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1 Introduction

Pearson’s chi-square statistic (Pearson 1900) measures an overall discrepancy
between a set of observed frequencies and expected frequencies. Specifically, it
is defined as

CS =

A
∑

a=1

(fa − E(fa))
2

E(fa)
, (1)

where fa indicates the observed frequency of event (cell) a (a = 1, · · · , A),
and E(fa) is the expected frequency of the corresponding event (cell) under
some hypothesis. This statistic thus depends on the hypothesis from which
the expected frequencies are derived. Lancaster (1951) proposed ANOVA-like
partitions of Pearson’s statistic under several representative hypotheses about
the expected frequencies. When the CS above indicates a significant departure
of observed data from the hypotheses, these partitions are useful in identify-
ing what aspects are responsible for the departure. This is similar to multiple
comparisons in ANOVA. Lancaster’s (1951) expositions were, however, not
entirely transparent. In this paper, we clarify his expositions, and extend his
derivations to more general situations. We also compare the proposed parti-
tions with those of the likelihood ratio (LR) statistic in analogous situations.

We first deal with one-way tables, through which we lay out the basic
methodological tools for partitioning Pearson’s chi-square statistic. Specifi-
cally, we introduce transformations of the constituent terms in the definition
of the statistic. The transformations also serve as a basis for partitioning the
statistic. We first discuss general properties of the transformations (Section
2.1), and then give special cases in which partitions are empirically better
motivated (Section 2.2). In Section 3, we apply the same strategy to two-way
tables. This amounts to reducing two-way tables to one by vectorising the
original tables using vec operations and Kronecker products. In Section 4, we
further extend the methodology to three-way and higher order designs. A va-
riety of hypotheses are possible about the expected frequencies in higher order
tables, which affect the partitioning of Pearson’s statistic. We discuss two of
the most commonly tested hypotheses in three-way contingency tables. One
is complete independence in which all three factors are independent (Section
4.1), and the other is partial independence in which some but not all factors
are independent, e.g., one factor is independent from the other two (Section
4.2). We then give a numerical example to demonstrate the partitions derived
under these hypotheses (Section 4.3). In Section 5, we compare the proposed
partitions with those of the likelihood ratio (LR) statistic in analogous situa-
tions.

2 One-way tables

In this section, we present a basic strategy for partitioning Pearson’s chi-
square statistic for one-way tables, which will be used as a building block for
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higher order tables. This strategy involves transformations of the terms in the
definition of Pearson’s statistic. We first discuss general properties of the trans-
formations, and then their special cases, such as Irwin’s (1949) construction
of Helmert-type contrasts, for more empirically motivated partitions.

2.1 A general strategy for partitioning

Suppose there are A mutually exclusive events. Let pa denote the probability
of event a (a = 1, · · · , A) in each trial. Suppose further that N such trials
are independently replicated, where N is fixed. Let fa denote the observed
frequency of event a. A collection of fa’s (a = 1, · · · , A) constitute a one-way
frequency table. The generic form of Pearson’s chi-square statistic given in (1)
can be rewritten as

CS =

A
∑

a=1

(fa −Npa)
2

Npa
= N

A
∑

a=1

(p̂a − pa)
2

pa
, (2)

where p̂a = fa/N . This statistic asymptotically follows the chi-square distri-
bution with A− 1 degrees of freedom (df) under the hypothesis that the pa’s
are known completely. This is written as CS ❀ χ2

A−1, where “❀” denotes
“asymptotically follows.” The df are A − 1 because N is fixed, so once A− 1
frequencies are observed, the remaining one is known. The most commonly
used hypothesis about the pa’s is that they are homogenous across all cells,
that is, pa = 1/A for a = 1, · · · , A, although other prescribed values are also
permissible.

Let x represent the vector whose a-th element is given by

xa =
√
N

(p̂a − pa)√
pa

. (3)

Then,

x =
√
NP

−1/2
A (p̂−PA1A), (4)

where p̂ is the vector of p̂a’s, PA is the diagonal matrix with pa as the a-th
diagonal element, and 1A is the A-element vector of ones. We may rewrite (2)
as

CS = x′x = N(p̂′P−1
A p̂− 1). (5)

We show that CS ❀ χ2
A−1. Note first that

p̂ ❀ N (PA1A, (PA −PA1A1
′
APA)/N), (6)

where N (µ,Σ) denotes the multivariate normal distribution with the mean
vector µ and the covariance matrix Σ. Since NP−1

A is a g-inverse of (PA −
PA1A1

′
APA)/N , it follows that

x ❀ N (0,Q
P

1/2
A 1A

), (7)
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where
Q

P
1/2
A 1A

= IA −P
1/2
A 1A1

′
AP

1/2
A (8)

is the orthogonal projector onto the space orthogonal to Sp(P
1/2
A 1A) (where

Sp(Z) indicates the space spanned by the column vectors of Z). We further
transform x into a vector whose elements are asymptotically independent stan-
dard normal variables. Let TA denote an A by A− 1 semi-orthogonal matrix,
i.e.,

T′
ATA = IA−1, (9)

and such that it is also orthogonal to P
1/2
A 1A, i.e.,

T′
AP

1/2
A 1A = 0A−1. (10)

Then,

y =







y1
...

yA−1






≡ T′

Ax ❀ N (0, IA−1), (11)

so that for a = 1, · · · , A− 1,

y2a = (x′ta)
2
❀ χ2

1 (12)

independently from other a’s, where ta is the a-th column of TA, and

CS = y′y =

A−1
∑

a=1

y2a = x′TAT
′
Ax ❀ χ2

A−1. (13)

Let
T̃A = [P

1/2
A 1A,TA] = [t0,TA]. (14)

This matrix is fully orthogonal (that is, T̃′
AT̃A = T̃AT̃

′
A = IA). Since 1

′
AP

1/2
A x

= t′0x = 0 (which implies P
1/2
A 1A is orthogonal to x), we have T̃′

Ax =

(

0
y

)

≡
ỹ, so that

CS = y′y = ỹ′ỹ = x′T̃AT̃
′
Ax = x′x ❀ χ2

A−1, (15)

showing that x′x indeed asymptotically follows the chi-square distribution
with A−1 df. It should be observed that (12) and (13) also indicate a possible
partition of χ2

A−1.
Note that (5) indicates that CS is equal to the squared length of the

vector x (i.e, CS = x′x = ||x||2). The elements of x are, however, not asymp-
totically independent or standard normal. An orthogonal transformation T̃A

given in (14) transforms the elements of x into an identically zero variable

(this occurs because t0 = P
1/2
A 1A is orthogonal to x, the effect of t0 be-

ing a priori eliminated from x) plus A − 1 asymptotically standard normal
variables ya (a = 1, · · · , A − 1), while preserving the total length of x (i.e.,
CS = ||x||2 = ||ỹ||2. Since the squares of standard normal variables follows
the chi-square distribution with 1 df, and the sum of independent chi-square
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variables follows the chi-square distribution with df equal to the sum of df in
constituent chi-square variables, CS asymptotically follows the chi-square dis-
tribution with A− 1 df. Essentially the same strategy will be used repeatedly
for higher order tables.

The matrix TA above can be any A by A − 1 matrix satisfying (9) and
(10). Such a TA can be easily obtained by the singular value decomposition
(SVD) (or the eigen-decomposition) of Q

P
1/2
A 1A

, namely

Q
P

1/2
A 1A

= TAT
′
A. (16)

The matrix Q
P

1/2
A 1A

has A−1 unit singular values and one zero singular value,

and TA represents the matrix of singular vectors corresponding to the unit

singular values. For A > 2, this matrix is not unique. The vector P
1/2
A 1A,

on the other hand, is the singular vector corresponding to the unique zero
singular value. This vector appended to TA (i.e., T̃A) comprises a complete
set of orthogonal basis vectors spanning the Euclidean space of dimensionality
A.

Note that (12) and (13) also imply possible partitioning of CS, depending
on a choice of TA. As has been suggested above, there are infinitely many TA’s
that satisfy (9) and (10) for A > 2. If TA is derived by the procedure described
above, each element of y is not likely to be empirically meaningful. While
this may be satisfactory under some circumstances (e.g., if the sole purpose
of the transformation is to obtain any asymptotically independent standard
normal variables), more empirically meaningful components are desirable in
other situations (e.g., when we are interested in the empirical significance
of each component), particularly in one-way tables. (Unless the terms in the
partition are meaningful, there is no point in partitioning chi-square in one-way
tables.) The columns of TA may be chosen to reflect such empirical interests,
to which we now turn.

2.2 Helmert-like contrasts and other empirically motivated contrasts

We begin with Irwin’s construction of Helmert-like contrasts. (We call them
“Helmert-like” contrasts because they are Helmert contrasts orthogonal under
unequal cell sizes.) While they may not exactly represent the contrasts of
interest, they may provide many hints for constructing orthogonal contrasts
that better reflect one’ empirical interest. Each Helmert contrast has a specific
meaning and orthogonality among the contrasts is assured. They are given
explicitly in terms of hypothesized cell probabilities, so that they can be used
no matter what these probabilities are by just plugging in specific values of
cell probabilities. The matrices of Helmert contrasts depend on the number of
cells in the table. When we need to explicitly indicate the number of cells, we

put a parenthesized superscript on TA, as in T
(j)
A , where j (≥ 2) indicates the

number of cells. The subscript A on T, on the other hand, is used as a generic
name for a factor (to be explained) which could differ from the number of
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cells. In what follows, we give examples of matrices of Helmert-like contrasts
for the first few values of j.

When there are only two cells (j = 2) in the table, we have

T̃
(2)
A = [P

1/2
A 12,T

(2)
A ] =

[√
p1

√
p2√

p2 −√
p1

]

, (17)

where the pa’s (a = 1, 2) are the diagonal elements of PA. The second column

of T̃
(2)
A (or the 2 by 1 vector T

(2)
A ) takes the difference between the two cells

in the table. For j = 2, this matrix is unique up to reflections of its columns.
When there are three cells (j = 3) in the table, we define

T̃
(3)
A = [P

1/2
A 13,T

(3)
A ] =





√
p1

√

p2/u12

√

p1p3/u12√
p2 −

√

p1/u12

√

p2p3/u12√
p3 0 −√

u12



, (18)

where the pa’s (a = 1, 2, 3) are the diagonal elements of PA, and u12 = p1+p2.

The second column of T̃
(3)
A in (18) contrasts the first two cells of the table,

while the third column contrasts a weighted average of the first two cells

against the third. The T̃
(3)
A defined above reduces to T̃

(2)
A when j = 2 because

u12 = 1, and there is no p3.
For j = 4, we define

T̃
(4)
A = [P

1/2
A 14,T

(4)
A ]

=









√
p1

√

p2/u12

√

p1p3/u12u123

√

p1p4/u123√
p2 −

√

p1/u12

√

p2p3/u12u123

√

p2p4/u123√
p3 0 −

√

u12/u123

√

p3p4/u123√
p4 0 0 −√

u123









,
(19)

where the pa’s (a = 1, · · · , 4) are the diagonal entries of PA, u12 = p1 + p2
as before, and u123 = p1 + p2 + p3. The second column of T̃

(4)
A contrasts the

first two cells, and the third column contrasts an average of the first two cells
versus the third cell, while the fourth column contrasts an average of the first

three cells against the fourth cell. The matrix T̃
(4)
A given above reduces to T̃

(3)
A

when there are only three cells, since u123 = 1, and there is no p4. The matrix
of Helmert-like contrasts for j > 4 can be derived, following the instructions
given by Irwin (1949).

Note that the first column of the T̃A’s given above pertains to the effect
of mean probability (frequency) regardless of the number of cells. This corre-
sponds to t0 in (14), and as has been noted, its effect is always a priori elimi-
nated. This is analogous to the ANOVA situation in which only differences in
group means are of interest, but not the grand mean. It has no significant role
in the analysis of one-way tables. This column, however, plays an important
role in defining non-highest order interaction effects when we deal with higher
order tables.
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When j > 2, the Helmert contrasts are not the only possible candidates
for TA, whose columns are also meaningful. For example, we may choose

T̃
(4)
A =









√
p1

√

p2/u12 0
√

p1u34/u12√
p2 −

√

p1/u12 0
√

p2u34/u12√
p3 0

√

p4/u34 −
√

p3u12/u34√
p4 0 −

√

p3/u34 −
√

p4u12/u34









, (20)

where u34 = p3 + p4. The first two columns of this matrix remain the same
as in (19). The third column contrasts between the last two cells, while the
fourth column contrasts between a weighted average of the first two cells and
that of the last two cells. This leads to a different partition of CS from the one
that results from (19). In general, specifications of contrast vectors are quite
flexible, and other empirically meaningful contrasts may also be specified.

The contrasts we have encountered so far may be classified into a small
number of groups. One type, like the second column in (19), takes a difference
between two cells ignoring all others. Another type, like the third column in
(19), takes a difference between an average of the two cells whose difference
has been taken already (by the second column in (19)) and a third cell. A third
type of contrast, like the fourth column in (20), takes a difference between two
averages each taken over two cells whose differences are taken already (by the
second and third columns in (20)). By combining these three types of contrasts
and with appropriate permutations of cells, we are able to construct most, if
not all, of the common type of orthogonal contrasts.

If, however, one wants to find contrasts which do not fit to the above
profiles, one may resort to a numerical mean, given specific values of cell prob-
abilities. While this is theoretically less satisfactory, it has no real drawback
in practice. The method to be presented below assumes that we have a set
of orthogonal contrasts for equal cell probabilities. These contrasts are turned
into orthogonal contrasts under unequal cell probabilities, which are usually

the case in contingency table analysis. As an example, let us derive T̃
(4)
A in

(19) above. Let t0 = P
1/2
A 1A, which will be the first column of T̃

(4)
A , and let

V =









1 1 1
−1 1 1
0 −2 1
0 0 −3









= [v1,v2,v3]. (21)

This is a matrix of Helmert contrasts for equal cell probabilities. The resultant
matrix is denoted as [t0, t1, t2, t3]. We first derive t1 by orthogonalizing v1 to
t0, while preserving zeros in v1. Let w1 denote the nonzero parts of v1, and
let Y1 denote the vector of the corresponding elements of t0, that is,

w1 =

(

1
−1

)

, and Y1 =

(√
p1√
p2

)

.

Then, calculate
z = QY1

w1, (22)
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whereQY1
is the orthogoal projector onto Ker(Y′

1), i.e.,QY1
= I−Y1(Y

′
1Y1)

−Y′
1.

We then normalize z by
t∗1 = z/||z||, (23)

if necessary. The vector t1 is obtained by appending appropriate numbers of

zeros at the bottom of t∗1, namely t1 =

(

t∗1
02

)

.

We next obtain t2 by orthogonalizing v2 to [t0, t1]. We define w2 to be the
nonzero parts of v3, and Y2 to be the matrix of the corresponding elements
of t0 and t1, namely

w2 =





1
1

−2



 , and Y2 =

[

Y1 t∗1√
p3 0

]

.

We then apply (22) and (23) with w1 and Y1 replaced by w2 and Y2, re-
spectively, to obtain t∗2, from which t2 is obtained by appending a zero at the
bottom. We finally obtain t3 by orthogonalizing v3 to [t0, t1, t2] in a similar
way as before. We define

w3 = v3, and Y3 =

[

Y2 t∗2
[√

p4, 0
]

0

]

.

The vector t3 = t∗3 is calculated by (22) and (23) with w1 and Y1 replaced

by w3 and Y3, respectively. The T̃
(4)
A given in (20) can also be derived in

a similar way. This method of deriving a set of orthogonal contrasts under
unequal cell probabilities works quite generally, so far as we have a set of
orthogonal contrasts under equal cell probabilities.

In the discussion above, we have assumed that we are dealing with one-way
tables. However, the basic strategy of transforming constituent terms in chi-
squares into asymptotically independent components works for higher order
tables as well, where the elementary transformations given above are used as
building blocks. In such cases, what is referred to as “cells” above should be
replaced by “levels of a factor.”

3 Two-way tables

We extend the method in the previous section to two-way tables. We begin
by rewriting the statistic for two-way tables using matrices and vectors. Let
there be two discrete variables (factors), Factor A with A levels and Factor B
with B levels, by which events are cross-classified. This gives rise to an A by
B contingency table F. Define

P̂ = F/N, (24)

where N indicates the total frequency. As before, N is assumed fixed. Let

X =
√
NP

−1/2
A (P̂−PA1A1

′
BPB)P

−1/2
B , (25)
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where PA and PB are the diagonal matrices of hypothesized marginal proba-
bilities of the levels of Factor A and Factor B, respectively. The above definition
assumes that the two factors are independent, that is, E[p̂ab] = pab = papb,
where pab is the joint probability of the a-th level of Factor A and the b-th level
of Factor B, and pa and pb are the marginal probabilities of the a-th level of
Factor A and the b-th level of Factor B, respectively. As has been emphasized
earlier, partitions of Pearson’s statistic depend on what is hypothesized for
PA and PB . The two most commonly employed hypotheses are:

Scenario 1. Diagonal elements of PA and PB are prescribed. Any prescribed
numbers may be used, as long as they are positive and add up to unity within
each factor. The most representative case is the one in which we set PA = IA/A
and PB = IB/B, which is called marginal homogeneity (under independence).

Scenario 2. Diagonal elements of PA and PB are estimated from the data, and
are equal to the row and column totals of P̂, respectively. In this case, marginal
probabilities are perfectly fitted.

Note that Scenario 2 is the standard assumption made in correspondence anal-
ysis (Greenacre 1984; Nishisato 1980) of two-way contingency tables. Note also
that the cases in which some marginals are fixed also fall into this category.
This may sound somewhat counterintuitive because marginal probabilities are
completely known in such cases. However, using the known marginal prob-
abilities is in effect equivalent to estimating them from the data. Marginal
probabilities are perfectly fitted in either case. Combinations of the two sce-
narios above are also possible. For example, we may assume Scenario 1 for PA

and Scenario 2 for PB (that is, PA = IA/A, but the diagonal elements of PB

are estimated from the data).

By vectorizing X above using vec operators and Kronecker products, we
obtain

x ≡ vec(X) =
√
N(PB ⊗PA)

−1/2(p̂− (PB ⊗PA)1AB), (26)

where p̂ = vec(P̂), and 1AB = 1B ⊗ 1A is the AB-component vector of ones.
Note that (26) is essentially of the same form as (4) with PA and 1A in the
latter replaced by PB ⊗PA and 1AB, respectively. Pearson’s statistic for two-
way tables can now be written as

CS = x′x (27)

analogously to (5). The df for the above chi-square depend on the hypotheses
about PA and PB. As will be shown shortly, the df are equal to AB − 1
under Scenario 1, and to (A− 1)(B− 1) under Scenario 2. In either case, they
are equal to AB minus the number of estimated (or fixed) quantities in the
definition of the statistic.

We now transform X separately for rows and columns. Let T̃A and T̃B de-
note the transformation matrices of appropriate sizes for Factor A and Factor
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B, as introduced in the previous section. Let

Ỹ = T̃′
AXT̃B

=
√
NT̃′

AP
−1/2
A (P̂−PA1A1

′
BPB)P

−1/2
B T̃B .

(28)

By vectoring Ỹ, we obtain

ỹ = vec(Ỹ)

=
√
N(T̃′

BP
−1/2
B ⊗ T̃′

AP
−1/2
A )(p̂− (PB ⊗PA)1AB)

=
√
N(T̃B ⊗ T̃A)

′(PB ⊗PA)
−1/2(p̂− (PB ⊗PA)1AB)

=
√
NT̃′

ABx,

(29)

where
T̃AB ≡ T̃B ⊗ T̃A. (30)

The matrix
√
N(T̃B ⊗ T̃A) is fully orthogonal, i.e., T̃′

ABT̃AB = T̃ABT̃
′
AB =

I (because the Kronecker product of fully orthogonal matrices is also fully
orthogonal), so that

ŷ′ŷ = x′T̃ABT̃
′
ABx = x′x = CS. (31)

Let T̃AB be partitioned as

T̃AB = [t0,T(A),T(B),T(AB)], (32)

where
t0 = P

1/2
B 1B ⊗P

1/2
A 1A, (33)

T(A) = P
1/2
B 1B ⊗TA, (34)

T(B) = TB ⊗P
1/2
A 1A, (35)

and
T(AB) = TB ⊗TA. (36)

Then, CS(A) ≡ x′T(A)T
′
(A)x pertains to the chi-square representing the main

effects of Factor A, CS(B) ≡ x′T(B)T
′
(B)x pertains to the chi-square repre-

senting the main effects of Factor B, and CS(AB) ≡ x′T(AB)T
′
(AB)x pertains

to the chi-square representing the interaction effects between A and B. These
CS’s are called part chi-squares. The (x′t0)

2 related to the effect of mean
frequency, on the other hand, is identically equal to zero (being eliminated a

priori). Note that

CS = ỹ′ỹ = x′TABT
′
ABx

= x′T(A)T
′
(A)x+ x′T(B)T

′
(B)x+ x′T(AB)T

′
(AB)x,

= CS(A) + CS(B) + CS(AB).

(37)

The terms on the righthand side of the last two equations above defines a
family-wise partition of CS.
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The three terms in the partition above depend on the hypotheses regard-
ing PA and PB , as described earlier. Under Scenario 1 above, CS(A) ❀

χ2
A−1, CS(B) ❀ χ2

B−1, and CS(AB) ❀ χ2
(A−1)(B−1) independently from each

other. However, under Scenario 2, CS(A) = CS(B) = 0 (identically), while
CS(AB) ❀ χ2

(A−1)(B−1) as before. Note that while the asymptotic behavior

of CS(AB) remains the same under the two scenarios, its values calculated
from a particular contingency table are likely to be different. This means that
not only those that become zero, but also all other part chi-squares are af-
fected by adopting different null hypotheses. It should be kept in mind that
the tests of part chi-squares based on a single partition all assume the same
null hypothesis under which the partition is derived.

Note that essentially the same applies to mixed scenario cases mentioned
above. In the case in which the marginal homogeneity is assumed for PA

but PB is estimated, for example, CS(A) ❀ χ2
A−1, but CS(B) = 0, and

CS(AB) ❀ χ2
(A−1)(B−1). The CS(A) and CS(AB) have the same asymptotic

properties as CS(A) and CS(AB) derived under Scenario 1. However, the val-
ues of these statistics calculated from a specific table are likely to be different
from those obtained under Scenario 1.

Note also that, if desired, the part chi-squares in the above partitions,
whenever they are associated with df larger than 1, can be further partitioned
into asymptotically independent chi-square variables with fewer df. For exam-
ple, let ti be the i-th column vector of T(AB). Then, CS(AB) =

∑

i(x
′ti)

2,
where (x′ti)

2
❀ χ2

1 independently from each other.

4 Three-way and higher order tables

It is now rather straightforward to extend the method developed earlier to
higher order tables, particularly when all factors are assumed independent
(complete independence). For three-way tables, this means that pabc = papbpc
(a = 1, · · · , A, b = 1, · · · , B, and c = 1, · · · , C), where pabc is the joint prob-
ability of the a-th level of Factor A, the b-th level of Factor B, and the c-th
level Factor C, and pa, pb, and pc are their respective marginal probabilities. In
three-way or higher order tables, however, it is not uncommon to hypothesize
partial independence. In three-way tables, for example, we may hypothesize
that one factor is independent from the other two (e.g., Factor A is indepen-
dent from B an C, which in turn are not independent from each other), or
that two factors are independent given the levels of a third factor. These two
conditions (complete and partial independence) lead to quite distinct situa-
tions in partitioning Pearson’s statistic, and we treat them separately in the
following two subsections.
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4.1 Complete independence

Let PC represent the diagonal matrix of marginal probabilities of Factor C
(i.e., pc for c = 1, · · · , C). This matrix is analogous to PA and PB intro-
duced earlier. Then, under the three-way independence hypothesis, the diag-
onal matrix of hypothesized joint probabilities of cells in three-way tables can
be expressed as

K ≡ PC ⊗PB ⊗PA. (38)

Let p̂ denote the vector of observed joint probabilities p̂abc arranged in such a
way that a is the fastest moving index, and c is the slowest moving index. In a
2 by 2 by 2 table, for example, this vector looks like p̂ = (p̂111, p̂211, p̂121, p̂221,
p̂112, p̂212, p̂122, p̂222)

′. Then, the total chi-square for the table is obtained by

CS = x′x, (39)

where
x =

√
NK−1/2(p̂−K1ABC), (40)

where 1ABC = 1C⊗1B⊗1A. These expressions are analogous to (5) and (27),
and to (4) and (26), respectively.

As before, the df for the above chi-square depends on the hypotheses about
PA, PB, and PC . The two most commonly used hypotheses are:

Scenario 1. Diagonal elements of PA, PB , and PC are prescribed, the most
representative case of which states PA = IA/A, PB = IB/B, and PC = IC/C
(Marginal homogeneity under independence).

Scenario 2. Diagonal elements of PA, PB, and PC are estimated from the
data. They are the observed marginal probabilities of the three factors.

Under Scenario 1, the df for the above chi-square is ABC − 1, while under
Scenario 2, it is ABC−A−B−C+2. As before, Scenario 2 includes the cases
in which marginal probabilities are fixed for some but not all factors. There
are a variety of combinations of the above two scenarios which we may call
partial homogeneity cases, e.g., PA = IA/A and PB = IB/B as in Scenario
1, but PC is estimated from the data as in Scenario 2, or PA = IA/A as in
Scenario 1, while PB and PC are estimated from the data as in Scenario 2,
etc. See the bottom half of Figure 1 where all possible combinations are listed.
The df in mixture cases vary between the above two extreme cases.

To partition the chi-square defined in (39) and (40), we transform x into
asymptotically independent standard normal variables in a manner similar to
before. That is,

ỹ = T̃′
ABCx, (41)

where
T̃ABC = T̃C ⊗ T̃B ⊗ T̃A. (42)

Here, the transformation matrices of appropriate sizes must be chosen for T̃C ,
T̃B , and T̃A. The matrix T̃ABC is fully orthogonal, so that

ỹ′ỹ = xT̃ABCT̃
′
ABCx = x′x = CS. (43)
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Let T̃ABC be partitioned as

T̂ABC = [t0,T(A),T(B),T(AB),T(C),T(AC),T(BC),T(ABC)], (44)

where t0 = P
1/2
C 1C ⊗ P

1/2
B 1B ⊗ P

1/2
A 1A, T(A) = P

1/2
C 1C ⊗ P

1/2
B 1B ⊗ TA,

T(B) = P
1/2
C 1C ⊗TB ⊗P

1/2
A 1A, T(AB) = P

1/2
C 1C ⊗TB ⊗TA, T(C) = TC ⊗

P
1/2
B 1B ⊗P

1/2
A 1A, T(AC) = TC ⊗P

1/2
B 1B ⊗TA, T(BC) = TC ⊗TB ⊗P

1/2
A 1A,

and T(ABC) = TC ⊗ TB ⊗TA. The vector t0 pertains to the effect of mean
probability , T(A), T(B), and T(C) to the A, B, and C main effects, T(AB),
T(AC), and T(BC) to the AB, AC, and BC two-way interaction effects, and
T(ABC) to the three-way interaction effects.

The part chi-square pertaining to the effect of mean frequency (x′t0)
2 is

identically equal to zero as before. (This effect is always a priori eliminated.)
The other part chi-squares depend on the hypotheses about the marginal prob-
abilities. Under Scenario 1,

CS(A) ≡ x′T(A)T
′
(A)x ❀ χ2

A−1,

CS(B) ≡ x′T(B)T
′
(B)x ❀ χ2

B−1,

CS(C) ≡ x′T(C)T
′
(C)x ❀ χ2

C−1,

CS(AB) ≡ x′T(AB)T
′
(AB)x ❀ χ2

(A−1)(B−1),

CS(AC) ≡ x′T(AC)T
′
(AC)x ❀ χ2

(A−1)(C−1),

CS(BC) ≡ x′T(BC)T
′
(BC)x ❀ χ2

(B−1)(C−1),

and

CS(ABC) ≡ x′T(ABC)T
′
(ABC)x ❀ χ2

(A−1)(B−1)(C−1).

These statistics may be used to test the significance of the respective effects
against the hypothesis assumed under Scenario 1. Under Scenario 2, on the
other hand, the part chi-squares pertaining to the main effects are all elimi-
nated and become zero, while the remaining effects have the same asymptotic
distributional properties as their corresponding effects under Scenario 1. As
in two-way tables, however, the values of these statistics calculated from an
observed contingency table are likely to be different under the two scenarios.
The factors for which marginal probabilities are estimated (or fixed) deter-
mines which main effects are eliminated and become zero. As before, any part
chi-squares with df larger than 1 may be further partitioned into finer compo-
nents.

Further extensions of the method to higher-order tables are now fairly
apparent under the complete independence assumptions. We define K = · · ·⊗
PD⊗PC⊗PB⊗PA, and TABCD··· = · · ·⊗TD⊗TC⊗TB⊗TA. We only need
to be careful about arranging the elements of p̂ appropriately. Our convention
has been to make the index of the newest factor the slowest moving index.
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4.2 Partial independence

The situation becomes radically different when we assume only partial inde-
pendence. There are two distinct cases subsumed under partial independence
for three-way tables. One assumes that one factor is independent from the
other two (one-factor independence), and the other assumes that two factors
are independent given a third factor (conditional independence). See the top
half of Figure 1. Both of these cases are weaker than complete independence
discussed in the previous section. In contrast to the complete independence
cases, part chi-squares in ANOVA-like partitions of Pearson’s statistic are not
mutually independent, and the order in which they are taken into account
matters.

We begin with the former (one-factor independence). There are three pos-
sible subcases: 1. pabc = pcpab , 2. pabc = pbpac, and 3. pabc = papbc, where pabc
is, as before, the joint probability of the a-th, b-th, and c-th levels of Factors
A, B, and C, respectively, p’s with two subscripts indicate the joint marginal
probabilities indexed by the two subscripts, and p’s with one subscript indi-
cate the marginal probabilities indexed by the single subscript. We assume
that these marginal probabilities are estimated from the data, although in
rare cases they may also be prescribed. We only discuss the first case in some
detail. (The other two cases are similar.) The total chi-square in this case is
calculated by

CS =
∑

a,b,c

(pabc − p̂cp̂ab)
2

p̂cp̂ab
, (45)

which asymptotically follows the chi-square distribution with ABC − AB −
C + 1 df under the Case 1 hypothesis above.

We first explain why part chi-squares in the ANOVA-like partition of the
total chi-square are usually not independent from each other under Case 1
above. In this case, we may factorially combine levels of Factors A and B
and create a new factor which may be called Factor AB. We then have a
two-way table, in which the columns represent levels of Factor C and the
rows represent levels of Factor AB. Define K = PAB ⊗ PC , where PAB is
the diagonal matrix with marginal probabilities of the levels of Factor AB as
diagonal elements. We may also define T̃ABC = T̃AB⊗T̃C , where the matrices
on the righthand side are chosen to be orthogonal transformation matrices of
appropriate sizes similar to the ones used in previous sections. The matrix
T̃ABC is fully orthogonal, as is T̃ABC defined in (42). The problem is that

the matrix T̃AB , constructed according to the methods described in Section
2, does not reflect the factorial structure of the rows of the table, while the
rows of the table were in fact constructed by factorially combining levels of
Factors A and B. It may be possible to incorporate such structure into this
matrix. For example, when Factor A and Factor B both have only two levels,
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we may define

T̃AB =









√
p1

√

p1u24/u13

√

p1u34/u12

√

p1u23/u14√
p2 −

√

p2u13/u24

√

p2u34/u12 −
√

p2u14/u23√
p3

√

p3u24/u13 −
√

p3u12/u34 −
√

p3u14/u23√
p4 −

√

p4u13/u24 −
√

p4u12/u34

√

p4u23/u14









, (46)

where the pi’s (i = 1, · · · 4) are the marginal probabilities of the levels of Fac-
tor AB, and ujk = pj + pk (j, k = 1, · · · , 4). The first column of this matrix
pertains to the effect of mean probability, while the second column represents
the A main effect, the third column the B main effect, and the fourth col-
umn the AB interaction effect. This matrix, together with T̃C , may be used
to obtain part chi-squares in the ANOVA-like family-wise partition of the to-
tal chi-square for this case. The problem is that the last three columns of
the matrix above are generally not orthogonal to each other except for the
very special cases in which PAB can be factored into PB ⊗PA (which in fact
implies complete independence). Consequently, part chi-squares generated by
T̃ABC are not mutually independent. There are three nonzero part chi-squares,
CS(AC), CS(BC), and CS(ABC). The order in which these effects are taken
into account, however, makes a difference. There are six different ways to order
three items. We may impose the restriction that no higher-order interactions
are considered before any lower-order interactions, in which case this number
is reduced to two. There are two families of effects of the same order, and
there are two ways to order them: AC before BC, and BC before AC. In the
former case, we take into account the AC interaction effects first, then the
BC interaction effects, followed by the ABC interaction effects. The resultant
effects are called AC ignoring BC, BC eliminating AC, and ABC eliminat-
ing AC and BC. These effects are written as AC, BC|AC, and ABC|AC,BC,
respectively. The second case is analogous: BC ignoring AC (simply written
as BC), AC eliminating BC (written as AC|BC), and ABC eliminating AC
and BC (this is the same as before). There are thus (at least) two distinct
family-wise partitions of the total chi-square. As before, any asymptotically
chi-squared variables with df larger than 1 can ultimately be partitioned into
the sum of asymptotically independent chi-squared variables each with a sin-
gle df. However, non-orthogonality among the family-wise effects considerably
complicates the situation. Contrasts may be constructed which are orthogonal
within the same families, but non-orthogonal across different families.

As noted above, there are two other cases of one-factor independence. Non-
orthogonality of part chi-squares under these hypotheses remain essentially the
same as above. There are thus at least six distinct partitions under the one-
factor independence hypotheses. A greater variety of hypotheses and a larger
number of possible partitions of total chi-squares are possible in higher order
tables.

As has been mentioned, there are other partial independence hypotheses
in three-way tables. These are called conditional independence conditions in
which two factors are independent given levels of a third factor. Again, there
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are three such cases in three-way tables: 1. pabc = pabpac/pa (Factors B and
C are independent given levels of Factor A), 2. pabc = pacpbc/pc (A and B are
independent given C), and 3. pabc = pabpbc/pb (A and C are independent given
B). These conditions are depicted at the second from the top level in Figure
1. The probabilities on the righthand side of these hypotheses are usually
estimated from the data, although, as before, they could also be prescribed.
We only discuss Case 1 above in some detail. (The other cases are similar.) This
case subsumes both Cases 1 and 2 of the one-factor independence conditions.
It reduces to pabc = pcpab when pac/pa = pc, and to pabc = pbpac when
pab/pa = pb. The total chi-square is calculated by

CS =
∑

a,b,c

(p̂abc − p̂acp̂bc/p̂c)
2

p̂acp̂bc/p̂c
, (47)

which asymptotically follows the chi-square distribution with ABC − AB −
AC + A df under the Case 1 hypothesis. Similar partitions of the total chi-
square are possible as before, although many of the part chi-squares in the
partitions are identically zero. There are only two nonzero part chi-squares,
namely CS(BC) and CS(ABC|BC). As will be seen in the next section, the
values of these part chi-squares calculated from an observed table are usu-
ally not equal to the corresponding part chi-squares calculated under different
hypotheses.

4.3 A numerical example

We give numerical examples of the theoretical results presented in the previous
sections. The example data set we use has been previously analyzed by many
authors including Snedecor (1958), Cheng et al (2006), and Takane and Zhou
(2013), and comparisons of our results to theirs are of interest. The observed
frequencies and probabilities of cells in a 2 by 2 by 2 table are given in Table
1, where the cells are arranged in the order suggested earlier, that is, the index
of Factor A moves fastest and that of Factor C slowest.

Table 1 The 2 by 2 by 2 table used in the numerical demonstration.

Observed Observed
Factors Frequencies Probabilities

C B A f p̂abc p̂

B1 A1 79 p̂111 .0945
C1 A2 177 p̂211 .2117

B2 A1 62 p̂121 .0742
A2 121 p̂221 .1447

B1 A1 73 p̂112 .0873
C2 A2 81 p̂212 .0969

B2 A1 168 p̂122 .2010
A2 75 p̂222 .0897
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Results of the computation are reported in Table 2. The first column of this
table labels various part chi-squares. Recall that a single alphabetic symbol
indicates the main effects (e.g., A indicates the main effects of A), while con-
catenated alphabetic symbols indicate interaction effects (e.g., AB indicates
the interaction effects between A and B). Multiple groups of symbols separated
by a comma indicate joint effects (e.g., A,AB indicates the joint effects of the
A main and AB interaction effects). Multiple groups of symbols separated by
a vertical bar indicate the effects placed on the left side of the bar eliminating
the effects on the right (e.g., AB|AC indicates the effects of AB eliminating
the effects of AC).

The second column of Table 2 gives the breakdown of the total chi-square
under the complete marginal homogeneity (under independence) condition,
that is, PA = PB = PC = (1/2)I2, and T̃ABC = T̃C ⊗ T̃B ⊗ T̃A, where

T̃C = T̃B = T̃A =

[√
.5

√
.5√

.5 −
√
.5

]

.

Under this hypothesis, part chi-squares are all asymptotically independent, so
that the effects ignoring and the effects eliminating other effects are identical
(the values of the latter are given in parentheses in the table), and the total
chi-square is uniquely partitioned into the sum of part chi-squares pertaining
to the three (families of) main effects (A, B, and C), the three (families of) two-
way interaction effects (AB, AC, and BC), and the (single family) of three-way
interaction effects (ABC).

The third column of Table 2, on the other hand, shows the breakdown
of the total chi-square under Scenario 2 (Three-way independence without
marginal homogeneity). This implies that

PA =

[

.4569 0
0 .5431

]

, PB =

[

.4904 0
0 .5096

]

,

and PC =

[

.5251 0
0 .4749

]

,

and

T̃A =

[

.6760 .7369

.7369 −.6760

]

, T̃B =

[

.7003 .7138

.7138 −.7003

]

,

and T̃C =

[

.7247 .6891

.6891 −.7247

]

.

The main effects are all identical to zero, and the total chi-square in this case
only reflects the two-way and three-way interaction effects. Note that nonzero
part chi-squares in the third column are subtly different from the corresponding
part chi-squares in the second column. For example, CS(AB) is 23.45 in the
second column, while it is 24.10 in the third column. As remarked earlier,
this is precisely what is meant by the dependence of partitions of Pearson’s
statistic on the hypothesis about the expected frequencies.
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Table 2 Part chi-squares in partitions of Pearson’s statistic under various hypotheses re-
garding the expected frequencies (probabilities) for the data set in Table 1.

Hypothesis about pcba
Effects 1/8 p̂ap̂bp̂c p̂cp̂ab p̂bp̂ac p̂ap̂bc

A 6.20 0 0 0 0 0 0 0
B 0.31 0 0 0 0 0 0 0
C 2.11 0 0 0 0 0 0 0
AB 23.45 24.10 0∗ 0∗ 24.10 24.10

AB|AC (23.45) (24.10) 11.27
AB|BC (23.45) (24.10) 11.81

AB|AC,BC (23.45) (24.10)
AC 70.05 68.66 68.66 0∗ 0∗ 68.66

AC|AB (70.05) (68.66) 55.83
AC|BC (70.05) (68.66) 55.30

AC|AB,BC (70.05) (68.66)
BC 31.39 31.80 31.80 31.80 0∗ 0∗

BC|AB (31.39) (31.80) 19.51
BC|AC (31.39) (31.80) 18.44

BC|AB,AC (31.39) (31.80)
ABC 4.60 7.45

ABC|AB,AC (4.60) (7.45) 7.06 7.06
ABC|AB,BC (4.60) (7.45) 6.35 6.35
ABC|AC,BC (4.60) (7.45) 6.63 6.63

ABC|AB,AC,BC (4.60) (7.45)

AB,AC,ABC (98.10) (100.21) 86.99 86.99
AB,BC,ABC (59.44) (63.35) 49.96 49.96
AC,BC,ABC (101.04) (107.91) 93.93 93.93

AB,BC,AC,ABC 129.49 131.99
+A,B,C (Total) 138.11

It may be pointed out that Lancaster’s (1951) method for calculating part
chi-squares under these two scenarios works fine because of the orthogonality
of all the terms in the partitions. This method involves reducing an origi-
nal three-way table into two-way marginal tables to calculate part chi-squares
for the main effects and two-way interaction effects, and subtracting the sum
of these part chi-squares from the total chi-square to calculate the part chi-
square for the three-way interaction effects. The values of part chi-squares re-
ported in Table 2 of Snedecor (1958) were presumably obtained by Lancaster’s
(1951) method under the three-way independence hypothesis. The values of
CS(AC) = 68.30 and CS(ABC) = 7.80 reported in his paper seem to be
incorrect. Our values are 68.66 and 7.45, respectively. The total chi-square is
correct in Snedecor (1958), however. Since the three-way interaction effect was
presumably calculated by subtracting the sum of all two-way interaction ef-
fects from the total chi-square, the cause of the miscalculation of the three-way
interaction effects seems to be due to the miscalculation of CS(AC).

The last six columns of Table 2 give partitions of Pearson’s statistic under
the one-factor independence hypotheses. As noted in the previous section,
there are three such hypotheses, and within each hypothesis, there are two
alternative partitions due to the non-orthogonality of the effects involved. The
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values of part chi-squares reported in the table are taken from Takane and
Zhou (2013), who provided computational formula easier to use in calculating
these quantities. (Note that there is a 0 with an asterisk in each of the last six
columns of Table 2. Nonzero values were given for these part chi-squares in
Takane and Zhou (2013). However, these effects are a priori eliminated under
the respective hypotheses, and the value of zero is more appropriate, as given
here.)

Table 3 shows part chi-squares under three conditional independence hy-
potheses. The part chi-quare due to the BC interaction effects in the second
column of this table are analogous to BC|AB and BC|AC under the hypotheses
that A is independent from BC, and B is independent from AC, respectively,
in Table 2. As has been noted earlier, however, the former part chi-square is
not identical to either of the latter two. Similar observations can be made for
the AB and AC interactions in columns 3 and 4 of the table. Likewise, none of
the three-way interaction effects in Table 3 are exactly the same as the values
of the three-way interaction effects in Table 2, although the values are fairly
close.

Table 3 Part chi-squares in partitions of Pearson’s statistic under conditional independence
conditions for the data set in Table 1

Hypothesis about pabc
Effects pabpac/pa pacpbc/pc pabpbc/pb

A 0 0 0

B 0 0 0
C 0 0 0
AB 0 62.29 0
AC 0 0 57.45
BC 20.10 0 0

ABC|AB 6.82
ABC|AC 6.07
ABC|BC 6.87

AB,ABC|AB 69.11
AC,ABC|AC 63.52
BC,ABC|BC 26.93

5 Comparison with the LR statistic

Finally, we compare partitions of Pearson’s statistic presented in previous
sections with those of the (log) likelihood ratio (LR) statistic. To simplify our
presentation, we mostly restrict our attention to three-way tables. In this case,
the LR statistic is defined as

LR = 2N
∑

a,b,c

p̂abc log

(

p̂abc
pabc

)

, (48)
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where p̂abc is the observed joint probability, and pabc is the corresponding
expected probability under some hypothesis. The LR statistic defined above
asymptotically follows the chi-square distribution with df that depend on the
hypothesis about pabc. Part LR chi-squares are defined as the difference be-
tween LR’s calculated under two nested hypotheses about pabc.

Figure 1 summarizes the most representative hypotheses about pabc in
hierarchical form, a majority of which have already been discussed in the
context of Pearson’s statistic. There are seven layers of hypotheses in Figure
1. Specific hypotheses about pabc are indicated in framed boxes. In general,
hypotheses placed in lower layers represent more stringent hypotheses, while
those in upper layers represent less stringent hypotheses. For example, com-
plete homogeneity (under independence) at the bottom is the most stringent
hypotheses, while the saturated model placed at the top does not impose any
restrictions on pabc. The figure is roughly divided into two parts: The layers
above the three-way independence hypotheses represent partial independence
hypotheses, while those below all assume complete independence plus some
degrees of (partial or complete) marginal homogeneity. Some hypotheses in
adjacent layers are connected by line segments. These indicate that the hy-
potheses in lower layers are special cases of the ones in upper layers. For
example, pabc = 1/ABC is a special case of pabc = pa/BC, in which pa in
the latter is assumed equal to 1/A. The label A attached to this line segment
indicates that the difference between the two connected hypotheses represents
the main effects of A. The difference in the (log) LR statistics associated with
the two hypotheses indicates the part LR chi-square due to the main effects
of A denoted by LR(A). As another example, pabc = papbpc (the complete
independence hypothesis) is a special case of pabc = pcpab (C is independent
from A and B). The difference between the two corresponds to the hypothesis
that pab = papb, representing the AB interaction effects. Figure 1 indicates
that the three-way (complete) independence hypothesis is also a special case
of two other one-factor independence hypotheses.

In log-linear analysis to which the LR statistic is closely linked, the effects
representing interactions of different orders are generally not independent from
each other. For example, two-way interaction effects are not independent from
main effects. We use the same convention that we used for Pearson’s statistic,
in which we always eliminate the effects of all lower order interactions when
we consider higher order interactions. For example, when we consider two-way
interaction effects we always eliminate the main effects (e.g., AB is always
AB|A,B,C), and when we consider three-way interaction effects, we eliminate
all the main effects and two-way interaction effects (e.g., ABC|AB,AC,BC is
actually ABC|AB,AC,BC,A,B,C, but to avoid clutters of symbols, we use the
former to denote the latter.) This convention effectively orthogonalizes all in-
teraction effects of different orders. (Main effects can be regarded as order-one
interaction effects.) Note that Cheng et al. (2006) also uses AB in the sense
of AB|A,B,C, and ABC in the sense of ABC|AB,AC,BC,A,B,C. In log-linear
analysis, the three (families of) main effects are mutually orthogonal without
eliminating other main effects (e.g., A = A|B = A|C = A|B,C). The relation-
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Fig. 1 A hierarchy of hypotheses in log-linear analysis of three-way contingency tables
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ships among the three (families of) two-way interaction effects (all eliminating
the main effects) are, however, much more complicated (Cheng et al., 2006).
First of all, AB = AB|AC = AB|BC, but AB|AC,BC is different from any of
the former three. Similar relations also hold for AC and BC interaction effects
(i.e., AC = AC|AB = AC|BC 6= AC|AC,BC, and BC = BC|AB = BC|AC
6= BC|AB,AC). As noted above, two-way interaction effects ignoring other
two-way interaction effects represent the differences between the three-way in-
dependence hypothesis and one-factor independence hypotheses. The two-way
interaction effects eliminating only one of the other two families of two-way
interaction effects represent differences between one-factor independence hy-
potheses and conditional independence hypotheses (e.g., AB|AC represents the
difference between pabc = pbpac and pabc = pabpac/pa, and AB|BC represents
the difference between pabc = papbc and pabc = pabpbc/pb, but these two differ-
ences are identical, both pertaining to the hypothesis of pab = papb). However,
the two-way interaction effects eliminating both of the other two families of
two-way interaction effects are part of the differences between conditional in-
dependence hypotheses and the saturated model in which no constraints are
imposed on pabc (e.g., AB|AC,BC represents part of the difference between
pabc = pacpbc/pc and unconstrained pabc). The two-way interaction effects
eliminating both of the other two-way interaction effects (e.g., AB|AC,BC)
represent homogeneous parts of simple two-way interaction effects (e.g., AB
interaction effects at different levels of C), and differ from the other two-way in-
teraction effects (e.g., AB, AB|AC, AB|BC). The remaining portion of the dif-
ferences between the conditional independence hypotheses and the saturated
model pertains to the three-way interaction effects (i.e., ABC|AB,AC,BC),
representing nonuniform parts of simple two-way interaction effects. There are
no explicit expressions of no three-way interaction effects that separate the
saturated model (with the three-way interaction effects) at the very top of the
hierarchy and the one without the three-way interaction effects. Some itera-
tive fitting procedure is necessary to fit the model of no three-way interaction
effects. There are three conditional independence hypotheses, and correspond-
ingly three connections between these hypotheses and the saturated model.
The differences associated with these connections all represent two-way inter-
action effects eliminating the other two families of two-way interaction effects
plus the three-way interaction effects. This means that the joint effects of the
three families of two-way interaction effects can be partitioned in three differ-
ent ways: AB,AC,BC = AB + AC + BC|AB,AC = AB + BC + AC|AB,BC =
AC + BC + AB|AC,BC. We may add A + B + C + ABC|AB,AC,BC to each
of the three partitions of AB,AC,BC, and obtain three alternative partitions of
the total LR chi-square under the complete marginal homogeneity hypothesis.

The values of part LR chi-squares obtained from the example data set (Ta-
ble 1) are presented in Table 4 for the three possible partitions of the total
LR chi-square corresponding to three possible partitions of the joint two-way
interaction effects. The values reported in the table were obtained by Hilog-
linear and Loglinear procedures in SPSS by Takane and Zhou (2013). Cheng
et al. (2006) obtained essentially the same results. As discussed above, the
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main effects are independent from each other. Ignoring and eliminating other
effects are identical, so that only the ignoring effects are shown in the table.
Two-way interaction effects, on the other hand, are not independent from each
other. Instead, there are three alternative partitions. Two of the three families
of two-way interaction effects ignoring other families of two-way interaction
effects can be added as part of the joint effects of all three families of two-way
interaction effects. However, the third two-way interaction effect to be added
to this sum to obtain the joint effects of all two-way interaction effects must
be the remaining two-way interaction effects eliminating those already added.
There are three ways to do this, resulting in three alternative partitions of
the joint two-way interactions. It is also observed that two-way interaction ef-
fects remain invariant even if another family of two-way interaction effects are
eliminated, but not if both of the two remaining families are simultaneously
eliminated. As noted above, the three-way interaction effects in log-linear anal-
ysis cannot be obtained in closed form, but should be estimated iteratively.
Note that the values of part LR chi-squares are in all cases very similar to the
corresponding Pearsonian part chi-squares.

Table 4 A summary of the log LR chi-squares associated with log-linear analysis for the
example data set in Table 1

Effects Decomposition 1 Decomposition 2 Decomposition 3
A 6.21 6.21 6.21

B 0.31 0.31 0.31
C 2.11 2.11 2.11
AB 24.23 24.23

AB|AC (24.23) (24.23)
AB|BC (24.23) (24.23)

AB|BC,AC 12.22
AC 69.54 69.54

AC|AB (69.54) (69.54)
AC|BC (69.54) (69.54)

AC|AB,BC 57.53
BC 32.01 32.01

BC|AB (32.01) (32.01)
BC|AC (32.01) (32.01)

BC|AB,AC 20.00
ABC|AB,BC,AC 6.82 6.82 6.82

AB,BC,AB 113.77 113.77 113.77
AB,BC,AC,ABC 120.59 120.59 120.59
+A,B,C (Total) 129.22 129.22 129.22

6 Concluding Remarks

In this paper, we gave a comprehensive account of what is involved in partition-
ing Pearson’s chi-square statistic. We began this endeavor by first developing
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a basic tool for partitioning chi-squares for one-way tables, which was then
gradually expanded to higher order tables. We have found that partitioning
Pearson’s statistic depends on the hypotheses about the expected frequencies
(probabilities). Under the complete independence conditions, part chi-squares
in ANOVA-like partitions of the total chi-square are asymptotically indepen-
dent. However, entire partitions are affected whenever a new hypothesis is
adopted.

Derived partitions of Pearson’s statistic are compared with analogous par-
titions of the log LR chi-square statistic. The LR chi-square statistic admits
invariant partitions, e.g., the part LR chi-square due to the AB interaction
effects, i.e., LR(AB), remains the same whether the three-way independence
hypothesis is assumed, or the complete marginal homogeneity is assumed. (Re-
member that the effect AB here is in fact AB|A,B,C.) This makes easier to
perform so-called step-up tests. We may, for example, start with the test of the
three-way independence hypothesis as the null hypothesis against one of the
one-factor independence hypotheses. If the three-way independence hypothe-
sis is rejected, we may “step up” the test by adopting the former alternative
hypothesis (one of the one-factor independence hypotheses) as the null hypoth-
esis against one of the conditional independence hypotheses as the alternative
hypothesis, and so on.

This is in marked contrast with Pearson’s chi-square statistic. While step-
up tests are not impossible with Pearson’s statistic, a new partition results
every time we adopt a new null hypothesis. Suppose, for example, we start
with complete marginal homogeneity and derive a partition of the total chi-
square given in the second column of Table 2. Suppose further that this null
hypothesis is rejected against the three-way independence hypothesis. Then,
a new partition of the total chi-square has to be derived under the three-way
independence condition to perform step-up tests. Of course, one can stick with
one common null hypothesis in Pearson’s statistic for all the tests (based on
a single partition of the total chi-square). It should be kept in mind, however,
that all these tests involve the same null hypothesis (albeit against different
alternatives). A bit of comfort is that values of part chi-squares which are not
zeroed out are in most cases very similar across different partitions generated
by different null hypotheses, and their significance/nonsignificance tends to
remain unchanged unless they are close to the borderline.
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