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This study has carried out an assessment of Phien generalised storage–yield–probability (S–Y–P) models
using recorded runoff data of six global rivers that were carefully selected such that they satisfy the cri-
teria specified for the models. Using stochastic hydrology, 2000 replicates of the historic records were
generated and used to drive the sequent peak algorithm (SPA) for estimating capacity of hypothetical
reservoirs at the respective sites. The resulting ensembles of reservoir capacity estimates were then anal-
ysed to determine the mean, standard deviation and quantiles, which were then compared with corre-
sponding estimates produced by the Phien models. The results showed that Phien models produced a
mix of significant under- and over-predictions of the mean and standard deviation of capacity, with
the under-prediction situations occurring as the level of development reduces. On the other hand, con-
sistent over-prediction was obtained for full regulation for all the rivers analysed. The biases in the reser-
voir capacity quantiles were equally high, implying that the limitations of the Phien models affect the
entire distribution function of reservoir capacity. Due to very high values of these errors, it is recom-
mended that the Phien relationships should be avoided for reservoir planning.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The determination of reservoir capacity to meet the demand
with an acceptable level of satisfaction (or reliability) is an age-
old problem and there currently exist many techniques for accom-
plishing this task as documented by McMahon and Adeloye (2005),
Adeloye (2012). Most of these techniques such as behaviour simu-
lation, the mass curve and the sequent peak algorithm are sequen-
tial, involving the analysis of time-series runoff data at the
reservoir site (Adeloye, 2012). Such sequential techniques are gen-
erally preferred because they automatically take into account the
effect of runoff characteristics-mean, coefficient of variation
(CV = mean/standard deviation), serial dependence, skewness-on
capacity estimates. However, sequential methods are sometimes
infeasible, e.g. when the site is ungauged or the available record
is too short that using them will result in significant uncertainty
in the estimated capacity (Adeloye, 1990, 1996), or unwarranted,
e.g. during preliminary analysis to screen potential reservoir sites.
For these situations, generalised storage–yield–probability (S–Y–P)
relationships offer a way out and there are numerous examples of
such applications as recently reviewed by Kuria and Vogel (2015).
Generalised relationships relate the storage capacity to the
demand and runoff summary statistics, most of which can be indi-
rectly estimated from easily measureable catchment characteris-
tics (see Adeloye et al., 2003), thus making them applicable to
ungauged or poorly gauged catchments.

Several generalised storage–yield relationships have been
reported in the literature including Vogel and Stedinger (1987),
Burchberger and Maidement (1989), Bayazit and Bulu (1991),
Adeloye et al. (2003), Bayazit and Onoz (2000), Phien (1993),
Silva and Portela, 2012, Kuria and Vogel (2015) and McMahon
et al. (2007a). Apart from few exceptions that used recorded data
(e.g. McMahon et al., 2007a; Adeloye et al., 2003), a common fea-
ture of most of the existing generalised relationships is that they
have been developed using runoff data sampled stochastically, i.
e. a distribution hypothesis of the runoff is first assumed, then
plausible statistics of the runoff (mean, CV, and serial dependence)
are assumed and used to generate large replicates of runoff data for
typical record lengths commonly encountered in practice. Capacity
estimates are then obtained by routing the runoff record through a
hypothetical reservoir using a suitable reservoir planning tech-
nique such as the sequent peak algorithm, SPA (see Loucks et al.,
1981). The resulting capacity estimates are then summarised in
terms of the mean and standard deviation of reservoir capacity,
two of the three statistical parameters required to fully specify
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Nomenclature

Symbols
c shape parameter of Gamma distribution
Dt volumetric demand in period t
Ka volumetric reservoir capacity estimated by SPA
Kt cumulative sequential deficit at the beginning of year t
m drift
n length of data records (years)
N number of replicates for stochastically generated data
P cumulative probability (%)
Qt annual runoff for year t (annual reservoir inflow)
t time period (years)
V scaled capacity (dimensionless)
V⁄ standardised storage capacity
VP quantiles for scaled storage capacity
VP

⁄ quantiles for standardised storage capacity
Zg gamma standard variate

Zn standard normal variate
Zp standard normal variate for probability p
a demand ratio
b scale parameter of Gamma distribution
c skewness
cQ0 serial-dependent adjusted skew coefficient
cQ skew coefficient of annual runoff
l mean
lQ mean annual runoff
lv mean of scaled capacity
q serial correlation
r2 variance
rg standard error of the gamma skew
rQ standard deviation of the annual runoff
rv standard deviation of scaled capacity
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the 3-parameter log-normal distribution often assumed for reser-
voir capacity (Vogel and Stedinger, 1987; Bayazit and Bulu, 1991).

To produce the generalised models, the mean capacity and stan-
dard deviation of capacity are independently related to the
demand and runoff characteristics usually through regression.
The resulting calibrated regression relationships can then provide
estimates of the mean, standard deviation and ultimately quantiles
of reservoir capacity without the need for Monte Carlo simulation.
This would be a welcome development if estimates of the quantiles
and other reservoir statistics provided by these generalised models
compare favourably with similar estimates obtained using Monte
Carlo simulation analyses with observed runoff data. However,
very few attempts have been made to assess the performance of
the existing generalised models using observed runoff data and
because of this, there is very little guidance on the bias of the com-
monly used generalised methods. However, having this informa-
tion is necessary if the models are to engender confidence in
their adoption for reservoir capacity planning analyses.

McMahon et al. (2007b) analysed a large number of global run-
off records to assess the performance of some of the existing gen-
eralised relationships, including Phien’s, and is one of only few
studies as far as we are aware that have undertaken this task. How-
ever, the study was limited in that it used single historic records
and was thus limited to the mean capacity estimate, which is not
sufficient for fully specifying the probability distribution function
of capacity and hence obtaining the quantile estimates. Nonethe-
less, they found significant biases with both the Vogel–Stedinger
(V–S) and Phien models in predicting the mean of capacity. Addi-
tionally, their treatment of the Phien models did not fully satisfy
the criteria specified in the original development of the models,
especially that relating to the distribution hypothesis for the
annual runoff which was that the annual runoff should have a
gamma distribution. For example, although they tried to establish
that some of the data records followed the gamma distribution
Table 1
Details of Phien (1993) models.

Model number m (see Eq. (8)) Mean of sc

1 0.0 (full regulation)
0:97n0:59 ð

ð
h

2 0.25
0:67n0:41 ð

ð
h

3 0.5
0:18n0:4 ð1

ð1
h

4 Generic (m-independent)
1:467n0:466
using L-moments diagrams, such a ‘‘global” goodness-of-fit
approach falls short of establishing that each of the records
behaved as gamma. Finally, McMahon et al. (2007b) only examined
one of the four Phien models (the one which will be referred to
later on in this paper as the generic-model); there is therefore no
guidance on the remaining three models.

The assessment carried out by Adeloye et al. (2010) focused on
the Vogel–Stedinger (V–S) generalised storage–yield model within
a Monte Carlo framework and using runoff of three global rivers.
They found that the V–S model significantly over-estimates the
reservoir capacity especially at high demands where the bias can
be as much as 140%. The V–S model assumes that the annual runoff
exhibits a normal/log-normal distribution; consequently it is not
straightforward to infer the bias of generalised models of
gamma-inflow-fed reservoirs from the V–S situation.

As implied above, the Phien (1993) models are unique in that
unlike other generalised approaches that assume that the annual
runoff is normally or log-normally distributed, the runoff is
assumed to be distributed as gamma in the development of the
Phien models. As noted by McMahon et al. (2007c,d), many world
rivers cannot justifiably be modelled using the normal distribution
and the gamma is a more plausible distribution hypothesis to use
in such situations. It is therefore important that a complete assess-
ment of the Phien models is carried out and reported.

The aim of this work therefore is to carry out independent
assessment of the Phien (1993) models using runoff records that
meet the gamma distribution hypothesis. The associated tasks
include:

i. Assembling rivers annual runoff data records that exhibit
gamma distribution and estimating their summary statistics.
As will be seen later, six such records were assembled and
used in the study.
aled capacity (lV) Standard deviation of scaled capacity (rV)

1þqÞ
1�qÞ

i0:42
0:69n0:55 ð1þqÞ

ð1�qÞ
h i0:52

1þqÞ
1�qÞ

i0:5
0:85n0:16 ð1þqÞ

ð1�qÞ
h i0:89

þqÞ
�qÞ

i0:67
0:24n0:07 ð1þqÞ

ð1�qÞ
h i1:15

ð1þqÞ
ð1�qÞ
h i0:531 ð1�mÞ

ð1þmÞ
h i2:047

1:787n0:243 ð1þqÞ
ð1�qÞ
h i0:855 ð1�mÞ

ð1þmÞ
h i2:198



Table 2
Details of the catchments used.

Rivers

Homochitto Mareetsane Namsen Nariel Onkaparinga Beas

Country USA South Africa Norway Australia Australia India
Gauging station Eddiceton Neverset Bertnem Upper Nariel Clarendon Weir Pong Dam
Latitude 31.50 �26.12 64.47 �36.45 �35.12 32.1
Longitude �90.78 25.28 12.07 147.83 138.63 77.14
Catchment area (km2) 466.2 566 5177 252 445 12,561
Record length (years) 46 37 23 38 69 15
Mean annual flow, lQ (�106 m3) 238.164 3.378 7674.957 139.859 81.468 8485.173
Serial correlation coefficient (q) 0.057 0.112 0.032 �0.042 �0.01 0.323
CV 0.395 1.012 0.185 0.491 0.684 0.225
95% CONF. of skew = 2CV [0.104,1.476] [1.264,2.783] [�0.574,1.313] [0.232,1.732] [0.801,1.933] [�0.687,1.587]
Sample skew, �Q 0.6926 1.8680 0.3908 0.8983 1.1836 �0.0933

Table 3
Statistics of the observed and simulated runoff data records (the simulated statistics are the mean of 2000 replicates).

River lQ (�106 m3) CV Skewness (�Q) Serial correlation coefficient
(q)

Simulated Observed Simulated Observed Simulated Observed Simulated Observed

Homochitto 237.99 238.16 0.3941 0.395 0.6093 0.693 0.0312 0.057
Mareetsane 3.3814 3.38 0.9655 1.012 1.4926 1.868 0.0979 0.112
Namsen 7737.3 7674.96 0.1809 0.185 0.2215 0.391 �0.0354 0.032
Nariel 140.12 139.86 0.4863 0.491 0.7565 0.898 �0.0683 �0.042
Onkaparinga 82.4946 81.47 0.6813 0.684 1.0848 1.184 �0.0359 �0.010
Beas 8316.8 8485.17 0.2175 0.225 �0.1050 �0.093 0.1735 0.323

Table 4
Results of Kolmogorov–Smirnov goodness-of-fit test for Gamma distribution.

River Test
statistic

Critical value Remarks

5% 2% 1%

Homochitto 0.062 0.196 0.219 0.235 No evidence to reject the
null hypothesis of gamma
distribution at the 5%
level

Mareetsane 0.146 0.218 0.244 0.262
Namsen 0.105 0.275 0.307 0.330
Nariel 0.093 0.215 0.241 0.258
Onkaparinga 0.099 0.161 0.180 0.193
Beas 0.154 0.338 0.377 0.404
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ii. Generating, for each of the historic records, 2000 replicates
(length of each replicate = historic record length) using the
lag-1 autoregressive stochastic model and assess the perfor-
mance of the model in preserving the statistics of the his-
toric records.

iii. Routeing each stochastic replicate through hypothetical
reservoirs using the SPA and hence obtaining the population
of reservoir capacity for various assumed demands (as ratio
of the historic mean annual runoff).

iv. Analysing the population of SPA capacities to determine the
mean and standard deviation of the distribution of capacity
and hence reservoir capacity quantiles.
Table 5
m-specific Phien models and (observed) statistics of scaled reservoir capacity, V.

River m = 0.0 m = 0.2

lv rv lv

Homochitto 9.74 (7.92) 6.01 (2.22) 3.41 (4
Mareetsane 8.97 (6.79) 5.65 (2.25) 3.29 (3
Namsen 6.33 (5.04) 4.00 (1.35) 2.50 (2
Nariel 8.01 (6.29) 4.88 (1.53) 2.86 (3
Onkaparinga 11.69 (9.15) 7.01 (2.57) 3.76 (3
Beas 6.35 (4.13) 4.33 (1.45) 2.84 (2

The bold values indicate the observed values of the relevant statistics.
v. Using Phien models on the historic data to estimate the
mean and standard deviation of the distribution of reservoir
capacity and hence reservoir capacity quantiles.

vi. Comparing the results in (iv) and (v) and making
recommendations.

In the following Section, further details about the Phien models
will be given. This will be followed by the methodology, including
the consideration that went into the selection of the runoff records
analysed. The results and discussions will then be presented, fol-
lowed by the main conclusions of the study.
2. Phien models

2.1. Assumptions

Phien models are based on certain assumptions, namely that
the annual flows are distributed as gamma, that the serial depen-
dence (q) is in the interval [0,0.5], that the record length (n years)
is in the interval [20,50], and that the standardised net inflow
parameter m (see Eq. (8)) is in the interval [0,1.0]. While some of
these are straightforward, the distribution hypothesis and the net
inflow parameter require further explanations.
5 m = 0.5

rv lv rv

.20) 1.74 (1.59) 0.90 (2.44) 0.36 (0.92)

.13) 1.85 (1.24) 0.89 (1.35) 0.40 (0.57)

.95) 1.48 (1.14) 0.66 (1.85) 0.32 (0.79)

.16) 1.41 (1.04) 0.73 (1.82) 0.28 (0.70)

.87) 1.64 (1.28) 0.97 (2.01) 0.32 (0.64)

.78) 2.38 (1.27) 0.83 (1.92) 0.63 (1.01)
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Fig. 1. Error (%) in mean and standard deviation of reservoir capacity (m-specific
Phien models).
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The probability density function (pdf) of the gamma distribu-
tion is:

f ðxÞ ¼ xc�1e�x=b

bcCðcÞ ; c > 0 ð1Þ

where CðcÞ is the complete gamma function, b is the scale parame-
ter and c is the shape parameter. Because the pdf in Eq. (1) has 2
parameters (b and c), this form of the gamma distribution is known
as the 2-parameter gamma. The mean, variance and skewness of the
distribution are given by (NERC, 1975):

Mean ¼ E½x� ¼ l ¼ bc ð2Þ

Variance ¼ E½x� EðxÞ�2 ¼ r2 ¼ b2c ð3Þ

Skewness ¼ c ¼ 2=c0:5 ð4Þ
Table 6
Generic Phien model and (observed) statistics of scaled reservoir capacity, V.

River m = 0.0 m = 0.25

lv rv lv rv

Homochitto 9.28 (7.92) 5.00 (2.22) 3.26 (4.20) 1.63 (1
Mareetsane 8.89 (6.79) 5.21 (2.25) 3.12 (3.13) 1.69 (1
Namsen 6.54 (5.04) 4.04 (1.35) 2.30 (2.95) 1.31 (1
Nariel 7.64 (6.29) 4.03 (1.53) 2.69 (3.16) 1.31 (1
Onkaparinga 10.44 (9.15) 4.91 (2.57) 3.67 (3.87) 1.60 (1
Beas 7.39 (4.13) 6.12 (1.45) 2.60 (2.78) 1.99 (1

The bold values indicate the observed values of the relevant statistics.
Eqs. (2)–(4) can be manipulated further to reveal the unique rela-
tionship between the coefficient of variation (CV) and the skewness
of the 2-parameter gamma function, i.e.:

Skewness ¼ c ¼ 2CV ð5Þ
In other words, the skewness c is twice the CV for the 2-

parameter gamma distribution. While standard goodness of-fit-
tests such as the Chi-squared and Kolmogorov–Smirnov (see
NERC, 1975) can be carried out to ascertain the compliance with
the gamma distribution, this theoretical ‘‘skew-CV” relationship
of the gamma function can be used to rapidly test whether a given
time series data record is distributed as gamma or not. To do this,
the sample skew estimate is compared with the 95% CONF interval
for the skew = 2CV. Assuming that the distribution of the skew is
normal, the 95% CONF becomes:

95% CONF ¼ ½2CV� 1:96rg ;2CVþ 1:96rg � ð6Þ
where rg, is the standard error of the gamma skew, whose indica-
tive estimate is (Matalas and Benson, 1968):

rg ¼ 6nðn� 1Þ
ðn� 2Þðnþ 1Þðnþ 3Þ

� �0:5
ð7Þ

Both the approximate and formal Kolmogorov–Smirnov goodness-
of-fit tests will be implemented in this study to establish the
gamma distribution compliance for the data records.

The drift (m) was varied between 0 and 1 in Phien experiments.
The drift integrates the demand and the coefficient of variation of
annual runoff through (McMahon and Adeloye, 2005):

m ¼ ð1� aÞ
CV

ð8Þ

where a is the demand ratio (=D/lQ), D is the volumetric demand,
lQ is the mean annual runoff, and all other symbols are as defined
previously. The use of m (rather than the CV) to characterise runoff
variability makes it possible to analyse any runoff record with the
Phien method, provided the demand ratio a under consideration
results in an m value within the range of 0–1. The lower and upper
bounds ofm thus correspond to full regulation (i.e. a = 1) and a = 1–
CV, respectively. The latter situation will limit the maximum value
of the CV to 1, i.e. zero demand for which the capacity will be zero.
Consequently, if CV > 1 situations must be considered, then the
maximum m must be less than unity. Although this was not made
explicitly clear in Phien’s analyses, the fact that it was found that
the mean of reservoir capacity was zero for m = 0.75 can easily be
explained by the fact that cases for which the CV was above 1 must
have featured in the analyses. For example, a CV of 1.33 will result
in a demand ratio a = 0.0 for m = 0.75, i.e. no demand and hence no
need for a reservoir. The higher the m value adopted, the lower will
be the CV that can result in nil demand and nil capacity. These dif-
ficulties, although not made clear by Phien (1993), must have forced
Phien (1993) to restrict the maximum value ofm eventually consid-
ered to 0.5.
m = 0.5 m = 0.7

lv rv lv rv

.59) 0.98 (2.44) 0.45 (0.92) 0.27 (1.64) 0.11 (0.61)

.24) 0.94 (1.35) 0.47 (0.57) 0.26 (0.58) 0.11 (0.24)

.14) 0.69 (1.85) 0.36 (0.79) 0.19 (1.34) 0.09 (0.59)

.04) 0.81 (1.82) 0.36 (0.70) 0.22 (1.23) 0.09 (0.45)

.28) 1.1 (2.01) 0.44 (0.64) 0.30 (1.22) 0.11 (0.39)

.27) 0.78 (1.92) 0.55 (1.01) 0.21 (1.44) 0.14 (0.86)
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Fig. 2. Error (%) in mean and standard deviation of reservoir capacity (generic Phien
model).
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2.2. Models for mean and standard deviation of reservoir capacity

Phien (1993) generated 2000 replicates of annual runoff records
with record lengths (n) varying between 20 and 50 years, and q in
the interval [0,0.5]. Once generated, each replicate was routed
through hypothetical reservoirs using the SPA thus resulting in
2000 capacity estimates for each combination of m, n and q. The
resulting ‘‘population” of capacity estimates was then analysed to
determine its mean and standard deviation. Finally, the mean
and standard deviation were independently related to the m, q
and n via regression to develop generalized models. Four such
models were developed by Phien, with three of these being for
specific m values, while the fourth is generic and could in principle
be applied to any m satisfying 0 6m 6 0.5. These models are sum-
marized in Table 1.

In Table 1, the mean lV and standard deviation rV relate to the
scaled capacity V = Ka/rQ, where Ka is the volumetric capacity
(obtained via the SPA-see Section 3.1) and rQ is the standard devi-
ation of the annual runoff. Consequently, V is dimensionless.
Because all the four models include n, the record length (years),
they cannot be applied at ungauged sites, which would limit the
use of the models to rapid evaluations for preliminary reservoir
design studies at gauged sites.

2.3. Probability distribution and quantiles of reservoir capacity

The ultimate use of the generalized models is the provision of
quantiles of reservoir capacity. The distribution of reservoir capac-
ity has been established to be the three parameter distribution (see
Vogel and Stedinger, 1987). The 3-parameter log-normal distribu-
tion has 3 parameters: the mean, standard deviation and the lower
limit. In particular for reservoirs fed by annual inflows that are nor-
mally distributed, Bayazit and Bulu (1991) showed that the stan-
dardized storage capacity, V⁄ (see Eq. (9)) has a three parameter
log-normal distribution with the following fixed parameters: loca-
tion (or lower limit) = �2.0; mean = 0.5816; and standard devia-
tion = 0.4724, where:

V� ¼ V � lv
rv

ð9Þ

Goodness-of-fit tests reported by Phien (1993) also confirmed
that the 3-parameter log-normal distribution (with the above fixed
parameters) can be used to describe the standardized capacity
obtained for rivers fed by annual flows with the gamma distribu-
tion. The resulting quantiles for V⁄ thus become:

V�
P ¼ �2:0þ expð0:5816þ 0:4724ZpÞ ð10Þ

where Zp is the standard normal variate for P (%) cumulative prob-
ability which can be approximated using (Stedinger et al., 1993):

zp ¼ ð0:01PÞ0:135 � ð1� 0:01PÞ0:135
0:1975

ð11Þ

With V�
P known, the corresponding quantile for the scaled capacity

VP can be obtained by re-arranging Eq. (9), i.e.:

VP ¼ lV þ rVV
�
P ð12Þ
3. Methodology

3.1. Stochastic data generation

This work relies on generating several realisations of the at-site
historic runoff data record for each of the rivers analysed. Thus,
similar to the approach by Phien (1993), annual runoff was
assumed to follow the lag-1 autoregressive model (Fiering and
Jackson, 1971):

Qtþ1 ¼ lQ ð1� qÞ þ qQt þ rQzgð1� q2Þ0:5 ð13Þ
where Qt+1 and Qt are the annual runoff for years t + 1 and t respec-
tively; lQ = mean of Q; zg is the as-gamma standard variate, i.e. with
a mean of zero and variance of unity; and all other symbols are as
defined previously.

The variate zg imparts the gamma distribution to the generated
data; however, rather than generate this standard gamma variate
directly, it was approximated by transforming from standard nor-
mal variate using the Wilson–Hilferty expression (Wilson and
Hilferty, 1931):

zg ¼ 2
cQ

1þ cQ
6

zn �
cQ
6

� �� �3

� 1

" #
ð14Þ

where cQ is the skew coefficient of annual runoff and zn is the equiv-
alent standard normal variate. If the lag-1 serial correlation coeffi-
cient is significant, then the skew coefficient must be corrected
for the effect of serial dependence using (Thomas and Burden,
1963):
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Fig. 3. Observed and Phien generic-model-predicted reservoir capacity quantiles (full regulation, m = 0.0).
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c0Q ¼ cQ
1� q3

ð1� q2Þ1:5
" #

ð15Þ

where c0Q is the serial-dependence adjusted skew coefficient which
is used instead of cQ in Eq. (14). In general, the Wilson–Hilferty
transformation works well for �3 6 cQ 6 3 (McMahon and Miller,
1971).

To use Eq. (13) for data generation at each site, model parame-
ters (lQ; rQ, q, cQ ) are first estimated using the available historic
record at the site. McMahon and Adeloye (2005) provide expres-
sions for unbiased estimates of these and other parameters. Once
estimated, the parameters are then used in Eq. (13) to generate
2000 replicates of the historic record, with the length of each repli-
cate being equal to the historic record length. The choice of 2000
was meant to comply with Phien’s experiments; to ensure that
the replicates are independent the generator will be re-seeded
after generating each replicate.

3.2. Sequent peak algorithm (SPA) for reservoir capacity estimation

The SPA was implemented using:

Ktþ1 ¼ max½0:0;Kt þ Dt � Qt �; t ¼ 1;2; . . . ;n ð16Þ
where Kt and Kt+1 are, respectively, the cumulative sequential defi-
cits at the beginning and end of year t, Qt is the reservoir inflow dur-
ing t and all other symbols are as previously defined. The SPA
initialises with a full reservoir (i.e. Ko = 0.0) and the iteration is lim-
ited to the single cycle of the data record if the final sequential def-
icit is also zero, i.e. Kn+1 = 0. If this condition is not met, another
cycle of the data record is used but starting with the previous
Kn+1, i.e. Ko = Kn+1 for initializing Eq. (16). The second cycle should
end with the starting Kn+1; otherwise the SPA has failed, a situation
that would normally result if too much water (i.e. a > 1) is being
taken from the reservoir. Once Eq. (16) has converged, the capacity
estimate then becomes:

Ka ¼ maxðKtþ1Þ ð17Þ

where Ka is the reservoir capacity.

3.3. Data records

The analyses used six global rivers as listed in Table 2. The main
characteristics of the six rivers are also summarised in Table 2.
Although only six, the first thing to note is that the rivers represent
a wide range of annual CV (0.185–1.012) which covers most condi-
tions in the world (McMahon et al., 1992). The river catchments
vary in size from a minimum of 252 km2 to maximum of
12,561 km2. The available record lengths at the sites ranged from
15 to 69 years, making all but two (i.e. the Onkaparinga at Claren-
don weir and Beas at Pong dam) to be within the 20–50 years range
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Fig. 4. Errors (%) in reservoir capacity quantile estimates with the Phien generic model.
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employed in Phien’s analyses. The Onkaparinga data length is
69 years and thus exceeds the upper limit of 50 years while the
Beas data length of 15 years is shorter than the lower limit of
20 years considered by Phien. The two records thus offer an oppor-
tunity for testing the effect of too short or too long record lengths
on the performance of the Phien models.

The estimated lag-1 serial correlation coefficients in Table 2
contain some negative values but these are small that they can
be taken as zero. Thus, the selected historic runoff records also
meet the lag-1 serial correlation conditions of the Phien models.
Much more crucial, however, is whether the runoff for the selected
rivers can be descripted by the gamma distribution or not.

Table 2 contains the 95% CONF for the theoretical gamma skew-
ness and as can be seen from this Table, all the sample skew esti-
mates fall within the 95% CONF limits, implying that there is no
statistical evidence to reject the hypothesis that the runoff data fol-
low the gamma distribution function. The results of the more for-
mal Kolmogorov–Smirnov test are shown in Table 3 – the null
hypothesis that the runoff records follow the gamma distribution
is not rejected at the 5% level.

As remarked earlier, the estimated lag-1 serial correlation coef-
ficients shown in Table 2 are low and hence unlikely to produce
huge adjustments to the estimated skew; nonetheless, they have
been used to adjust the skew coefficient according to Eq. (15)
before using it in the data generation Eq. (13).
4. Results and discussions

4.1. Data generation

Table 4 compares the statistics of the historic and stochasti-
cally generated runoff records at the sites. The statistics of the
synthetic represent the average over the 2000 replicates gener-
ated at each site using Eq. (13). As seen in Table 4, the stochastic
model has adequately preserved the mean, standard deviation
and skew coefficient of the historic runoff at all the sites. The
performance of the models with respect to the lag-1 serial corre-
lation coefficient was not as good but given that the serial
dependence was generally low as noted earlier, this should not
be of much concern. As noted by Burges and Linsley (1971),
the most important runoff statistic that influences reservoir
capacity estimate is the CV of annual runoff. Indeed, over-year
reservoir capacity will generally vary as the square of the annual
runoff CV (see McMahon et al., 2007b,c; McMahon and Adeloye,
2005); thus a doubling of the CV will result in four-fold increase
in the estimated reservoir capacity for the same demand level.
On the contrary, the effects of both the skew coefficient and
serial dependence on capacity estimates are usually marginal;
consequently, failure to adequately reproduce especially the
serial correlation model is not seen as a major limitation of
the analysis.



1440 A.J. Adeloye et al. / Journal of Hydrology 529 (2015) 1433–1441
4.2. Performance of Phien models: mean and standard deviation of
reservoir capacity

The mean (lV) and standard deviation (rV) of the scaled reser-
voir capacity (V) obtained using the SPA (i.e. the observed) are
compared with those predicted by the m-specific models of Phien
(i.e. simulated) in Table 5. The observed mean (lV) and standard
deviation (rV) of reservoir capacity were obtained using:

lv ¼
PN

i¼1Vi

N
ð18Þ

rv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðVi � lvÞ2
ðN � 1Þ

s
ð19Þ

where Vi is the scaled capacity estimate from runoff replicate i and
N (=2000) is the number of replicates. The corresponding simulated
values were obtained using the appropriate equations from Table 1.

For the full regulation situation (m = 0.0), Table 5 shows that
Phien model is over-predicting the mean of reservoir capacity
and significantly over-predicting the standard deviation of reser-
voir capacity. The performance of the Phien model in respect of
the mean of capacity (lV) was particularly poor for the Beas data,
which is not surprising given that the Beas data record was one
of the two that failed to meet the data record length criterion for
the Phien models. As noted earlier, the runoff record length for
the Beas was a mere 15 years, shorter than the minimum 20 years
considered by Phien; thus the fact that the Beas is recording a
higher bias in lV than Onkaparinga is evidence that violating the
record length is less consequential provided the record length is
long.

Asm becomes higher, i.e. as the demand ratio a reduces, there is
a tendency for the performance of the Phien models to be a mix-
ture of under- and over-prediction for the mean of reservoir capac-
ity, although the standard deviation of reservoir capacity is largely
still being over-predicted by the Phien models. At the lowest
demand ratio level considered by Phien, i.e. m = 0.5, the Phien
model is under-predicting both the mean and standard deviation
of reservoir capacity for all the rivers analysed.

The errors of the Phien estimates relative to those based on the
use of the SPA are shown in Fig. 1 for the m-specific models, which
further confirm the over-prediction at full regulation (m = 0) but
under-prediction of the mean capacity as the m increases, i.e. as
the demand ratio reduces. For the highest m (i.e. lowest demand
ratio) considered by Phien, the highest under-prediction of the
mean capacity was 65% while the highest under-design error of
the standard deviation of capacity was 60%. This would imply that
care should be exercised when applying the models to high values
of the drift.

The above discussions relate to the m-specific models but as
noted earlier, Phien also developed generic models (see Table 1)
that could be applied to any value of the drift (m) in the range
[0,0.5]. Table 6 is a comparison of the generic model estimates of
both the mean and standard deviation of reservoir capacity with
those obtained via SPA simulations. As was the case with the m-
specific models, the generic model was also over-estimating the
mean and standard deviation of capacity at full regulation (m = 0)
but as the m increases, the over-estimation gradually became
under-estimation. Similar to what was also observed for the m-
specific models, the Phien generic model was under-estimating
the mean capacity across all the rivers at m = 0.5, again signifying
the deterioration in performance as the drift increases (or demand
reduces).

The error plots for the generic models are shown in Fig. 2, which
if juxtaposed with the plots in Fig. 1, will show broadly similar
error magnitudes for the generic model when compared with the
m-specific models. Both Table 6 and Fig. 2 include an additional
case of m = 0.7 which was not included in Phien’s analysis but
was deliberately included in the current study to test whether or
not the generic model could actually be applied beyond the upper
m = 0.5 limit considered by Phien without a significant deteriora-
tion in performance. As shown in Fig. 2, the under-prediction
errors in both the mean and standard deviation of capacity for
the m = 0.7 case were significantly much higher than those
recorded for the m = 0.5 cases (both m-specific and generic), thus
confirming that the generic model is a poor extrapolator. The
m = 0.7 case also confirms that high drifts (i.e.mP 0.5) will consis-
tently result in the under-design of reservoir capacity with the
Phien models.

As noted earlier, there have been very limited studies that
investigated the efficacy of the Phien models with real data. The
only known study was reported by McMahon et al. (2007b), albeit
for the generic model and with regard to only the mean of reservoir
capacity (by virtue of being based on single historic records).
Nonetheless, there is some resemblance between the outcome of
McMahon et al. (2007b) work and the current study. For example,
they reported that Phien generic model underestimated the reser-
voir capacity estimates by about 25% for a demand ratio a = 0.75
for rivers that partially met the criteria set by Phien. When
McMahon et al. (2007b) included rivers not meeting Phien’s crite-
ria in their analyses, they found that the underestimation of reser-
voir capacity was as high as 80%.

Although the m equivalent of the a investigated by McMahon
et al. (2007b) would depend on the CV of the river (see Eq. (8)),
thus making a strict comparison with the results obtained in the
current study difficult, the errors of 25% and 80% are within the
under-design errors recorded in the current study for the mean
of reservoir capacity. Thus on this basis, this study has reinforced
the caveats by McMahon et al. (2007b) regarding the use of Phien
models.

However, it is also important to recognize that the Phien models
are not just producing under-design situations but significant over-
designs as well, especially at full regulation. Additionally as shown
in this study, these biases are not being recorded for the mean
alone but also for the standard deviation of reservoir capacity,
implying that the entire distribution of reservoir capacity and the
resulting capacity quantiles can potentially be subjected to signif-
icant uncertainties as will be demonstrated in the next section.
While under-design of capacity would mean frequent failures of
a reservoir to meet demands, an over-designed reservoir will tie
down scarce financial resources that could otherwise be better uti-
lized for other developmental needs. Thus, although cases of full
regulation (i.e. m = 0) might be rare in practice, the over-design
errors in the mean capacity obtained in this study are significant
because of the large reservoir capacity often associated with
m = 0, with significant concomitant financial consequences.

4.3. Performance of Phien models: reservoir capacity distribution and
quantile estimates

Observed and model-predicted reservoir capacity quantiles
based on the 3-parameter log-normal distribution as described in
Section 2.3 are compared in Fig. 3 for the full regulation (m = 0) sit-
uation of the generic model. The decision to restrict consideration
to the generic model is based on the fact it is likely to be one that
will be used mostly because it can in theory be applied to any m
value. As seen in Fig. 3, the Phien generic model is over-
predicting the reservoir capacity quantiles for m = 0, which is not
surprising, given that the model also over-predicted both the mean
and standard deviation of reservoir capacity. However, what Fig. 3
also highlights is that the bias associated with the Phien generic
model was particularly poor for the Beas River, a further reinforce-
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ment of the need to be wary in attempting to use the model where
its underlying assumption in relation to the record length is not
met.

Fig. 4 shows the errors associated with the quantile estimates
for all the m values investigated with the generic model. Again as
was the case with the mean and standard deviation of capacity,
the errors are all over-prediction for m = 0; however, when com-
pared to the corresponding errors in the mean, the quantile errors
are much higher. This should not be surprising given that the quan-
tile error integrates the error in both the mean and standard devi-
ation of reservoir capacity. As the results for m = 0 situation clearly
show, the over-prediction error (%) in the standard deviation of
reservoir capacity was significantly higher than that of the mean;
the net effect of this is a much larger error in the quantiles com-
pared to the mean. For m > 0, the errors become a mixture of
over- and under-predictions again with the tendency towards sus-
tained under-prediction as m becomes larger. Indeed, the largest
under-prediction error was obtained with the out-of-range
m = 0.7 situation, where as seen in Fig. 4 the error was as high as
100% for the Beas River for all the quantiles.

5. Conclusions

For the first time, a complete assessment of the efficacy of all
four Phien models in predicting the mean, standard deviation
and by extension the quantiles of reservoir capacity has been car-
ried out using observed runoff data records of six global rivers that
meet the stated criteria of the models. The results showed that all
the models result in over-design of reservoir capacity at full regu-
lation. However, as the drift parameter m increases, the errors
become a mixture of both under-design and over-design. For the
highest m = 0.5 considered by Phien, all the errors are under-
design errors. All this will point to the fact the Phien models should
be used with caution for reservoir capacity planning, especially
where significant under-prediction will result because of the
impact of such on the overall performance of a reservoir. Over-
prediction situations may be acceptable since they represent
built-in safety factors that might be useful for cushioning the
uncertainties associated with climate and land-use changes. Since,
as revealed in this study such over-predictions are associated with
low drift values, i.e. high demands (including full regulation) in
which the capacity requirement is already high, the associated
financial cost is, however, likely to be very high. A final aspect to
reinforce here is that the Phien models should not be applied in si-
tuations where the underlying assumptions for the models are not
met. In particular, short record lengths below the lower limit of the
Phien validity range, such as presented by the Beas River case, will
accentuate the estimation errors even when all other criteria of the
models are being met.
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