to
zero and n columns with even entries equal to zero. The former have
only n non-zero entries, so they must be linearly dependent. Therefore
0 ∈ specSn for all n, even though 0 ̸∈ specS.

In a situation where there are eigenvalues of the finite-dimensional
problems (4) prevailing and accumulating at the resolvent set as n → ∞,
we say that we are in the presence of spectral pollution. These points of
accumulation are often called spurious eigenvalues.

In the case of the self-adjoint operator S, for instance, 0 ̸∈ specS is
a spurious eigenvalue and it is by no means the only one. According to
classical results [6] mainly due to Szegö, for any α ∈ [−1, 1] there exist
αn ∈ specSn such that αn → α. That is, the whole segment (−1, 1) fills
up with spurious eigenvalues as n increases. In general, the limit of the
spectrum is not the spectrum of the limit in gaps of the essential spectrum.
See Figure 1.

More can be said about this very simple type of models. Standard
results from the theory of truncated Toeplitz matrices [6] provide a satis-
factory explanation of the appearance of spectral pollution in this partic-
ular case. However, from a general perspective, it shows that the Galerkin
method can fail dramatically when applied in gaps of the essential spec-
trum. If we did not know the spectrum beforehand, from the above anal-
ysis we might be driven to a false conclusion that 0, for instance, is (or is
near) it.

3.2 Indefinite operators

We might get misleading information about possible points in the spec-
trum inside the convex hull of the extended essential spectrum, even when
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the operator has a compact resolvent and the trial spaces comprise only
finite combinations of eigenvectors. In order to see how this can occur in a
concrete setting, consider the model of a resonant electromagnetic cavity
with perfect conductivity through the boundary.

Let the convex polyhedron Ω ⊂ R3 be filled with an isotropic medium
(dimensionless, unit electric permittivity and magnetic permeability). The
physical phenomenon of electromagnetic oscillations in Ω is described by
the time independent Maxwell system

(9)


curl E = iωH in Ω

curlH = −iωE in Ω

E× n = 0 on ∂Ω

for unknown angular frequencies ω ∈ R and non-zero solenoidal field pha-
sors [E,H]t ∈ J , see (10). The normal unit vector on ∂Ω is written as
n.

The self-adjoint operator M : domM −→ H associated to (9) is [4] 0 i curl

−i curl 0


︸ ︷︷ ︸

M

:
H0(curl; Ω)

⊕
H(curl; Ω)︸ ︷︷ ︸

domM

−→
[L2(Ω)]3

⊕
[L2(Ω)]3︸ ︷︷ ︸

H

.

Here
H(curl; Ω) =

{
F ∈ [L2(Ω)]3 : curl F ∈ [L2(Ω)]3

}
is the maximal domain of the “curl” and

H0(curl; Ω) =

F ∈ H(curl; Ω) :

∫
Ω

curl F ·G =

∫
Ω

F · curlG

∀G ∈ H(curl; Ω)


is the minimal domain which encodes the boundary conditions.

The solenoidal space

(10) J =

{[
F
G

]
∈ domM : div F = 0 = divG & (G · n)↾∂Ω= 0

}
is compactly embedded into [L2(Ω)]6 and it exactly coincides with

(kerM)⊥ ∩ domM .

Then specess M = {0} while specdsc M is an infinite set of eigenvalues
which only accumulates at ±∞. The latter is symmetric with respect to

0, because

[
E
H

]
̸= 0 is an eigenvector of (9) associated to ω if and only if[

−E
H

]
̸= 0 is an eigenvector of (9) associated to −ω.

The reduced operator

M̃ = M↾J : J −→ [L2(Ω)]6 ⊖ kerM

has a compact resolvent and it is the one describing the physical phe-
nomenon of electromagnetic oscillations in the isotropic resonant cavity.
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This operator is strongly indefinite, and its spectrum and eigenspaces co-
incide exactly with those of M except for ω = 0. The latter is not an
eigenvalue of M̃.

Example 1. Let
specM̃ = {±ωj}j∈N

where the positive eigenvalues are 0 < ωj ≤ ωj+1 ↑ ∞. Here we count
the multiplicity. Let {Φ±

j }j∈N ⊂ J be an associated orthonormal basis of
eigenfunctions

M̃Φ±
j = ±ωjΦ

±
j .

Then

M̃ =

∞∑
j=1

ωj(|Φ+
j ⟩⟨Φ

+
j | − |Φ−

j ⟩⟨Φ
−
j |) .

If we assume that the trial spaces are

(11) Ln = span

{
Φ±

1 , . . . ,Φ
±
n−1,

1√
2
Φ+

n +
1√
2
Φ−

n

}
,

which might seem to be extremely close to the actual spectral subspaces
of M̃, it turns out that

specM̃n = {0,±ω1, . . . ,±ωn−1} .

Therefore we might be falsely led to believe that 0 ∈ specM̃.

Remarkably, the Galerkin method successfully applies to R = M̃−1 in
this case, as it is a compact operator. Picking the same trial spaces (11),
we get

specRn = {±ω−1
1 , . . . ,±ω−1

n−1, 0} → specR ,

and the properties a) and b) from Proposition 1 are fulfilled.
Example 1 can be modified in order to create a dense set of spurious

eigenvalues for M̃. See [14, Example 1.2], [30] and [31]. Arguably, this
example is rather artificial as the family of trial subspaces has been taylor
made to generate spectral pollution. However, as we shall see next, spec-
tral pollution also occurs in the canonical discretisation of (9) by means
of the finite element method.

3.3 The finite element method and spectral pol-
lution

The operator S = M̃2 does not yield Galerkin spurious eigenvalues as it
is semi-definite and it has a compact resolvent. For the trial spaces (11),
we get

specSn = {ω2
1 , . . . , ω

2
n−1︸ ︷︷ ︸

multiplicity 2

, ω2
n} → specS .

In fact note that S is equivalent to a vector-valued Laplacian on Ω with
suitable boundary conditions, so we are in a situation very similar to that
of the Dirichlet Laplacian (5).

The operator M2 is completely different in this respect. All its spec-
trum is trapped in a gap of the extended essential spectrum, the segment
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(0,∞). This has an important consequence for the numerical estimation
of the angular frequencies in the resonant cavity by means of the finite
element method as we illustrate next.

Let Ω = [0, π]3. The non-zero eigenfrequencies of S and M2 are

ω = ±
√

j2 + k2 + l2

for indices {j, k, l} ⊂ N ∪ {0} not two of them vanishing simultaneously.
The corresponding E component of the field phasors are

E(x, y, z) =

α cos(jx) sin(ky) sin(lz)
β sin(jx) cos(ky) sin(lz)
γ sin(jx) sin(ky) cos(lz)

 ∀

αβ
γ

 ·

jk
l

 = 0 .

Suppose that we did not know an analytic expression for specM̃ and
that we wanted to approximate a few eigenvalues numerically. Generating
Ln by means of the finite element method is highly non-trivial. For ex-
ample the standard nodal elements are not typically solenoidal and most
of the edge elements are so, only in the interior of the simplexes but not
across their boundaries. This difficulty has been well documented in the
literature. See [1], [5] and references therein.

Example 2. In Figure 2 we have näıvely picked Lh ⊂ domM\ domM̃
made of Lagrange elements of order 3 for the unstructured uniform mesh
Th depicted in (a),

(12)

Vh = {F ∈ [C0(Ω)]3 : F|K ∈ [P3(K)]3 ∀K ∈ Th}
Vh,0 = {G ∈ Vh : (G× n)↾∂Ω= 0}
Lh = Vh,0 × Vh ⊂ domM .

The graph (b) shows 500 eigenvalues of (M2)n near 2. The only true
eigenvalues of M2 in the segment [0.5, 3.5] are ω2

1 = 2 of multiplicity 3
and ω2

2 = 3 of multiplicity 2. The picture does not give much information
about the true spectrum of the operator in this segment.

Of course we know analytically what the eigenvalues are in this exam-
ple. However, if we did not know the spectrum7, then a direct application
of the Galerkin method is likely to be completely useless.

4 A rigourous framework for spectral pol-
lution

It is possible to characterise spectral pollution by means of particular
classes of Weyl sequences. This allows the formulation of suitable versions
of Weyl-type theorems in the context of eigenvalue computation.

7Such is the case when Ω has a more complicated shape.
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(a) dimL0.9 ≈ 22K
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(b) 500 eigenvalues of (M2)n nearest to 2

Figure 2. The only eigenvalues of M2 in the segment [0.5, 3.5] are ω2 = 2
of multiplicity 3 and ω2 = 3 of multiplicity 2. However the implementation
of the Galerkin method shown in (b) wrongly suggests that the segment
[0.9, 3.4] is in the spectrum. The subspace Ln is made of Lagrange elements
of order 3 in the mesh shown in (a).

4.1 The limit of the spectra vs the spectrum of
the limit

The following is an elementary property for self-adjoint operators and it
turns out to play a fundamental role below.

Lemma 2. Let B be a self-adjoint operator. The Hausdorff distance from
any t ∈ R to the spectrum of B can be determined via

(13) dist(t, specB) = inf
0̸=u∈domB

∥(B − t)u∥
∥u∥ .

Proof. Indeed

inf
0̸=u∈domB

∥(B − t)u∥2

∥u∥2 = min{λ ∈ spec(B − t)2}

= dist
(
0, spec(B − t)2

)
.

By taking square roots, as appropriate, (13) follows.

Let L = {Ln}n∈N be a family of trial subspaces Ln ⊂ domA. We say
that L is regular, if for any u ∈ domA we can find un ∈ Ln such that

∥u− un∥+ ∥Au−Aun∥ → 0 .

Denote the outer limit spectrum of the Galerkin method (applied to A)
with respect to the sequence L by

spec(A,L) = limsup
n→∞

specAn = {λ ∈ R : ∃λj ∈ specAnj , λj → λ} .
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What would the relation between this upper limit and the true spectrum
of A be?

For any given λ ∈ specA and non-zero u ∈ domA such that

∥(A− λ)u∥
∥u∥ <

ε

2
,

the condition of regularity on L implies that for n large

∥Πn(A− λ)Πnu∥
∥Πnu∥

< ε .

Then, according to (13) for B = An, there exists λn ∈ specAn such that
|λ− λn| < ε in the large n regime. Hence, taking ε → 0, it follows that8

specA ⊆ spec(A,L) .

In §3 we showed with a concrete example that we must not expect an
equality here in general. The difference between the two sets is the region
of spectral pollution for the Galerkin method.

Example 3. Let S and L be as in (6) and (8). Let e0(x) = 1√
2π

. Set

K = |e0⟩⟨e0| and B = S +K. Then [7, Lemma 7]

specB = {±1}︸ ︷︷ ︸
specess B

∪{(1±
√
5)/2}︸ ︷︷ ︸

specdsc B

and the eigenvalues in the discrete spectrum are both simple. By virtue
of Theorem 4 below,

(14) spec(B,L) = [−1, 1] ∪ {(1 +
√
5)/2} .

See Figure 3.

Remark 3. Despite of the spectral pollution phenomenon illustrated in
Figure 3, note that the eigenvalues of Bn accumulate much faster at the
spectrum of B than at any other point of the segment (−1, 1).

4.2 Singular Weyl sequences

The appearance of spurious eigenvalues can be characterised in a fairly
general context by the existence of particular Weyl sequences of singular
type.

Lemma 3. λ ∈ spec(A,L) if and only if there exists a sequence {vj}j∈N ⊂
domA such that vj ∈ Lnj with ∥vj∥ = 1 and

lim
k→∞

∥Πnj (A− λ) vj∥ = 0 .

Proof. According to the definition, λ ∈ spec(A,L) if and only if there
exists λj ∈ R and vj ∈ Lnj with ∥vj∥ = 1 such that λj → λ and
Πnj (A− λj) vj = 0. As

Πnj (A− λ) vj = (λj − λ)vj → 0 ,

8This well-known inclusion has a long history. See [36].
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Figure 3. Spectrum of the reduced operator Bn in Example 3 for 100 ≤
n ≤ 500 where n≡500. In the picture the two points in the discrete spectrum
(1±

√
5)/2 have been highlighted. See (14).

one of the stated implications follows immediately.
On the other hand, if {vj}j∈N ⊂ domA is as stated, then ∥(Anj −

λ)vj∥ → 0. Since the An are hermitian, by virtue of Lemma 2 there exists
λj ∈ specAnj such that

|λj − λ| ≤ ∥(Anj − λ)vj∥ → 0 .

Thus λ ∈ spec(A,L) ensuring the complementary implication.

A sequence (vj) satisfying the condition of Lemma 3 will be called an
L-Weyl sequence for λ ∈ spec(A,L). If additionally vj ⇀ 0, then it will
be called a singular L-Weyl sequence.

By analogy to the classical notions, we call

specess(A,L) = {λ ∈ R : ∃ a singular L-Weyl sequence for λ}

the limit essential spectrum of the Galerkin method applied to A with re-
spect to the sequence L. By virtue of Lemma 3, specess(A,L) ⊆ spec(A,L).
Moreover,

specess A ⊆ specess(A,L) .

The following statement is an immediate consequence of the above defi-
nition.

Theorem 4 (Version of Weyl’s Theorem for spectral pollution). Let L
be a regular family associated to the self-adjoint operator A. Let K be a
compact self-adjoint operator. Then

(15) specess(A,L) = specess(A+K,L) .

The identity (15) is still holds true under much weaker conditions on
the perturbation K. However, at present, it is unclear whether these
match (2) in full generality. See [10] for details.
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As we see next, spectral pollution only occurs in the limit essential
spectrum of the Galerkin method. Therefore, by combining the classical
Weyl’s Theorem with Theorem 4, the closure of the region of spectral
pollution is unchanged under compact perturbations. The limit discrete
spectrum of the Galerkin method is the set

specdsc(A,L) = spec(A,L) \ specess(A,L) .

Lemma 5. Let (vj) be an L-Weyl sequence for λ ∈ spec(A,L). If vj ⇀ v,
then v ∈ ker(A− λ).

Proof. Let f ∈ domA. Let fn ∈ Ln be such that fn → f and Afn → Af .
Then

⟨(Anj − λ)vj , f⟩ = ⟨Πnj (A− λ)vj , f⟩
= ⟨vj , (A− λ)fnj ⟩ → ⟨v, (A− λ)f⟩ .

Hence
⟨(A− λ)v, f⟩ = 0 ∀f ∈ domA

and so (A− λ)v = 0.

By virtue of this lemma,

(16) specdsc(A,L) ⊆ specdsc A

and therefore spectral pollution can only appear in specess(A,L).
The present framework for spectral pollution is based on a natural sep-

aration of the upper limit spectrum of the Galerkin method into a discrete
part and an essential part. As we shall see from the next statement, it
also allows a natural classification of the spurious eigenvalues. A complete
proof and further details on the matter can be found in [10].

Theorem 6 (Nature of the spectral pollution phenomenon). Let L be
a regular family associated to the self-adjoint operator A. Then λ ∈
specess(A,L) if and only if one and only one of the following possibili-
ties holds true.

a) λ ̸∈ specA, and there exist λj → λ and vj ∈ Lnj such that

∥vj∥ = 1, Anjvj = λjvj & vj ⇀ 0 .

b) λ ∈ specess A, and there exist λj → λ and vj ∈ Lnj such that

∥vj∥ = 1, Anjvj = λjvj & vj ⇀ 0 .

c) λ ∈ specdsc A and for all ε > 0

#{λ ∈ spec(Anj ) ∩ (λ− ε, λ+ ε)} > dimker(A− λ) .

Case a) means that λ is in the region of spectral pollution, while in
cases b) and c) λ is in the spectrum. For b) we can say nothing more, but
for c) the multiplicity of λ is wrongly predicted by L.

15



Example 4. Let L and B be as in Example 3. By virtue of (16),

specess(B,L) = [−1, 1] & specdsc(B,L) = {(1 +
√
5)/2} .

In the context of Theorem 6:

a) holds in (−1, 1) \ {(1−
√
5)/2},

b) holds at λ = ±1 and

c) holds at λ = (1−
√
5)/2.

Even in situations where the Galerkin method converges to gap eigen-
values and there is no spectral pollution, there is no guarantee of a mono-
tone convergence in general. Recall the question a) in §2.2. We now turn
to examine two Galerkin-type approaches for computation of guaranteed
bounds for eigenvalues which work in any part of the spectrum.

5 Local bounds for eigenvalues

A family of computational methods which prevent spectral pollution is
closely linked with generalisations [47, Chapter 4] of the classical Temple-
Lehmann bound [18, p.93] for eigenvalues of semi-definite self-adjoint op-
erators. These methods have a local character. They only determine
information about the spectrum in the vicinity of a given point t ∈ R
which is set beforehand.

The choice of t is normally a delicate issue. It might require some
analytical information about the rough position of the spectrum to start
with. Homotopy methods [34, 35] are among the best approaches to ad-
dress this issue. When applicable, these local methods tend to be more
accurate than a “global” counterpart examined in the next section.

5.1 Approximated spectral distances

For z ∈ C, let

Fn(z) = min
0̸=u∈Ln

∥(A− z)u∥
∥u∥ .

By virtue of Lemma 2,

(17) Fn(z) ≥ dist(z, specA) .

Hence

(18) [t− Fn(t), t+ Fn(t)] ∩ specA ̸= ∅ ∀t ∈ R .

Moreover, if L = {Ln}n∈N is a regular family, then

lim
n→∞

Fn(t) = dist(t, specA) .

Therefore Fn(t) is an upper approximation of the distance to the spec-
trum, under natural conditions of convergence. Here and everywhere be-
low we will regard the parameter t as real and the parameter z as com-
plex9.

9This distinction will be needed in §6.
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Figure 4. Fn(t) for n ∈ {6, 12, 48}. The operator and regular family are
those from Example 3. The picture suggest a better way of getting enclosures
for the eigenvalues than finding the local minima of Fn(t). See Proposition 8.

Let

(19) Kn = [⟨Abj , Abk⟩]njk=1.

Let

(20) Qn(z) = Kn − 2zLn + z2Mn & Q̃n(z) = M−1/2
n Qn(z)M

−1/2
n ,

where Ln and Mn are as in (3). The computation of Fn(t) can be per-
formed via the following characterisation.

Lemma 7. For t ∈ R,

Fn(t)
2 = min spec Q̃n(t) .

Proof. Observe that

Fn(t)
2 = min

0̸=u∈Ln

⟨(A− t)u, (A− t)u⟩
⟨u, u⟩ .

According to the Rayleigh-Ritz Theorem, the right hand side is the small-
est eigenvalue γ ≥ 0 of the problem

Qn(t)u = γMnu .

This ensures the claimed statement.

We might expect that, in practice, we should find local minima of F (t)
to get good enclosures for point in the spectrum. In fact, there is a better
way [20, 19]. By virtue of the triangle inequality,

Fn(t) ≤ Fn(s) + |s− t| ∀s ∈ R .
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Hence

(21) |Fn(t)− Fn(s)| ≤ |s− t| ∀t, s ∈ R .

That is, Fn(t) is a Lipschitz continuous function with modulus of uniform
continuity less than or equal to one. Let

n−(t) = sup {specA ∩ (−∞, t]} & n+(t) = inf {specA ∩ [t,+∞)} .

These are the points from specA which are nearest to t, so that

dist(t, specA) = min{t− n−(t), n+(t)− t} .

The next crucial observation suggests an optimal setting for extracting
information about specA from the profile of Fn(t). See Figure 4.

Proposition 8. Let t− < t < t+. Then

(22)
Fn(t

−) ≤ t− t− ⇒ t− − Fn(t
−) ≤ n−(t)

Fn(t
+) ≤ t+ − t ⇒ t+ + Fn(t

+) ≥ n+(t)
.

Moreover, let t−1 < t−2 < t < t+2 < t+1 . Then

Fn(t
−
j ) ≤ t− t−j for j = 1, 2 ⇒ t−1 − Fn(t

−
1 ) ≤ t−2 − Fn(t

−
2 ) ≤ n−(t)

Fn(t
+
j ) ≤ t+j − t for j = 1, 2 ⇒ t+1 + Fn(t

+
1 ) ≥ t+2 + Fn(t

+
2 ) ≥ n+(t)

.

Proof. If t ≥ Fn(t
−) + t−, then

[t− − Fn(t
−), t] ∩ specA ̸= ∅

and so n−(t) ∈ [t− −Fn(t
−), t]. The other statement in (22) is shown in a

similar fashion.
By virtue of (21), the maps t 7→ t±Fn(t) are monotonically increasing.

This ensures the second assertion.

This proposition leads to a remarkable conclusions, examined at length
in [19] and [20].

a) If t−∞ < t is such that

t−∞ + Fn(t
−
∞) = t ,

then t−∞−Fn(t
−
∞) is a certain lower bound of n−(t) and it is optimal in

the sense that any other s < t−∞ would give s−Fn(s) ≤ t−∞−Fn(t
−
∞).

b) If t+∞ > t is such that

t+∞ − Fn(t
+
∞) = t ,

then t+∞+Fn(t
+
∞) is a certain upper bound of n+(t) an it is optimal in

the sense that any other s > t+∞ would give t+∞+Fn(t
+
∞) ≤ s+Fn(s).

The optimal t±∞ are near the local maxima of Fn(t). A hierarchical strat-
egy for finding bounds for eigenvalues based on this simple observation
was first described in [19] and then refined in [20, 21]. This strategy
is equivalent to a generalisation [48] of the classical Temple-Lehmann-
Goerisch method, which we describe next and which seems better suited
for concrete implementations.
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5.2 A realisation of the method

Fix t ∈ R. The optimal parameters t±∞ from a)-b) above can be found as
follows. Let

Rn(t) = Ln − tMn

and consider the t-dependent matrix eigenvalue problem

(23) Rn(t)u = τQn(t)u .

Both the eigenvalues τ ≡ τ(t) and eigenvectors u ≡ u(t) here depend on
t. As this is always clear from the context below, we do not highlight this
dependence explicitly.

Proposition 9. If τ ̸= 0 is an eigenvalue of (23), then Fn

(
t+ 1

2τ

)
≤

1
2|τ | . Moreover, if the identity

Fn (t+ s) = |s|

is satisfied for some s ̸= 0, then τ = 1
2s

is an eigenvalue of (23).

Proof. Recall Lemma 7 and note that

Qn (t+ s)u = s2Mnu

can be rewritten as (23) with the substitution s = 1
2τ

.

We denote the smallest and the largest eigenvalue of (23) by τ− and
τ+, respectively. That is

τ− = min{τ ∈ R : det[Rn(t)− τQn(t)] = 0}
τ+ = max{τ ∈ R : det[Rn(t)− τQn(t)] = 0} .

Theorem 10 (Local bounds for eigenvalues). Let t ∈ R.

a) If τ− < 0, then t+ 1
τ−

≤ n−(t).

b) If τ+ > 0, then t+ 1
τ+

≥ n+(t).

Proof. The proof of both statements is similar. Consider that of a). Let
t− = t + 1

2τ−
. By Proposition 9, Fn(t

−) ≤ t − t−. Therefore the top of

(22) yields the claimed conclusion.

For any given t ∈ R we can then find guaranteed bounds for the eigen-
values adjacent to t by solving (23), independently of whether t is in a gap
of the essential spectrum or not. This approach has a long history and
many other interesting developments are possible, see for example [48],
[47, Chapter 4] and the references therein.

If the hypotheses of a) and b) in Theorem 10 are satisfied, then we
know that in fact Fn

(
t+ 1

2τ±

)
= ± 1

2τ± and so t±∞ = t + 1
2τ± . Therefore

(23) gives the optimal parameters in the context of Proposition 8. See
[21, Theorem 11].
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n λup
low

8 −0.6179756547560258037239681489

10 −0.6180318589472024107439849

12 −0.61803391390480092920872

14 −0.6180339861889168892611

16 −0.618033988663973754684

18 −0.61803398874705550049

20 −0.61803398874980299

λ =
1−

√
5

2
≈ −0.618033988749895

Figure 5. See Example 5. Upper and lower bounds for the eigenvalue λ
which is inside the gap of the essential spectrum of the operator B from
Example 3. Here the trial spaces Ln are also as in Example 3.

Remark 4. The conclusions in a) and b) of Theorem 10 are optimal,
only when t ̸∈ specA. If t is an isolated eigenvalue10, for example, it is
possible to replace these bounds by

a) t+ 1
τ−

≤ sup {specA ∩ (−∞, t)}

b) t+ 1
τ+

≥ inf {specA ∩ (t,∞)}.

That is, detection of the other points in the spectrum of A which are
adjacent to t is always possible. The proof of this assertion can be found
in [48]. This observation will have an important consequence when we
consider A = M in §5.4.
Example 5. Let L and B be as in Example 3. We constructed the table
in Figure 5 by finding the largest eigenvalue τup = τ+ > 0 of (23) with
t = −1 and the smallest eigenvalue τlow = τ− < 0 of (23) with t = 1, then
setting

λlow = 1 +
1

τlow
& λup = −1 +

1

τup
.

By Remark 4, we know that λlow < λ < λup where λ = 1−
√

5
2

is the
eigenvalue of B which is inside the gap of the essential spectrum.

A good choice of t is essential in order to ensure the quality of the
complementary bound for eigenvalues in the present setting. See [12] for
a recent analysis in this direction.

5.3 Poincaré-Friedrichs constants for the gradi-
ent

Let Ω ⊂ R2 be an open bounded set. The homogeneous Poincaré-Friedrichs
constant for the gradient is the smallest kg ≡ kg(Ω) > 0 such that∫

Ω

|u|2 ≤ kg

∫
Ω

| gradu|2 ∀u ∈ H1
0 (Ω).

This inequality is still valid, if we replace kg by any other upper bound
k̃g ≥ kg. This is an obvious but important observation, as explicit expres-
sions for kg are only known for very few regions Ω.

10In this case n±(t) = t.
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Note that kg = 1
cg
, where cg is the smallest eigenvalue of the Dirichlet

Laplacian in Ω. Recall (5). The Galerkin method does not provide lower
bounds for cg directly, but the technique described in §5.2 can be used for
that purpose as we describe next.

The self-adjoint operator

(24)

 0 i div

i grad 0


︸ ︷︷ ︸

G

:
H1

0 (Ω)
×

H(div,Ω)2︸ ︷︷ ︸
domG

−→
L2(Ω)
×

L2(Ω)2︸ ︷︷ ︸
H

is strongly indefinite. Moreover,

G
[
u
σ

]
= ω

[
u
σ

]
if and only if ω2u = − div gradu = −∆u. By construction, u always
satisfies Dirichlet boundary conditions. Then the spectrum of G taken to
the square power, exactly matches the spectrum of the Dirichlet Laplacian
on Ω, except11 for the extra eigenvalue 0. We are therefore interested in
the smallest ω2 > 0.

In order to find bounds on the minimal ω > 0 for polygons, we can
pick Lh ⊂ domG made of Lagrange elements of order 1 on a mesh Th,

(25) Lh =

{[
u
σ

]
∈ [C0(Ω)]3 :

[
u↾K
σ ↾K

]
∈ [P1(K)]3 ∀K ∈ Th, u↾∂Ω= 0

}
.

The parameter t required in Theorem 10 can be found by domain mono-
tonicity, or by more sophisticated means, such as the numerical homotopy
method [34, 35]. Let us consider a concrete case of recent interest.

Let π
6
≤ ϕ ≤ π

2
and

l(ϕ) =
√

(1− cosϕ)2 + (sinϕ)2 .

The inner diameter of the isosceles triangle Tϕ with vertices at the points

(0, 0) (1, 0) (cosϕ, sinϕ)

is
d(ϕ) = max{|z1 − z2| : zj ∈ Tϕ} = max{1, l(ϕ)} .

Let Ωϕ be the triangle with vertices at the points

(0, 0)

(
1

d(ϕ)
, 0

) (
cosϕ

d(ϕ)
,
sinϕ

d(ϕ)

)
which has inner diameter equal to 1. Explicit formuli for the Poincaré-
Friedrichs constant are known for the particular cases ϕ = π

3
and ϕ = π

2
,

and a few conjectures [29] exist when ϕ = π
k
for k an integer other than

2 or 3. Therefore this is a natural model to examine numerically. Let us
discuss it in some detail.

11Note that u = 0 and σ ̸= 0 is not ruled out for the eigenvalue problem associated to G.
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k c̃g k c̃g k c̃g
4 104.8235 7 57.8182 10 71.4391
5 80.2329 8 52.6330 11 83.6817
6 66.2661 9 61.2454 12 98.6122

ϕ =
kπ

24

Figure 6. See Example 6. Lower bounds for cg(Ωϕ). The numerical values
are found by solving the problem (23) and applying Theorem 10. Here we
have fixed t = 11 and chosen the trial spaces as in (25) for h = 0.003.

The eigenvalues of the Dirichlet Laplacian on Ωπ
2

can be found by
symmetry from those of the square, giving

cg(Ωπ
2
) = 5π2d

(π
2

)2

= 10π2 ≈ 98.6960 .

The eigenvalues of the Dirichlet Laplacian on the equilateral triangle were
computed in the 19th Century, [28, §57]. The smallest eigenvalue for the

sides equal to 1 is 16π2

3
, so

cg(Ωπ
3
) =

16π2d(π
3
)2

3
=

16π2

3
≈ 52.6379 .

It has been recently shown [29] that Ωπ
3

minimises cg among all other
triangles of inner diameter 1. In fact it also minimises the second and
third eigenvalue (counting multiplicity), [29, Theorem 1.2].

Example 6. Set

t <
4π

√
7

3
.

The right hand side is the square root of the second (and third) eigen-
value on Ωπ

3
, and it is therefore below all other second eigenvalues of the

regions Ωϕ. By applying Theorem 10-a) for that fixed parameter t, we
find guaranteed numerical lower bounds for cg(Ωϕ) as illustrated by the
table in Figure 6.

5.4 Eigenfrequencies of the resonant cavity

In the Example 2 and the Figure 2, we saw that the Galerkin method is
not applicable directly to the operator M, when the trial subspaces were
made of standard finite elements. We now show that, by stark contrast,
the method describe in §5.2 provides a reliable mean to computing one-
side bounds for the non-zero eigenvalues of this operator on these same
trial subspaces.

Set Lh as in (12) and fix t = 0. Compute τ+ > 0 from the reduced
eigenvalue problem (23). By virtue of Remark 4-b),

1

τ+
≥ ω1,

the smallest positive eigenvalue of M. Let us consider experiments with
a few concrete regions Ω.
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Ωc Ωs Ωn ΩF

ω1 ≤ 1.414214 ω1 ≤ 1.412218 ω1 ≤ 1.329259 ω1 ≤ 1.142621

dimL0.5 ≈ 118K dimL0.5 ≈ 117K dimL0.5 ≈ 111K dimL0.9 ≈ 251K

Figure 7. See §5.4 and Figure 11. A numerical approximation of guaranteed
upper bounds for the first positive eigenvalue of M on the region shown. The
trial spaces are made of Lagrange elements of order 3 on the corresponding
tetrahedral mesh. For the region ΩF we have chosen a fairly large maximal
h = 0.9, but we made the diameter of the elements substantially smaller
near the segments of non-convexity, hence the large dimension of the trial
space.

Figure 7 shows numerical approximations of upper bounds for ω1 on
(26)

Ωc = (0, π)3

Ωs = Ωc \ T[(0, 0, 0); (π/2, 0, 0); (0, π/2, 0); (0, 0, π/2)]

ΩF = Ωc \ [0, π/2]2

Ωn = ΩF ∪ T[(π/2, π/2, π/2); (π/2, π/2, 0); (0, π/2, π/2); (π/2, 0, π/2)]

where T[p1; p2; p4; p4] is the tetrahedron with vertices pj . The region ΩF

is often called the “Fichera” domain. The trial spaces were constructed
on the mesh depicted in each case.

Remark 5. This approach can also be employed for computing upper
bounds of any other positive eigenvalue of M. These upper bounds can be
obtained from the subsequent largest positive eigenvalues of (23). Many
more results in this respect can be found in [2]. Specifically it has been
established in [2] that 1

τ+
↓ ω1 in the regime h → 0. Moreover, whenever

Ω is convex, the convergence rate is optimal in a suitable setting.

6 Global bounds for eigenvalues

The following mechanism for computing eigenvalue bounds does not re-
quire an input parameter t. We pick an arbitrary trial subspace of the
domain and without any further information, other than the action of A
on this trial subspace, it renders rigourous spectral bounds for A. In this
respect the technique will be global in nature12. Recall the question a)
posed at the beginning of §2.2. The trade-off here is that the generated
spectral bounds might not be optimal. Recall the question b).

12The Galerkin method is also a global method in this sense.
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6.1 The second order spectrum

The remarkable quadratic method is known to avoid spectral pollution
completely [19, 40, 30] and is convergent [7, 8, 14] to points in the discrete
spectrum for any regular family of subspaces.

Fix Ln ⊂ domA. Let Qn(z) and Q̃n(z) be as in (20). Define

Gn(z) = min
0̸=u∈Ln

∥Q̃n(z)u∥
∥u∥ ∀z ∈ C .

According to Lemma 7, Fn(t)
2 = Gn(t) for all t ∈ R. However, Fn(z)

2

and Gn(z) generally differ outside the real axis due to (17). Indeed, note
that Gn(z) should always vanish at the zeros of the scalar polynomial
detQn(z), but this cannot generally be the case for Fn(z). Nonetheless,
due to the local regularity of both maps, if Gn(z) is small for z near R,
then Fn(t) should also be small for t in a vicinity of re(z). As we shall see
next, spectral enclosures for A can be determined from the zeros of Gn(z)
which are close to R. See the figures 4 and 8.

The second order spectrum of A relative to a trial subspace Ln is de-
fined as

spec2(A,Ln) = {ζ ∈ C : detQn(ζ) = 0} .

Since Qn(z)
∗ = Qn(z), then

spec2(A,Ln) = spec2(A,Ln) .

That is, the points in the second order spectrum form conjugate pairs.

Lemma 11. If ζ ∈ spec2(A,Ln), then Fn(re ζ) ≤ | im ζ|.

Proof. Firstly observe that

detQn(ζ) = 0 ⇐⇒ ∃0 ̸= u ∈ Ln, ⟨Q(ζ)u, v⟩ = 0 ∀v ∈ Ln .

Let ζ = α+ iβ for α, β ∈ R. Then

⟨Q(ζ)u, v⟩ = ⟨(A− ζ)u, (A− ζ)v⟩

= ⟨(A− α)u, (A− α)v⟩ − 2iβ⟨(A− α)u, v⟩ − β2⟨u, v⟩ .

For v = u, it follows from the hypothesis that

∥(A− α)u∥2 − β2∥u∥2 − 2iβ⟨(A− α)u, u⟩ = 0 .

As the real part of this expression should vanish, then Fn(α) ≤ |β|.

A remarkable universal connection between the second order spectra
and the spectrum of any given self-adjoint operator becomes apparent by
combining this lemma with (18).

Theorem 12 (Global spectral inclusions). The following holds true for
any self-adjoint operator A and any trial subspace Ln ⊂ domA.

(27) ζ ∈ spec2(A,Ln) ⇒ [re ζ−| im ζ|, re ζ+ | im ζ|]∩ specA ̸= ∅ .

This statement was first formulated in [40] and its concrete potential
for eigenvalue calculation was first highlighted in [30]. Its origins can be
traced back to [27].

24



Figure 8. The operator and trial subspace here are as in examples 3, 5
and 7. The contour lines are level sets of G12(z) for (re z, im z) ∈ [−2, 2.5]×
[−1.5, 1.5]. The red crosses are spec2(B,L12). Compare with Figure 4.

Remark 6. The original proof of (27) given in [40, Lemma 4.1] and
[30, Lemma 5.2], involved the following refined version. See also [14,
Lemma 2.3]. For a < b denote the open disk with diameter the segment
(a, b) by

D(a, b) =

{
z ∈ C :

∣∣∣∣z − a+ b

2

∣∣∣∣ < b− a

2

}
.

Then,

(28) (a, b) ∩ specA = ∅ ⇒ D(a, b) ∩ spec2(A,Ln) = ∅ .

The refined implication (28) yields the following local criterion.

(29)

(a, b) ∩ specA = {λ}
z ∈ D(a, b) ∩ spec2(A,Ln)

}
⇒

re(z)− | im(z)|2

b− re(z)
<λ<re(z) +

| im(z)|2

re(z)− a
.

See [13] and [43]. When the left hand side of (29) is verifiable by analytic
means, this gives rise to sharper local eigenvalue bounds, which are some
times comparable with those from §5. See [15] and [43].

The segment in (29) will have a smaller length than that in (27), only
when suitable z ∈ spec2(A,Ln) is fairly close to the real line. For regular
families of trial subspaces, this is ensured under certain conditions.

Theorem 13 (Exactness of the quadratic method). Let {Ln}n∈N be a
regular family of trial subspaces Ln ⊂ domA. For any isolated eigenvalue
λ ∈ specA, there exists ζn ∈ spec2(A,Ln) such that |ζn − λ| → 0.

For proofs of this statement and further convergence properties of
second order spectra see [7, 8, 14, 44, 11].
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λ =
1−

√
5

2
≈ −0.618

n (27) (29)
8 −0.501822 −0.586678

10 −0.507845 −0.587693

12 −0.509786 −0.593660

14 −0.517797 −0.599669

16 −0.518764 −0.598651

18 −0.525769 −0.60556
20 −0.525749 −0.60245

(a) Upper and lower bounds for the
eigenvalue λ which is inside the gap
of the essential spectrum of B as n
increases (b) spec2(B,Ln) for n ∈ {6, 12, 48}

Figure 9. See Example 7. As n increases there are conjugate pairs in
spec(B,Ln) approaching specA. See Theorem 13. Compare the table in (a)
with that in Figure 5.

Example 7. Let S be the operator (6) and L be the regular family (8).
Let K : L2(−π, π) −→ L2(−π, π) be any other compact operator. Then

liminf
n→∞

spec2(A+K,Ln) = {ζ ∈ C : ∃ζn ∈ spec2(A+K,Ln), ζn → ζ}

= {|z| = 1} ∪ specdsc(S +K) .

See [7, Proposition 3 and Lemma 4]. Let L and B be the same as in exam-
ples 3 and 5. In Figure 8 we depict spec2(B,L12) alongside with contour
lines of G12(z). On the right side of Figure 9 we depict spec2(B,Ln) for
n ∈ {6, 12, 48}.
Remark 7. Convergence of points in the second order spectrum to isolated
eigenvalues, only require the angle between ker(A− λ) and Ln to be small
in the regime n → ∞. The rate of convergence ζn → λ can be found
explicitly in terms of this angle. See [8, 14].

Let L and B be the same as in examples 3 and 5. The table in Figure 9-
(a) shows enclosures for λ ≈ −0.618. This experiment is similar to that
performed in Example 5. Observe that, for the same trial subspaces, the
intervals corresponding to (27) are clearly several orders of magnitude
larger than those from the table in Figure 5. However, the remarkable
fact to be highlighted here is that the former were found without any
preliminary knowledge about specA.

By virtue of (29), if ζ ∈ spec2(B,Ln) ∩ D(−1, 1), then

re(ζ)− | im(ζ)|2

1− re(ζ)
< λ < re(ζ) +

| im(ζ)|2

re(ζ) + 1
.

The third column of the table in Figure 9-(a) was found by appealing to
this observation. The enclosures in the table from Figure 5 are also far
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(a) Constant inner diameter (b) Constant area

Figure 10. Upper (dashed line) and lower (filled line) bounds for the
first three eigenvalues µk(Ωϕ) and µk(Θϕ), showing singularities at ϕ = π

3

as appropriate. The numerical values of these bounds were found on 100
uniformly distributed ϕ ∈ [π

6
, π
2
], by computing the three conjugate pairs

in spec2(G,L0.002) which have minimal positive real part. The red dots
show the lower bounds for cg(Ωϕ) from Figure 6 which were calculated by a
different method.

smaller than those in this column. As it turns, the local method described
in §5.2 beats in this case by several orders of magnitude this other version
of a local method.

6.2 The eigenvalues of the Laplacian on triangles

Upper and lower bounds for the eigenvalues of the Laplacian subject to
Dirichlet boundary conditions on two-dimensional regions can be found
by computing a few points in spec2(G,Lh), where G is the operator in (24)
and Lh is a trial subspace as in (25).

As mentioned in Example 6, the equilateral triangle minimises the
first three eigenvalues µ1(Ω) < µ2(Ω) ≤ µ3(Ω) among any other triangle
Ω ⊂ R2 of the same inner diameter. Let us now examine this observation
by means of a numerical test.

For π
6
≤ ϕ ≤ π

2
, let Θϕ ⊂ R2 be the triangle with vertices at the points

(0, 0) (2 cscϕ, 0) (2 cotϕ, 2)

which has area equal to 1. It is currently known that µ1(Θπ
3
) is minimal,

but not so µk(Θπ
3
) for k = 2, 3. See [41, Theorem 1.3].

Example 8. In Figure 10-(a) we show upper and lower bounds for µk(Ωϕ)
for 100 uniformly distributed ϕ ∈ [π

6
, π
2
]. These bounds, consequence of

(27), were found by computing the conjugate pairs of the second order
spectra which have smaller positive real part. Similarly Figure 10-(b)
shows upper and lower bounds for µk(Θϕ) for the same range of ϕ. These
graphs can be compared with those from [29, Figures 5 and 6] where only
upper bounds for the eigenvalues were displayed.
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The Galerkin method can be used for computing upper bounds for µk.
These upper bounds are far more accurate than the ones determined by
the quadratic method in this example. Therefore, when applicable, the
Galerkin method is certainly preferable.

The local methods from §5.2 can also be employed for computing com-
plementary bounds for the eigenvalues of L. This is achieved by picking
µk < t < µk+1, for example, then determining a lower bounds for µk from
Theorem 10-a). Although this is true, and the local bounds turn out to
be more accurate, the problem here is how to make sure that t < µk+1

without knowing the exact value of µk+1. In some, but not all cases, it
is possible to pursue this direction by either appealing to domain mono-
tonicity or by means of numerical homotopy methods [34, 35].

A basic computer code for finding upper and lower bounds for the
eigenvalue of the Laplacian by means of the second order spectrum on
triangles can be found in §A.

6.3 Eigenfrequencies of the resonant cavity

Let us now revisit the resonant cavity problem (9). Recall Example 2, Fig-
ure 2 and §5.4. Set Lh as in (12). Remarkably, sharp certified information
about specM can be extracted from spec2(M,Lh).

The table in Figure 11 shows computation of spectral enclosures for
the regions (26) where the meshes are exactly the same as in Figure 7.
These enclosures are consequence of (27). They correspond to the first
five conjugate pairs in the second order spectrum, which are closer to
the origin and which lie in D(0, b). Here the parameter b is as given
in the table. These are eigenvalue enclosures presumably for ωm where
m ∈ {1, . . . , 5}, but this cannot be guaranteed rigourously at present.

Remark 8. It is important to realise that here it can not be claimed
immediately that there is a single eigenvalue in each segment given in
the table in Figure 11. For example note the cluster for m ∈ {2, 3} and
m ∈ {4, 5} in the case of ΩF. What is certain, nonetheless, is that each
one of these segments intersects specM. This is already a remarkable
fact. Analogously, it cannot be derived from the table in Figure 7 that
ωm for m > 1 is above the bound shown in that table. However, it is
certain that ω1 is below that bound. This issue is also present in standard
implementations of the Galerkin method.

7 Further reading

Canonical references on eigenvalue computation for self-adjoint operators
include [5], [17, p.283-286], [47], [42, Chapter 6], and the extensive lists of
references therein.

Rigourous studies of the phenomenon of spectral pollution along the
lines of the discussion presented in §4 can be found in [45], [10], [31], [1]
and [37]. A recent survey in the context of Mathematical Physics and
Chemistry with a complete bibliography, can be found in [32].

It is quite difficult to trace back the origins of the local method dis-
cussed in §5.2, but [47, Chapter 4] has some information on that. In

28



Ωc Ωs Ωn ΩF

m b = 1.8 b = 1.8 b = 2.1 b = 2.2
1 1.414737 1.4183061 1.44022021 1.25540100

2 1.414737 1.4347266 1.56784967 1.5845015

3 1.414737 1.4344269 1.56644982 1.5830032

4 1.733011 1.7617486
2.0329
1.8534

2.1722
1.9863

5 1.733110 1.7612491
2.0363
1.8506

2.1232
2.0394

Figure 11. See §6.3. A numerical approximation of guaranteed intervals
of enclosure for the positive spectrum near the origin of M on the regions
considered in §5.4. The trial spaces are made of Lagrange elements of order
3 on the same tetrahedral mesh as shown in Figure 7.

the literature, this approach is often referred-to as the Temple-Lehman-
Goerisch method. Generalisation are due to Maelly [23], and Zimmermann
and Mertins [48]. These generalisations are often difficult to implement
on practical settings. Some times the remarkable homotopy method, [35]
and [34], can be used for that purpose. The topic of optimality of this
local method is examined in [12], [21], [20] and [19]. Concrete implemen-
tations include computations of bounds for sloshing frequencies [3], the
magnetohydrodynamics operator [14] and the Maxwell operator [2].

An increasingly systematic study of concrete implementations of the
global method discussed in §6 have been carried out during the last 10
years. These include the one-dimensional elasticity operator [30], per-
turbed periodic Schrödinger operators [13], the Dirac operator [9], the
magnetohydrodynamics operator [43] and complementary bounds for eigen-
values of semi-definite operators [14].

Aside from [26], no systematic comparison of the methods described
in §5.2 and §6 has been conducted.

In [45], [46] and [25] a new general method for eigenvalue computation
of self-adjoint operators in gaps of the essential spectrum has been pro-
posed. This method uses non-self-adjoint perturbations of the self-adjoint
operator in question to “lift” the eigenvalues from the gap of the essential
spectrum to the complex plane where spectral pollution does not occur.
This method can be traced back to [33] in the case of particular differen-
tial operators. It is not impossible that this technique can outperform the
two methods described in §5 and §6 in terms of convergence rates. The
question is certainly worth exploring in further details.

A Computer codes

Below are two computer codes written in open source software, which
combined allow numerical estimation of eigenvalue inclusions for the op-
erator L by means of the second order spectrum. The region Ω is a triangle
with vertices (0, 0), (π, 0) and (0, π), but it can easily be changed to other
polygons.

The reduced matrices are generated in FreeFem++ [24] and saved in
appropriate files.
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// LapDBCSecOrd.edp

// FreeFem++ code for assembling the matrices K, L and M

// for the Dirichlet Laplacian

// on \Omega = triangle with vertices (0,0), (pi,0), (0,pi)

// The files are stored as spec2_Lap_*.dat

border C01(t=0,1){x=t*pi;y=0;label=1;}

border C02(t=0,1){x=(1-t)*pi;y=(t-1)*pi+pi;label=1;}

border C03(t=0,1){x=0;y=(1-t)*pi;label=1;}

int n=30;

mesh Th=buildmesh(C01(n)+C02(n)+C03(n));

plot(Th, wait=false);

fespace Vh(Th,[P1,P1,P1]);

Vh [u,s1,s2],[v,r1,r2];

varf k([u,s1,s2],[v,r1,r2])=

int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v)+(dx(s1)+dy(s2))*

(dx(r1)+dy(r2)))+on(1,u=0);

varf l1([u,s1,s2],[v,r1,r2])=

int2d(Th)(dx(u)*r1+dy(u)*r2+(dx(s1)+dy(s2))*v) ;

varf m([u,s1,s2],[v,r1,r2])=

int2d(Th)(u*v+s1*r1+s2*r2);

matrix K= k(Vh,Vh,eps=1e-20);

matrix L1= l1(Vh,Vh,eps=1e-20);

matrix M= m(Vh,Vh,eps=1e-20);

{ofstream file("spec2_Lap_K.dat"); file << K << endl;}

{ofstream file("spec2_Lap_L1.dat"); file << L1 << endl;}

{ofstream file("spec2_Lap_M.dat"); file << M << endl;}

The files containing the matrix entries are then read by a script in
Octave [22]. Points in the second order spectrum can be computed by
means of the following code.

# -- Function File: [K,L,M]=LapSpec2(filename1,filename2,filename3)

# [K,L,M] are the matrices extracted from the files filename*

#

# Example:

# >> [K,L,M]=LapSpec2("spec2_Lap_K.dat","spec2_Lap_L1.dat",

# >> ... "spec2_Lap_M.dat")

# >> S=[eye(size(K)),zeros(size(K));zeros(size(K)),M];

# >> T=[zeros(size(K)),eye(size(K));-K,2*L];

# >> ev=eigs(T,S,6,3);

function [K,L,M]=LapSpec2(filename1,filename2,filename3)

K=getfmat(filename1);

L1=getfmat(filename2);

M=getfmat(filename3);

L=I*triu(L1,1)-I*triu(L1,1)’;
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end

# Functions needed to read the files

function A=getfmat(filename)

fid=fopen(filename);

[nn,ix1,ix2,l]=rsm(fid);

fclose(fid);

A=crs(ix1,ix2,l,nn(1));

end

function s=crs(ix1,ix2,a,n1)

s=sparse(ix1,ix2,a,n1,n1);

end

function [nn,ix1,ix2,a]=rsm(fid)

fgetl(fid);

fgetl(fid);

fgetl(fid);

[n1,n2,n3,n4]=fscanf(fid,"%d %d %d %d","C");

nn=[n1,n2];

ix1=zeros(n4,1);

ix2=zeros(n4,1);

a=zeros(n4,1);

for i=1:n4

[ix1(i,1),ix2(i,1),a(i,1)]=fscanf(fid,"%d %d %lf","C");

endfor

end
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