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Abstract 

With advances in tissue engineering, the possibility of regenerating injured tissue or failing 

organs has become a realistic prospect for the first time in medical history. Tissue engineering 

– the combination of bioactive materials with cells to generate engineered constructs that 

functionally replace lost and/or damaged tissue – is a major strategy to achieve this goal. One 

facet of tissue engineering is biofabrication, where three-dimensional tissue-like structures 

composed of biomaterials and cells in a single manufacturing procedure are generated. Cell-

laden hydrogels are commonly used in biofabrication and are termed “bio-inks”. Hydrogels 

are particularly attractive for biofabrication as they recapitulate several features of the natural 

extracellular matrix and allow cell encapsulation in a highly hydrated mechanically supportive 

three-dimensional environment. Additionally, they allow for efficient and homogeneous cell 

seeding, can provide biologically-relevant chemical and physical signals and can be formed in 

various shapes and biomechanical characteristics. However, while advances in modifying 

hydrogels for enhanced bioactivation, cell survival and tissue formation, little attention has so 

far been paid to optimize hydrogels for the physico-chemical demands of the biofabrication 

process. The resulting lack of hydrogel bioinks have been identified as one major hurdle for a 

more rapid progress of the field. In this review we summarize and focus on the deposition 

process, the parameters and demands of hydrogels in biofabrication, with special attention to 

robotic dispensing as an approach that generates constructs of clinically relevant dimensions. 

We aim to highlight this current lack of effectual hydrogels within biofabrication and initiate 

new ideas and developments in the design and tailoring of hydrogels. The successful 

development of a “printable” hydrogel that support cell adhesion, migration and 

differentiation will significantly advance this exciting and promising approach for tissue 

engineering. 
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1. Introduction 

Tissue engineering (TE) aims for the full restoration of damaged or degenerated tissues and 

organs through the use of TE, cell and growth factor delivery. Tissue-engineered constructs 

will have to mimic a certain degree of the native complexity of the tissue in order to assist in 

restoration of the full structure and functionality of the tissue. Traditionally, the three main 

components of TE are cells, scaffolds and growth factors and they are combined to form a 

construct that can be immediately implanted or incubated in vitro prior to implantation. A 

scaffold can successfully deliver cells and/or growth factors to a damaged or degenerated 

tissue or organ, while simultaneously providing temporal mechanical support for the period 

the newly formed tissue matures. However, the three-dimensional (3D) constructs that have 

been generated for these scaffold-based or scaffold-guided TE approaches are typically based 

on the random distribution of cells, matrix, and bioactive cues, since their manufacturing does 

not allow the control of specific distribution. Mimicking the biological and functional 

organizational complexity of native tissues is now regarded as the next challenge in the full 

regeneration of tissues. 

 

To address this challenge, additive manufacturing (AM) technology has been employed to 

generate bio-engineered 3D structures to replicate the complex nature of tissue.[1] In this 

approach, termed “biofabrication”,[2, 3] biological structures for TE, pharmacokinetic or basic 

cell biology studies (including disease models) are created by an computer-aided 

manufacturing process for patterning and assembling living and non-living materials with a 

prescribed 3D organization.[4] The resulting shape can be customized, and include open inner 

structures that improve the supply of nutrients towards embedded cells.[5] Moreover, the 

fabricated structures can be used to study interactions between different cells and/or bioactive 

compounds,[6] but could also lead to functional tissue equivalents,[7] and potentially, to whole 

functioning organs.[8] Recent investigations have, for example, adopted biofabrication for the 
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engineering of 3D constructs with the organizational features of different tissues, including 

skin,[9, 10] meniscus,[11] aortic valves,[12] cartilage,[13, 14] bone,[15] and blood vessels.[16] 

 

Whilst AM technologies, as applied in the processing of metals, ceramics and thermoplastic 

polymers have inspired the field of biofabrication, these “classic” AM approaches generally 

involve the use of organic solvents, high temperatures or crosslinking agents that are not 

compatible with living cells and/or bioactive proteins. Hydrogels can be processes under more 

cell friendly conditions and often classified in the biofabrication field as “bioinks”. From a 

biological point of view, high water content hydrogels are attractive candidates for the 

incorporation of cells and bioactive compounds, because they can provide an instructive, 

aqueous 3D environment, simulating the natural extracellular matrix.[15] 

 

Historically, hydrogels used in tissue engineering applications are predominantly based on 

naturally derived polymers, including alginate, gelatin, collagen, chitosan, fibrin and 

hyaluronic acid.[19-21] Cells benefit from the abundance of chemical signals present in these 

hydrogels, resulting in high viability and proliferation rates.[19, 22] These signals can also be 

used to induce the formation of specific neo-tissues,[19, 20, 23] however, due to batch-to-batch 

variation and the sensitivity of cells (especially stem cells) to these variations, reproducibility 

of constructs often remains complicated. In addition, implementation of these materials in 

biofabrication can be challenging due to their variable printability. 

In contrast to hydrogels based on natural polymers, 3D printed structures with high shape 

fidelity can be obtained with polymers based on synthetic networks, like poly(ethylene 

glycol)[24] and pluronics[25-27]. However, these hydrogels provide embedded cells with an inert 

environment without active binding sites,[28] often resulting in low cell viability.[25-27] In order 

to improve control over cellular differentiation in these gels, bioactive compounds have to be 

added or grafted to the network, like peptide sequences[29] and growth factors.[20, 30] Peptide 
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sequences can modulate cellular behavior by providing binding sites in otherwise inert 

hydrogels,[31] whereas growth factors can further direct cellular differentiation in order to 

regenerate a specific tissue type. There already are a number of reviews on the mandatory 

biological characteristics of hydrogels for biomedical applications and this goes beyond the 

scope of this review. For further reading we recommend recent reviews by Seliktar[22] and by 

DeForest and Anseth[28]. 

 

The present review will focus on the physicochemical aspects important for the development 

and characterization of hydrogels for biofabrication. Despite the fact that photocuring 

methods, such as two-photon polymerization[32] and stereolithograpy[33] can also yield 

organized 3D cell-laden hydrogel structures, their working principles do not involve 

deposition of gels and cells and hence pose different demands regarding hydrogel properties. 

Therefore, these techniques fall outside the scope of the current review. Here, we guide the 

reader in making choices regarding available approaches to tailor existing hydrogel platforms 

by means of physicochemical modification. Finally, current developments in hydrogels that 

could impact on the composition and properties of future hydrogel bioinks will be discussed. 

 

2. The Biofabrication Window 

Although major progress has been made with both natural and synthetic hydrogels in 

biofabrication,[34] bioinks have some significant complications regarding the required physical 

and biological properties. The central problem is that the fabrication of complex, tissue-like 

structures with high resolution dictates narrow boundaries for the physical properties of the 

hydrogels. Adittionally, the hydrogel construct should facilitate migration, proliferation and 

differentiation of the embedded and endogenous cells. Thereby, biofabrication imposes 

opposing requirements on the properties of materials and specifically the lack of such 

versatile hydrogel systems has been coined as an important factor restraining further progress 
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in this field.[1, 8, 35, 36-38] The traditional approach to improve printability of hydrogels has been 

increasing the polymer concentration or crosslink density.[39, 40] Highly crosslinked hydrogels 

serve as a stiff construction material as represented by the blue fabrication window (Fig. 1). 

On the contrary, cells thrive best in an aqueous environment, in which their migration and 

matrix deposition is not limited by a dense polymer network,[28] represented by the yellow cell 

culture window (Fig. 1). Unfortunately, hydrogels with a low extend of crosslinks lack the 

ability to maintain their imposed shape on fabrication, resulting in a low shape-fidelity and 

limited overall mechanical properties. Therefore, most constructs have been fabricated with a 

moderate degree of hydrogel crosslink densities, represented by the green “traditional” 

biofabrication window (Fig. 1). However, since hydrogels which fit in this window 

compromise on biological, as well as fabrication properties, there is a need to shift this 

biofabrication window in order to achieve high shape-fidelity with hydrogels that facilitate 

maximal cell and tissue compatibility (“novel strategies” (Fig. 1)). 

 

Hydrogels for biofabrication should allow the translation of the computer-aided design (CAD) 

to a tissue construct that potentially contains intricate internal and/or external organizational 

structures. This requires a high degree of control over the deposition process, which is closely 

associated with the printability of the hydrogel. The printing of inks on paper is well 

documented with various available tests that are taking in account surface and structural 

properties of the paper, however quantification of printability of ink on paper remains 

difficult. [41] Standardized tests to evaluate the capacity of hydrogels to be printed do not yet 

exist. Obviously, an important outcome parameter from a physical point of view would be the 

geometric accuracy or shape fidelity of the generated constructs. As such, there is a strong 

need for methods of geometry comparison of tissue-engineered constructs that go beyond 

simple visual inspection, manual measurements using rulers or calipers[42] and photographs.[11, 

40, 43] Optical methods have been developed to assess the geometric fidelities of tissue 
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constructs using laser triangulation.[42] Although this yields valuable data on the outer 

contours of homogeneous solid tissue replacements, such as for the meniscus, this technique 

will not visualize the potentially more intricate internal geometry. More recently, Murphy et 

al.[10] evaluated properties relevant to bioprinting, including printability, of a range of 

available hydrogels. In an attempt to quantify the printability, deviation of a 1.0 x 1.0 cm 

printed square area was determined. Although the authors were challenged by the fact that not 

all hydrogels could be reproducibly processed by the printer, this allowed for an, albeit rough, 

quantification, of the printability. Nevertheless, the fabrication of tissue structures is likely to 

require a significantly higher resolution than what could be evaluated in this approach. In 

view of this, the visualization of the difference between a computer design and a µCT 

generated image of a tissue construct, as represented in a heat map,[44] is a promising 

development, despite the fact that this will not discriminate between different hydrogels in a 

single generated tissue blueprint. 
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3. Hydrogel Based Biofabrication Systems 

The use of hydrogels as a carrier for cells and/or bioactive compounds has been described for 

many deposition-based biofabrication approaches.[15, 37] Briefly, these can be divided in 

methods based on laser-induced forward transfer, inkjet printing (both thermal and 

piezoelectric) and robotic dispensing (Fig. 2). Each technique demanding very specific 

requirements for characteristics of the hydrogel-based bioinks, with regards to their rheology 

and post-curing rate in order to achieve reliable fabrication of 3D constructs. 

 
3.1.  Laser-Induced Forward Transfer 

Laser-induced forward transfer technology refers to the use of a donor slide covered with a 

laser energy absorbing layer and a layer of cell-containing bioink.[45] The focused laser pulses 

cause local evaporation of the absorbing layer that, in turn, generates a high gas pressure 

propelling the bioink compound towards the collector slide (Fig. 2). This technology allows 

for the precise deposition of materials and (high densities of) cells in relatively small 3D 

structures without negatively affecting viability or cellular function.[45, 46] It is a nozzle-free 

approach and is therefore not affected by clogging issues. It has successfully been used with 

bioinks with a wide range of viscosities (1-300 mPa/s). Nevertheless, the high resolution of 

this process complicates even distribution of cells over the ejected drops, requires rapid 

gelation kinetics to achieve high shape fidelity and does result in a relatively low overall flow 

rate (Fig. 2). Consequently, the generation of larger and thus clinically relevant 3D constructs 

is time-consuming, hampering the successful translation towards widespread application. 

 

3.2. Inkjet Printing 

Usually, inkjet printing in the biofabrication field is defined as the dispensing through a small 

orifice and precise positioning of very small volumes (1-100 picolitres) of bioink (PBS, cell 

culture media and/or hydrogel) on a substrate.[2] For the inkjet printing of cells thermal and 

piezo-electric inkjet printing are the two most commonly adopted approaches. For thermal 
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inkjet printing (Fig. 2), small volumes of the printing fluid are vaporized by a micro-heater to 

create the pulse that expels droplets from the print head.[47] The generated heat and resulting 

evaporation do result in stress for the deposited cells[36] and causes transient pores in the cell 

membrane.[48] In piezoelectric inkjet printing (Fig. 2), on the other hand, no heating is used, 

but a direct mechanical pulse is applied to the fluid in the nozzle by a piezoelectric actuator, 

which causes a shock wave that forces the bioink through the nozzle. 

 

Inkjet printing has successfully been applied for accurate deposition of cells[49] and even 

allows for the generation of, albeit small, 3D structures.[50] One of the main restrictions of the 

inkjet technology is perhaps the low upper limit of the viscosity for the ink (Table 1), which is 

in the order of 0.1 Pa/s,[51] complicating the deposition of higher viscous natural extracellular 

matrix materials.[52] As small droplets of this ink are deposited onto a substrate with high 

velocity, the low viscosity will facilitate spreading of the droplet on the surface upon impact. 

This impedes building up 3D constructs, for which inkjet technology originally was not 

developed. Moreover, most researchers in this area have been using commercially available 

inkjet printers, which are designed for dispensing low-viscous inks -not containing particles 

measuring over 1 µm- at high resolution. Since this involves channels and orifices measuring 

not much larger than the diameter of a cell, challenges regarding both cell viability and inkjet 

system reliability result.[53] In summary, as a consequence of the small droplet size and the 

diffusion-dependent gelation of inkjet printers results in a challenge to translate this 

technology to larger, more clinically relevant, sizes. 

 
3.3. Robotic Dispensing 

An alternative approach for the design and fabrication of organized 3D hydrogel constructs is 

based on dispensing systems. For this method, hydrogels with suspended cells are generally 

inserted in disposable plastic syringes and dispensed, either pneumatic, piston- or screw-

driven, on a building platform (Fig. 2). Rather than single droplets, robotic dispensing yields 
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larger hydrogel strands. In order to maintain the shape of the constructs after printing, 

hydrogels with higher viscosities are often used. Resolution that can be achieved with robotic 

dispensing is in the order of 200 mm, which is considerably lower compared to laser- or 

inkjet-based systems. Nevertheless, fabrication speed using robotic dispensing is consequently 

significantly higher (Table 1) and anatomically shaped constructs have successfully been 

generated (Fig. 3). Piston-driven deposition generally provides more direct control over the 

flow of the hydrogel from the nozzle, due to the delay of the compressed gas volume in the 

pneumatic systems. On the other hand, screw-based systems may give more spatial control 

and are beneficial for the dispensing of hydrogels with higher viscosities. To further improve 

the printing quality of the 3D constructs, deposition within high viscous crosslinking solutions 

has been explored.[54, 55] Cells have been deposited with high viability and no notable effects 

on differentiation capacity using both pneumatic and piston driven systems (see Table 2). 

Screw extrusion can generate larger pressure drops at the nozzle, which can potentially be 

harmful for embedded cells. Thus, the screw design needs to be specifically designed to 

accommodate biofabrication, rather then using off-the-shelf screws designed for other 

applications. Taken together, robotic dispensing allows the fabrication of organized constructs 

of clinically-relevant sizes within a realistic time frame, hence this technology is often 

regarded as the most promising.[37, 38] 

 
4. Key Hydrogel Properties in Biofabrication 

The suitability of a hydrogel for a specific biofabrication process mainly depends on its 

physicochemical properties under the conditions imparted by the specific biofabrication 

instrument. The development of robust hydrogel systems for biofabrication, i.e., hydrogels 

that are suitable for both fabrication and cell culture, remains a challenge (Fig. 1). The major 

physiochemical parameters that determine the printability of a hydrogel are its rheological 

properties and crosslinking mechanisms (Fig. 4). However, the specific processing parameters, 

such as nozzle gauge (Fig. 4), will consequently determine the shear stress the embedded cells 
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are exposed to, as well as the maximal time required for fabrication of a clinically relevant 

size (cm3-scale) construct (Fig. 4). Finally, once the hydrogel precursors have been printed 

and the cells have survived, the printed construct has to possess, develop or be endowed with 

shape fidelity and sufficient mechanical stability, for example by (post-processing) gelation as 

a result of crosslinking. 

 

These parameters are interlinked and important for the different biofabrication technologies, 

however, absolute numbers can be considerably different given the nature of the deposition 

process. For example, inkjet printing is generally limited to low maximum viscosities, while 

with robotic dispensing bioinks with higher viscosities can be processed. Accordingly, inkjet 

printing requires rapid gelation to allow fabrication of an intricate 3D structure. On the other 

hand, robotic dispensing will facilitate the maintenance of the initial shape after deposition of 

hihj viscous liquids allowing for gelation (crosslinking) of the generated structures post-

fabrication, as well as building large constructs in the x, y, z directions. This illustrates how 

the viscosity of the hydrogel forming solution dictates how quickly it needs to solidify. In 

addition, swelling or contraction characteristics of hydrogels must also be considered and 

taken in account when designing a biofabricated tissue construct of particular size. Moreover, 

care should be taken when applying different bioinks with dissimilar swelling behaviour, 

since this can be complicated due to limited grafting of the layers and deformation of the final 

construct. 

 

4.1. Rheology 

Rheology is the study of the flow of matter under application of an external force, and is 

therefore highly relevant to biofabrication. Nevertheless, its importance is underestimated, 

given the high number of investigations that do not take rheology into account when 

developing or evaluating hydrogels for biofabrication. In the instances that rheological data is 
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presented, it often lacks the clear correlation to the results of the deposition processes, 

underscoring the complexity of field of rheology and its poorly understood role in 

biofabrication. Here, we discuss the influence of number of rheological parameters on the 

biofabrication process. 

 

4.1.1 Viscosity 

Viscosity is the resistance of a fluid to flow upon application of a stress. In biofabrication, a 

high viscosity impedes both surface tension-driven droplet formation (particularly important 

for filament-based deposition techniques) and the collapse of deposited structures. The 

viscosity of a polymer solution, such as a hydrogel precursor, is predominantly determined by 

the polymer concentration and molecular weight. This is illustrated in Table 3 for a number 

of hydrogel forming polymers, including sodium alginate (typical molecular weight 200 kDa) 

and Lutrol F127 (molecular weight 12 kDa). As hydrogels of high polymer concentrations can 

be restrictive environments for cell proliferation, migration and tissue formation,[56] it seems 

logical to opt for low concentrations of high molecular weight polymers. This (besides the 

before mentioned inherent biofunctionality) may explain the popularity and success of 

naturally derived polymers in the field, as many have high molecular weights that have not 

been matched by the same extend by synthetic biodegradable alternatives so far. Viscosity of 

the bioink directly influences shape fidelity after deposition (Fig. 5). Low-viscous 20% 

gelatin methacrylamide (gelMA) solution forms droplets at the needle tip, resulting in the 

deposition of strands that spread out on the surface, while the increase in viscosity by orders 

of magnitude upon addition of 2.4% high molecular weight hyaluronic acid (HA), allows the 

formation of a filament rather than a droplet.[57] Consequently, high-fidelity 3D structures 

could be deposited in which horizontal pores exist in addition to the vertical pores. 
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Printing fidelity, thus, generally increases with increasing viscosity, and this is the major 

underlying reason why hydrogels are usually printed with lower accuracies and resolutions 

than thermoplastic polymers. However, an increase in viscosity implies an increase of the 

applied shear stress, which may be harmful for the suspended cells.[58] A plethora of long-

term studies on the influence of intermediate shear stress levels on cell attachment and 

behavior has been performed (e.g., [59] on endothelial cells). For example, at levels in the 

order of 1Pa endothelial cells may detach from a surface[60] and the morphology and 

metabolic activity of articular chondrocytes is significantly changed.[61] Much less is known 

about short-term exposure to very high shear stresses that may arise in printing nozzles and 

orifices, but cells appear quite resilient in this respect[62] as the viability of printed endothelial 

cells have been shown to not decrease for shear stress levels up to 1150 kPa,[39] which is 6 

orders of magnitude higher than typical values for detaching cells from a surface or 

influencing cell morphology and metabolism. Within the range of systems, hydrogels and 

cells used so far, cell viability was generally not severely affected although a (negative) 

influence of shear stress (higher speeds and thinner nozzles) has been observed for robotic 

dispensing based systems.[63] In inkjet printing, transient pores have been observed in the cell 

membrane of printed Chinese hamster ovary cells.[48] These pores, measuring approximately 

10 nm, did not negatively affect viability or apoptosis and were self-repaired within 2 hours. 

Their presence was even used to the benefit of allowing gene transfer through the pores. 

Besides viscosity, the geometry of the dispensing setup (dimensions of channels, nozzles 

and/or orifices) and flow rates are additional factors that influence shear stress. In other words, 

shear stresses may be reduced at the cost of loss of resolution (larger nozzles/orifices) or at 

the cost of flow rate. 

 

In addition to polymer concentration and molecular weight (as main contributors), viscosity 

further depends on the solubility parameter (influencing the polymer coil’s hydrodynamic 
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radius), shear rate, temperature and other specific interactions. This means more sophisticated 

adaptations, which are more likely to ensure proper cellular behavior, are available for 

improving the rheological behavior of hydrogels for biofabrication. 

 

4.1.2 Shear Thinning 

Shear thinning (also pseudo-plasticity) refers to the non-Newtonian behavior in which the 

viscosity decreases as shear rate increases.[64] It is caused by shear-induced reorganization of 

the polymer chains to a more stretched conformation, which leads to decreased entanglement 

and, therefore, viscosity. This phenomenon is, to a variable extent, exhibited by most 

polymeric systems. Particularly, shear thinning is observed for solution of polymers with high 

molecular weight. Sodium alginate is an example of a polymer that shows strong shear 

thinning behavior (Fig. 6).[65] At shear rates relevant for 3DF of hydrogels (100-500 s-1), the 

viscosity is approximately an order of magnitude lower than the plateau value at low shear 

rates. For higher concentrations, the relative reduction in viscosity induced by shear is even 

greater. This implies a decreased shear stress at the high shear rates that are present inside a 

nozzle or orifice during biofabrication, followed by a sharp increase in viscosity (resulting in 

a high printing fidelity) upon deposition (Fig. 7). 

 

4.1.3 Yield Stress 

Yield stress is a stress that that must be overcome to initiate flow. Generally interactions 

between polymer chains result in the formation of a fragile, physically crosslinked network, 

which is broken by shear forces (above the yield stress) and (slowly) reforms when the shear 

is removed. Where high viscosity only delays collapse of a deposited 3D structure, the 

presence of a yield stress can potentially prevent flow and collapse. For example, gellan gum 

is an anionic polysaccharide that can be crosslinked by cations to form physical networks.[66] 

When added to gelMA at tailored salt concentrations it forms a gel suitable for robotic 
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dispensing as it exhibits strong yield stress behavior (Fig. 7).[67] Besides improving printing 

fidelity, the presence of a yield stress also prevents cell settling in the hydrogel precursor 

reservoir. Other hydrogel systems that exhibit yield stress and shear-thinning have been 

developed more specifically for delivering cells or bioactive molecules into the body by 

injection from a syringe.[64] Among these systems are self-assembling peptide based 

hydrogels[68], recombinant protein hydrogels[69], colloidal systems[70], gels based on 

cyclodextrin inclusion complexes and block copolymers.[71] 

 

4.2. Crosslinking mechanisms for hydrogels 

Gelation of a printed hydrogel structure is necessary to preserve its shape; even structures 

constructed from the most viscous precursor solution will change shape due to shape and 

collapse at some point. The gelation can either be physical (based on reversible interaction), 

chemical (based on formation of covalent chemical bonds), or a subsequent cascade and 

combination of both processes (Fig. 8). 

 

4.2.1 Physical Crosslinking 

Physical crosslinking mechanisms rely on non-chemical interactions based on entanglements 

of high molecular polymer chains, ionic interactions, hydrogen bridges or hydrophobic 

interactions. Physically crosslinked hydrogels are the most prominent hydrogel class used for 

biofabrication processes. For example, the first robotic dispensing approach, as described by 

Landers et al.,[72] involved printing a physically crosslinked hydrogel into a liquid. Due to the 

buoyancy of the hydrogels in the liquid, printed constructs are supported, facilitating the 

generation of porosity in the x-, y-, and z-directions. Gelation is predominantly based on 

ionic-crosslinking or on a thermally-induced property change and it has been demonstrated 

that printing into a liquids can also be combined with chemical crosslinking.[73] This strategy 
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is still being applied, for example by the printing of hydrogels into perfluorinated 

hydrocarbon-liquids.[54] 

 

One reason for the popularity of physically crosslinked gels is that they have excellent 

compatibillity with fragile molecules (e.g. growth factors) and with living cells, because 

potentially harmful chemical crosslinking agents are avoided. With physically crosslinked 

hydrogels, as the name implies, non-covalent physical interactions between hydrophilic 

polymer chains exist that prevent the gel from (immediate) dissolution in an aqueous 

environment. Many physical interactions have been exploited to design such physically 

crosslinked hydrogels, these interactions include hydrogen bonding, ionic interactions 

(polyelectrolyte hydrogels), stereocomplex formation of polymers or polymer fragments of 

opposite chirality, and hydrophobic interactions (e.g. self-assembly peptides).[74, 75] 

 

4.2.1.1 Ionic Crosslinking 

Ionic crosslinking is therefore an important mechanism in biofabrication, particularly for 

biopolymers. For example, alginate is a polysaccharide that consists of mannuronic and 

glucuronic acid residues and that is highly soluble in water as Na-salt. However, upon 

addition of Ca2+ ions (or other di/trivalent cations) rapid gelation of alginate occurs. Since this 

crosslinking occurs under mild and physiological conditions, alginate gels have been studied 

as system for the controlled release of pharmaceutical proteins and for the entrapment of 

living cells for TE applications.[76] As a consequence alginate has been widely applied in 

biofabrication approaches (Table 2). In recent years, hydrogels have also been developed 

exploiting electrostatic interactions between particles (nano and or micro) of opposite charge 

dispersed in an aqueous systems. These gels are rapidly formed upon mixing of the particles 

of opposite charge, but become fluid above a certain shear stress, sufficient to break the 
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interactions between the charged particles, making them suitable as injectable drug delivery 

system and likely also for bioprinting.[77] 

 

4.2.1.2 Stereocomplex Crosslinking 

Stereocomplex formation occurs, for example, between poly(D-lactic acid) (PDLA) and 

poly(L-lactic acid) (PLLA), homopolymers of D- and L-lactic acid, respectively. When 

oligomers of D- and L-lactic acid are coupled to water-soluble polymers like dextran or 

polyethylene glycol, hydrogels are formed which are crosslinked by stereocomplexes 

composed of oligomers of opposite chirality. Stereocomplexation does not occur immediately 

upon mixing of the hydrogel building blocks, allowing their use as injectable systems for 

controlled drug/protein release and as scaffolds for entrapment of cells.[78] An additional form 

of complexation mechanisms is the formation of inclusion complexes. For example, 

cyclodextrins, cyclic oligosaccharides composed of R-1,4-coupled D-glucose units contain a 

hydrophobic internal cavity that can accommodate lipophilic guest molecules. Cyclodextrins 

have therefore been investigated for the solubilization of hydrophobic drugs, but also used for 

the design of super-molecular materials, including hydrogels. In this approach, hydrophilic 

polymers are derivatized with cyclodextrin units, which, upon mixing with a guest molecule-

derivatized polymer, result in the formation of a hydrogel structure. These systems can be 

readily loaded with bioactive proteins and used as injectable sustained release system.[79] 

 

4.2.1.3 Thermal Crosslinking 

Mechanisms described above may be exploited for biofabrication in combination with 

sensitiveness to changes in external stimuli, especially shear force to yield shear-thinning 

systems.[64, 80] Of particular interest are systems that are liquid at room temperature, allowing 

their formulation with bioactive molecules and/or cells, but that gel at body temperature after 

their administration. Such hydrogels comprise of thermosensitive polymers which have a 
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good aqueous solubility at room temperature but are insoluble at body temperature. A main 

representative of thermosensitive polymers is poly(N-isopropylacryl amide) (PNIPAm) which 

is characterized by a cloud point in water of 32 °C. This polymer has been combined in 

different architectures with a great variety of water-soluble polymers to yield injectable 

hydrogels.[81] PNIPAm is, however, not biodegradable and therefore in recent years a number 

of biodegradable thermosensitive polymers have been described, which were subsequently 

investigated for TE,[24, 57] as well as for pharmaceutical applications.[82] 

 

4.2.2 Chemical Crosslinking 

A significant drawback of the physically crosslinked hydrogels is their poor mechanical 

properties, which may raise stability problems of a printed construct and be associated with 

difficulties in handling and its overall performance. Therefore, increasing attention has been 

given to hydrogels that are hold together by weak (reversible) physical interactions that enable 

good printability, but that can further be stabilized by chemical crosslinking post-processing. 

Chemical crosslinking, which comprises all methods that lead to hydrogel formation by 

connection of gel precursors (low molecular weight monomers or polymeric building blocks) 

through newly formed covalent bonds, may be tuned to provide hydrogels with good handling 

properties and high mechanical strength. Chemical crosslinking is usually achieved by mixing 

of two low viscous solutions with gel precursors (e.g. monomers and initiator, 

complementarily reactive gel precursors), which initiates the crosslinking reaction. This 

results in a constant increase of viscosity until the gel-point is reached and a 3D polymer 

network develops. A major drawback of this strategy for biofabrication is the need for very 

stringent control of crosslinking kinetics from low viscosity printable precursor solutions to 

the crosslinked hydrogels without blocking the nozzle during the continuous printing process. 

Yet, shape fidelity of the printed construct has to be guaranteed. One possibility to exploit 

chemical crosslinking for biofabrication is the use of reactive mixing heads (Fig. 8). 
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Importantly, these technologies should be developed in such a way that the crosslinking can 

be done under mild/physiological conditions using chemistry compatible with bioactive 

proteins and living cells. Hence, chemical crosslinking methods have to be designed in such a 

way that toxic reaction by products or non-cytocompatible monomers and hydrogel precursors 

are avoided. 

 

In order to increase the viscosity of the bioprinted gel, hydrogels have also been partially pre-

crosslinked prior to deposition.[83] As in the crosslinking process covalent bonds are formed 

and beyond the gel point the shape is irreversibly fixed, it will be particularly challenging to 

achieve the desired degree of crosslinking when employing this strategy. Others have ensured 

high viscosities and fast gelation by initiation of the crosslinking prior to the printing.[84] The 

continuous development of rheological properties over time during the printing process will 

likely affect the final shape fidelity. Consequently, chemical crosslinking is mainly used for 

post-processing fixation and stabilization of printed structures. This approach includes post-

stabilizing freshly printed hydrogel constructs, usually weakly stabilized through physical 

crosslinks, by exposure to radiation, temperature, or by post-processing reaction of 

complementary chemical groups (e.g. by Michael addition reaction[85], click chemistry[86] or 

enzymatic reactions[87]). Thus, often a cascade of gelation mechanisms and triggers are 

involved in such systems. For example, the printing of warm gelMA-based solutions that form 

physical gels upon cooling on the collector, is followed by UV-curing to obtain an irreversibly 

crosslinked gel.[57] This post-processing photo-polymerization step can lead to very fast 

crosslinking of the hydrogel and, hence, facilitates the maintenance of shape directly after 

dispensing.[24, 88] However, UV light has potentially deleterious effects on the embedded cells, 

and hence its use in biofabrication must take this into account. 

 

5. Converging Biofabrication Strategies 
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For the fabrication of customized tissue equivalents in tissue engineering, complex anatomical 

architectures with a certain degree of stiffness may need to be fabricated. Convergence of 

biofabrication approaches allows for the production of more complex architectures that 

include overhangs and internal porosity by using sacrificial materials as temporal support 

during fabrication. Moreover, reinforcing the hydrogel constructs with thermoplastic 

polymers provides strength, allowing these implants to withstand the mechanical forces they 

are potentially exposed to within the musculoskeletal system. 

 

5.1. Sacrificial Materials 

The CAM-models of complex anatomical structures could easily be derived from a 3D-scan 

of the part of interest of the human body.[1] Such models often involve overhang geometries 

due to internal cavities, or due to the outer contour of complex anatomical structures. Through 

smart rotation of the 3D design, the number of overhangs can be minimized for the AM 

process. Nevertheless, the remaining overhang geometries need to be temporarily supported, 

as the deposition of material above an empty cavity will be difficult. Preferably, the 

temporary support material can be washed away from the target structure serving as a 

sacrificial component.[89, 90] Sacrificial materials have been implemented in molding processes 

for creating microchannels in chips.[89, 91] Since these chips were fabricated from inorganic 

materials the sacrificial components could be removed with a broad spectrum of chemical 

substances. However, when support materials are a component of viable hydrogel constructs 

the sacrificial procedure should be cytocompatible. Therefore, sacrificial materials have been 

applied for realizing channel networks within hydrogel constructs, either by casting[92] or by 

combining printing and casting.[74, 90] In the latter approach, Miller et al.[90] printed a vascular 

network from carbohydrate glass, a solution of sucrose, glucose and dextran. Subsequently, a 

hydrogel was cast and crosslinked around this network and the construct was placed in culture 

medium allowing the printed carbohydrate glass to dissolve. Although this approach provides 
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exceptional control over the shape of the internal vascular network, with such casting control 

over the architecture of the surrounding hydrogel construct remains limited. In order to 

control deposition of different cell types or bioactive substances, the sacrificial material could 

be applied in a bottom-up AM approach. However, this limits the number of suitable 

biomaterials. For example, a wide range of water-soluble materials, including carbohydrate 

glass[90] and polyvinyl alcohol (PVA) are stiff enough to carry their own weight, but form 

unstable interfaces with the surrounding hydrogel target structures due to their hygroscopic 

properties. Alternatively, a thermoplastic polymer (e.g. polycaprolactone (PCL)) can be co-

deposited as a sacrificial component that forms a stable interface with the hydrogel 

construct,[93] yet such thermoplastic polymers require physical removal from the target 

structure, since dissolution using organic solvents would be detrimental the embedded cells. 

As such, the printed thermoplastic structure serves as a mold and only supports the outer 

contours.[94] Co-deposition of two stable hydrogels, on the other hand, allows for temporary 

support of internal cavities, as is the case for tubular structures.[93, 95] In order to dissolve the 

sacrificial component the target structure needs to be selectively crosslinked.[93] 

 
5.2. Combination with thermoplastic polymers 

Biofabricated hydrogel constructs for implantation usually have a lower stiffness than their 

target tissue, especially for use in the musculoskeletal system[57, 96] A stiff and coherent 

hydrogel construct will be required to withstand such challenging environments in the human 

body. Pre-culturing cells in these constructs can increase stiffness due to specific tissue matrix 

deposition.[97] Yet, this demands high cell concentrations and a substantial preculturing period. 

Disregarding the influence of incorporated cells, improving stiffness of the hydrogel itself 

could be achieved by increasing hydrogel crosslink density. Unfortunately, this compromises 

formation of new tissue partly due to impaired diffusion coefficients of nutrients and wate 

products through the hydrogel system.[22, 39, 97, 98] 
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In order to combine favorable biological and mechanical hydrogel properties, reinforcement 

of hydrogels has been achieved at different levels. Hydrogels have been reinforced by use of 

double networks (DN)[99] and interpenetrating polymer networks (IPN),[100] as well as by 

incorporation of nanoparticles[101], nanotubes[96, 101, 102] or electrospun fibers.[103-105] In these 

approaches the crosslink density of the hydrogel could remain relatively low allowing for 

adequate tissue formation. However, most of these approaches will not be compatible with 

AM processes, since fabrication requires casting or a two-step crosslinking reaction. 

Therefore, recently multiple-tool biofabrication has been developed in which hydrogel 

constructs are reinforced by co-deposited thermoplastic polymer fibers.[93, 105-108] Specifically, 

this has been achieved by combining hydrogel and PCL in robotic dispensing[106-108] and by 

combining electrospinning techniques with inkjet printing[105] or laser-induced forward 

transfer printing[109]. In this way, hydrogels can be processed at low polymer concentrations 

while shape and strength of the overall construct are secured by the thermoplastic polymer 

network. Moreover, it can be used in order to fabricate more complex shaped tissue 

constructs[93] and the Young’s modulus of the target construct can be tailored by adjusting the 

thermoplastic polymer network.[106, 108] Electrospinning produces a higher resolution of PCL 

fibers[105, 109] compared to robotic dispensing, and results in a network that better approaches 

the structure of natural ECM. However, the current solution electrospinning techniques are 

not able to control fiber deposition and the small pore size of the resulting random meshes 

limits cell migration.[110] Recently developed melt electrospinning writing techniques[111] 

address both these limitations,[112] since fibers can be deposited with high spatial resolution 

and orientation. Combining this technique with hydrogel deposition approaches will allow for 

the generation of reinforced hydrogel constructs with high control over the intricate spatial 

organization, although grafting between fibers and the hydrogel needs to be addressed in 

order to biofabricate truly integrated constructs. In addition, degradation kinetics of these 

hybrid structures should be understood and controlled. The hydrogel scaffold acts as a 
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temporary environment and degrades as the embedded cells secrete proteases and 

subsequently produce extracellular matrix proteins that defines the new tissue. In contrast, the 

polymeric reinforcement material should degrade in a significant slower rate, providing 

strength to the developing construct until the tissue has matured and at least once remodeled. 

 

6. Concluding remarks and Future Perspectives 

Current deposition and fabrication technologies allow researchers to design and build  

structures with increasingly intricate architectures. However, in achieving this, many 

concessions were made with regards to the biological aspects of the hydrogels. The overall 

lack of suitable bioinks for the generation of larger 3D constructs that replicate a certain 

degree of tissue organization is hampering both the progress in the field of biofabrication and 

its translation towards clinical application. In part, this may be due to the current lack of 

comprehensive and systematic studies that focus on the characterization of the potential 

bioinks from a physical and rheological point of view. The fact that these physical and 

rheological properties of hydrogel precursors will interact with its biological performance, 

highlights the need for novel (semi-) high throughput screening assays since new or altered 

materials will have to be re-evaluated. 

 

Maintaining high shape fidelity may compromise the biological competence and the clinical 

potential of the generated structures, due to the physicochemical demands of the hydrogel and 

the extensive fabrication times. Optimization of the environmental conditions during 

biofabrication, e.g., printing into a culture medium, may allow for longer fabrication times 

without negatively affecting the embedded cell viability. Reproduction of the tissues with 

minute detail is most likely not required,[46, 113] although, this is a relatively unexplored topic 

in the field and a deeper understanding is urgently needed to which degree the directed 

organization will contribute to the ultimate organization of the regenerated tissue. A collection 
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of deposited cells and matrix within a 3D structure is not yet a functional tissue and following 

the biofabrication, extracellular matrix deposition and remodeling are important processes to 

form functional tissue structures that will determine the ultimate success of the generated 

tissue replacement. It will take time to actually achieve the required reorganization and to 

realize functional interaction of the neo-tissue. Besides this, it remains also to be determined 

if this reorganization should fully take place after implantation or that an in vitro conditioning 

period, e.g., in a bioreactor with mechanical loading regimes or ectopically in the human body, 

should be incorporated in the approach. The inclusion of more rigid thermoplastic polymer 

fibers within hydrogel constructs, either generated by fiber deposition modeling[106] or 

electrospinning,[103, 112] may assist in taking some of the initial load-bearing, potentially 

decreasing the bioreactor culture required. 

 

For polymer chemists and material scientists, it remains a challenge to develop unique bioinks, 

taking in account the required biological competence, the physical requirements dictated by 

the biofabrication process, as well as the relative toxicity of crosslinking[114] and photo-

initiator initiator[115] agents. Promising developments are the generation of IPNs for 

biomedical applications, including those based on gelatin methacrylamide and gellan gum 

methacrylate,[37, 99] which demonstrated to have improved mechanical properties while 

allowing cellular survival. In addition, double-network (DN) hydrogels[116] are an example of 

hydrogels that have, despite their high water content (~90 wt%), unsurpassed mechanical 

strength and toughness and are, therefore, suggested as potential full tissue (cartilage) 

replacements.[117] However, care should be taken in this instance since compression resistance 

is lost after repeated compression due to breakage of the primary polymer network. Novel DN 

hydrogels have recently been developed that show partial healing capacity of the primary 

network.[118] Incorporation of cells in these hydrogel systems will still remain a challenge due 

to the limited cytocompatibility of the crosslinking agents, as well as to the two-step synthesis 
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procedure required to create these IPNs,[37, 119] although incorporation as a reinforcing 

component of a biofabricated construct can be envisioned. 

 

The range of biomaterials that could be applied as bioinks could be extended through the 

further development of biofabrication methods that can process hydrogel precursor solutions 

that rely on the addition of a crosslinking agent. Obviously, processing pre-mixed components 

is problematic due to the increasing viscosity as a result of the initiation of the crosslinking 

reaction. To avoid crosslinking within the nozzle it is very important to synchronize feed rate 

and crosslinking kinetics. 

 

An additional important challenge is the scale-up and speed of bioabrication, in order to 

manufacture constructs of clinically relevant sizes. Approaches to potentially improve 

production speed include the further convergence of biofabrication technologies, combining 

approaches with different scales of resolution (e.g., laser-based and robotic dispensing 

approaches), as well as high throughput production of smaller organized units[120] that can 

subsequently be assembled in the laboratory or in situ in to larger structures.[46] Still often a 

trade-off between resolution and speed has to be made. While relatively large constructs can 

be manufactured with robotic dispensing, scale-up issues should be considered for both laser- 

and inkjet-based systems.[46] With respect to inkjet printing, if systems were to be redesigned 

specifically for bioprinting with respect to dimensions, the process may become more reliable 

and of less impact on cell viability and function. Moreover, higher viscosities may be 

permitted as larger channels and orifices imply lower pressure drops and shear stresses, 

thereby widening the range of processable hydrogels and facilitating 3D construction. Even at 

a tenfold decrease in printing resolution (e.g. from 1200 dpi to 120 dpi), the minimum feature 

size (200 mm) may still be acceptable for many bioprinting applications. Although inkjet 

printers applied for bioprinting purposes were designed to print in 2D, 3D inkjet printers have 



    

 26 

recently become commercially available. 3D inkjet printing works by jetting a photo curable 

resin in thin layers (typically 28 µm) onto a tray, followed immediately by UV curing to 

prevent spreading of the droplets. In this way, polymer parts of up to 150 mm in height have 

been fabricated. These developments clearly illustrate the enormous, yet unexplored, potential 

of inkjet technology. 

 

Taken together, biofabrication potentially allows for further automation, standardization and 

control of the generation of not only customized implants but also in vitro disease model 

which allow high-throughput studies. With the suitable bioinks, supported by advanced 

biofabrication technologies this will also allow us to perform mechanistic studies e.g. how 

cells interact with their surrounding matrix and/or cells or toxicity screening and drug testing.  
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Figures 

 
Figure 1. This review advocates a change in the paradigm of biopolymer development by 
shifting the biofabrication window. Optimal shape fidelity in biofabrication processes can 
typically be achieved with stiff hydrogels containing high polymer concentrations /or 
crosslink densities (fabrication window), however, this dense polymer network limits cell 
migration, growth and differentiation. On the other end of the spectrum, cells thrive best in 
soft hydrogels (cell culture window), which are to watery too maintain shape for fabrication 
purposes. Therefore, a biofabrication window exists for medium crosslinked hydrogels,[39] 
compromising on both biological and fabrication properties. Recently, strategies are applied 
to shift the bioprinting window, obtaining high shape fidelity with cytocompatible hydrogels. 
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Figure 2. Selected biofabrication approaches involving the use of hydrogels in form of a so 
called “bioink”. 
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Figure 3. Biofabrication examples - Aortic valve model reconstructed from micro-CT images 
(A). The root and leaflet regions rendered separately into 3D geometries (green color 
indicates valve root and red color indicates valve leaflets) and printed (B). An ovine meniscus 
reconstructed from micro-CT images (C) and printed (D). A miniaturized distal femur from a 
human knee designed using Rhino Software LxWxH: 40x35x32mm) containing a cartilage 
layer (green) and a bone component (yellow) and a support structure (white) (E) and printed 
after manual removal of the support structure (F). Reproduced with permission from Duan et 
al.[12] and Wiley (A,B), Cohen et al.[11] Liebert (C,D), and Visser et al.[93] (E, F). 
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Figure 4. Concept map of variables and relations critical to biofabrication. The hydrogel 
(polymer type(s), concentration, molecular weight and chemical composition) directly 
determines the viscosity, gelation mechanism and speed, and mechanical properties of the 
final gel. This -in combination with processing parameters, such as nozzle gauge and 
fabrication time- influence the main outcomes Printing fidelity and Cell viability and function. 
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Figure 5. Illustration of the role of viscosity in bioprinting. Gelatin methacrylamide (gelMA) 
on its own (20%) formes droplets at the nozzle (A) and deposits in flat lines that spread out on 
the surface (C). When 2.4% hyaluronic acid (HA) is added, strands can be deposited from the 
nozzle (B), resulting in a construct of four layers (D). The scale bars in A-C represent 5 mm; 
the scale bar in D is 2 mm. Reproduced with permission from Schuurman et al.[57] and Wiley. 
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Figure 6. Viscosity variation as a function of shear rate for different alginate solutions. Shear 
thinning is demonstrated by the rapid decline in viscosity as the shear rate is increased, with 
higher concentration alginate having the greatest reduction in shear viscosity. Reproduced 
with permission from Rezende et al.[65] and Wiley. 
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Figure 7. Schematic representation of shear thinning and yield stress in plotting gelatin 
methacrylamide (gelMA)/gellan gum. In the syringe the gellan chains (in white) form a 
temporary network and induce gel-like viscosity (i). Upon dispensing through a needle, the 
temporary network is broken up by shear and all polymer chains align, reducing the viscosity 
by orders of magnitude (ii). Directly after removal of shear stress, the temporary network is 
restored and the plotted filament solidifies instantly (iii). Reproduced with permission from 
Melchels et al.[67] 
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Figure 8. Graphical illustration of physical, combinational and wet-chemical crosslinking 
mechanisms for extrusion-based biofabrication. 
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Figure 9. Examples of combined deposition of thermoplastic polymers and hydrogels. 
Scanning electron microscope images of a hybrid printed polycaprolactone (PCL)/ 
poly(lactic-co-glycolic acid) (PLGA) scaffold with infused HA hydrogel (A, B). A three-
dimensional design (C) is translated to a deposition protocol, which uses (thermoplastic) PCL 
and alginate hydrogels (D). Reproduced with permission from Shim et al.[107] (A, B), 
Schuurman et al.[106] (C, D) and IOP Publishing. All rights reserved. 
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Table 1. Typical characteristics of three key dispensing approaches in biofabrication. 
 Laser-induced 

forward transfer 
Inkjet printing 
 
 

Robotic dispensing 
 
 

Resolution ++ + +/- 
Fabrication speed - +/- ++ 
Hydrogel viscosity +/- - + 
Gelation speed ++ ++ +/- 
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Table 2. Hydrogels applied for fabricating 3D-structures. 
hydrogel fabrication 

technique 
polymer 
concentration 
(w/v) 

gelation method printing 
quality 

cytocompatibility reference 

 laser-
induced 
forward 
transfer 

     

alginate  2% ionic 2 intermediate, day 
10 

[121] 

  1% ionic a* high, day 7 [109] 

  1% ionic 3 high, day 1 [122] 

  2%/8% ionic 1/2 not studied [123] 

       

 inkjet      

alginate thermal 2% ionic 2 not reported [124] 

 piezo 0.8% ionic 2 high, day 0 [50] 

alginate/collagen type 1 thermal 1%/0.3% ionic 2 90%, day 7 [125] 

collagen type 1 not 
reported 

0.1% thermal 1 migrating cells [126] 

fibrinogen/collagen type 1 thermal 1%/0.15% enzymatic a* 82%, day 7 [105] 

poly(ethylene glycol) 
dimethacrylate 

thermal 10%; 20% photo (during print) 2 89%, day 1 [13] 
 

       

 robotic 
dispensing 

     

agar pneumatic 5% thermal 2 not studied [72, 127] 

agarose piston-
driven 

1.5% thermal 3b* 95%, day 21 [54] 

 piston-
driven 

5% thermal 1 95%, day 7 [25] 

 piston-
driven 

not reported thermal (cooling of 
strand in needle) 

3 d* not studied [128] 

agarose pneumatic 4% thermal 2*b not studied [55] 

alginate piston-
driven 

10% ionic 2 89%, day 1 [63] 

 piston-
driven 

2% ionic 2 82%, day 3 [25] 

 piston-
driven 

2% ionic 2 75-94%, day 0 [11, 84, 129] 

 pneumatic 1.5% - 3% ionic 2 (3%) 85%, day 0 
(1.5%) 

[130] 

 piston-
driven 

4% ionic 2 not studied [40] 

 piston-
driven 

2% ionic c* 70%, day 3 [106] 
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 pneumatic 3.5% ionic c* 84%, day 0 [108] 

 piston-
driven 

4% ionic c* 94%, day 7 [131] 

 pneumatic 5% ionic 1*b not studied [55] 

 piston-
driven 

1% ionic 2 not studied [132] 

alginate/fibrin pneumatic 6.3%/?% ionic/enzymatic 1 not studied [127] 

alginate/gelatin piston-
driven 

7.5%/5% thermal/ionic/chemical 2 95%, day 0 [133] 

atelocollagen pneumatic 3% thermal c* 95%, day10 [107] 

collagen type 1 pneumatic 0.3% thermal 2 86%, day 1 
 

[27, 134] 

 pneumatic 0.223% pH (sodium bicarbonate) 2*e not studied [135] 

 piston-
driven 

0.1% thermal 1 migrating cells [126] 

gelatin piston-
driven 

20% thermal/chemical 2 95%, month 1 [136] 

 piston-
driven 

20% thermal/chemical 2/3 poor cell 
differentiation 

[137] 

 pneumatic 7% thermal 2*d not studied [135] 

 pneumatic 2% extruded in gel phase at 
20°C 

2 not studied [55] 

gelatin methacrylamide piston-
driven 

20% thermal /photo 1 73% [57] 

gelatin/alginate piston-
driven 

6%/5% thermal/ionic 3 82%, day 7 [12] 

gelatin/alginate/chitosan piston-
driven 

15%/1.25%/2.5 enzymatic/ionic/chemical 2 proliferating 
cells, day 7 

 

gelatin/alginate/fibrinogen 
 

piston-
driven 

15%/1.25%/0.5% 
 

thermal / enzymatic/ 
ionic/ 
chemical 

2 proliferating 
cells, day 7 

[138] 

gelatin/alginate/fibrinogen piston-
driven 

2:1:1 thermal/ionic/enzymatic 2 differentiating 
cells 

[139] 

gelatin/chitosan 
 

piston-
driven 

5%/0.5% 
 

ionic/ 
chemical 

2 98%, month 2 [140] 

gelatin/chitosan piston-
driven 

4.6%/0.4% thermal 1 Not reported [141] 

gelatin/chitosan piston-
driven 

9%/1% thermal 2 85-97% [141] 

gelatin/fibrinogen 
 

piston-
driven 

13.3%/3.3% 
10%/5% 
6.6%/6.6% 

enzymatic 2 98%, day 0 [142] 

gelatin/Hyaluronan piston-
driven 

10%/0.5% thermal/chemical 2/3 poor cell 
differentiation 

[137] 

gelatin methacrylamide/ 
hyaluronic acid 

piston-
driven 

20%/2.4% thermal/photo 3 82%, day 3 [57] 

gelatin 
methacrylamide/gellan 

piston-
driven 

10%/1.1% ionic/ 
thermal/photo 

3 e* 80%, day 3 [93] 
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hyaluronic acid/ 
hydroxyethyl-
methacrylate-derivatized-
�dextran (dex-HEMA) 

piston-
driven 

10% photo 2 75%, day 3 [88] 

hyaluronic acid 
methacrylate (HA-
MA)/gelatin methacrylate 
(GE-MA) 

piston-
driven 

1.2%/0.3% photo (during print) 1 proliferating 
cells, day 7 

[83] 

hyaluronic acid 
methacrylate (HA-MA) 

piston-
driven 

1.5% photo (during print) 1 not studied [83] 

Lutrol F127 piston-
driven 

25% thermal 3 2%, day 7 [25] 

 pneumatic 30% thermal 3 60%, day 0 [27] 

 piston-
driven 

40% thermal 3d* not applicable [74] 

Lutrol piston-
driven 

25% thermal/photo 3 50%, day 3 [11, 84] 

Matrigel piston-
driven 

not reported thermal 1 High viability [143] 

methylcellulose piston-
driven 

4% thermal 1 not reported [25] 

N- isopropylamid and 
polyethylene glycol) 

pneumatic 10% thermal 2 not studied [144] 

poly(ethylene glycol) 
diacrylate 

pneumatic 25% photo 1 not studied [55] 

poly(ethylene glycol) 
diacrylate/ alginate 

piston-
driven 

20%/12.5% photo (during print) 3 near 100%, day 
21 

[44] 

p(HPMAm-lactate)-PEG piston-
driven 

25-35% 
 

thermal /photo 3 94%, day 1 
 

[24] 

tetraPAc piston-
driven 

1-2% michael addition 2e* high, day 28 [95] 

Printing quality rated on shape-fidelity scale: 
1= low   undefined structure 
2= intermediate  irregular pattern/fiber, 3D potential 
3= high  well-defined building material 
*a = reinforced with solution electrospun fibers 
*b = submerged fabrication technique 
*c = reinforced with co-deposited thermoplastic polymer scaffold 
*d = hydrogel is sacrificial component, no aim for direct cell encapsulation 
*e = support component used 
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Table 3. Viscosities of some hydrogel precursor solutions used for printing. 
polymer concentration 

% w/v 
viscosity 
 
(Pa.s) 

shear 
rate 
 
(s-1) 

molecular 
weight (kDa) 

reference 

sodium alginate 2 0.9 100 100-500 
(typical) 

[65] 

3 2.0 

5 6.4 

Lutrol F127 25 0.03 - 12 [74] 

30 1.5 

35 26 600 

40 >600 000 

PE 10 0.008 200-
1300 

3.35 [13, 145] 

20 0.017    

Gelatin 10 0.02 50 50-100 [67] 

Hyaluronic acid 1.5 22 1 950 [95] 

Collagen type I 0.3 10 0.1-100 115+230 [27, 134, 146] 

GelMA/gellan 10/0.75 1 50 50-100/1000 [67] 
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Hydrogels are attractive cell carriers for regenerative medicine as they recapitulate 
several features of the natural extracellular matrix. However, biofabrication of three-
dimensional complex, tissue-like structures with high shape fidelity dictates narrow 
boundaries for the physical properties of the hydrogels applied. This review focuses on 
strategies and new developments that address these physicochemical challenges. 
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