
 1

Endogenous spatial regression and delineation of submarkets: 

A new framework with application to housing markets # 

 

Arnab Bhattacharjee,* Heriot-Watt University, UK. a.bhattacharjee@hw.ac.uk 

Eduardo Castro, University of Aveiro, Portugal. ecastro@ua.pt 

Taps Maiti, Michigan State University, USA. maiti@stt.msu.edu 

João Marques, University of Aveiro, Portugal. jjmarques@ua.pt 

 

Abstract 

Housing submarkets have been defined by different criteria: i) similarity in house attributes; ii) 

similarity in hedonic prices; or iii) substitutability of houses. We show that spatial clustering on i) 

and ii) also satisfies criterion iii), and develop inferences based on functional linear regression of 

a hedonic house price model. Then, we delineate submarkets by clustering (jointly) on the 

surfaces of the estimated functional partial effects and housing features. The above model 

incorporates both spatial heterogeneity and endogenous spatial dependence. Application to an 

urban conglomeration in Portugal implies submarkets that emphasize the historical and 

endogenous evolution of urban spatial structure. 
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"(Social) space is a (social) product ... the space thus produced also serves as a tool of thought 

and of action; that in addition to being a means of production it is also a means of control, and 

hence of domination, of power. ... Change life! Change Society! These ideas lose completely 

their meaning without producing an appropriate space." (Lefebvre, 1974 [1991], p.26, p.59). 

1. Introduction 

Definition of housing submarkets is important at both conceptual and empirical levels. Endogenous evolution of 

space, as emphasized by Lefebvre (1974 [1991]), is central in this context, and more generally to spatial 

dynamics in urban housing markets. Understanding endogenous housing segmentation enables researchers to 

study spatial variation in housing prices, improving lenders’ and investors’ abilities to price the risk associated 

with financing homeownership; at the same time it reduces search costs to housing consumers (Malpezzi, 2003, 

Goodman and Thibodeau, 2007). By its very nature, housing is a heterogeneous good, characterized by a 

diverse set of attributes (Lancaster, 1966; Rosen, 1974) and segmented and structured by complex spatial 

patterns. Different social groups, with specific tastes, preferences and economic capabilities tend to be organized 

into distinct territorial clusters (Galster, 2001). However the literature does not suggest an unequivocal and 

unique spatial approach to analyse this issue, encompassing different philosophies, techniques and criteria.  

Housing markets are complex. Rather than being defined by a single combination of a quantity and a price, the 

market equilibrium for a heterogeneous good such as a house is given by the combination of a vector of hedonic 

characteristics with a vector of hedonic prices (Lancaster, 1966; Rothenberg et al., 1991). A unique vector of 

hedonic prices, combined with a distribution of houses with different hedonic characteristics, is a necessary 

condition for the existence of a single equilibrium and a unique market. However, what we generally observe is 

the co-existence of several submarkets, each corresponding to a different market equilibrium (Rothenberg et al., 

1991). This heterogeneity, driven by supply rigidities and transaction costs, shapes the territory as landscapes of 

submarkets. Such landscapes can be either represented as sets of hedonic functions, each with one particular 

vector of hedonic prices, or as a continuum of vectors represented by a hedonic functional. This paper focuses 

on the application of a functional representation to the empirical study of housing hedonic price models.  

Because of such inherent heterogeneity over space, understanding housing markets and the conduct of housing 

policy crucially depends on delineation of submarkets (Rothenberg et al., 1991). Each submarket is 

characterized by different supply and demand curves and a different equilibrium. A multitude of criteria have 
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been proposed in the literature for defining housing markets and their constituent submarkets, each based on 

different theoretical assumptions underlying its definition. There are three main criteria for the definition of 

submarkets: i) similarity in hedonic characteristics; ii) similarity in hedonic prices; or iii) close substitutability of 

housing units. We argue that spatial clustering based simultaneously on criteria i) and ii) is a sufficient condition 

for criterion iii) to hold. Since criterion i) is directly observable, we focus on ii). Thus, the central object of our 

inference is a regression model where the dependent variable is logarithm of house prices per square meter and 

housing features are regressors. The partial effect of these housing features varies over a two-dimensional 

territory. In this paper, we focus on a single regressor, logarithm of living area, so that the functional regression 

coefficient β(s) can be interpreted as an elasticity which reflects a positive but decreasing marginal utility of living 

area. Generally, -1 < β(s) < 0; when the elasticity approaches zero consumers show a very low satiation of living 

space, while a value close to negative unity (-1)  reflects a submarket with a rigid demand for living space.  

Appropriate characterization of spatial structure is a key element of such analyses. Specifically, three distinct 

aspects of space – spatial heterogeneity, spatial dependence and spatial scale – are central to understanding 

the spatial organization of housing submarkets. Spatial heterogeneity relates to contextual variation over space 

(Anselin, 1988). In this paper, we consider a spatial cross section context, where spatial heterogeneity is 

modelled as variation across submarkets in (heterogeneous) slopes and intercepts (spatial fixed effects) of a 

regression model. By contrast, spatial dependence is associated with spatial spillover, contagion and diffusion, 

which results in spatial autocorrelation between different units (Anselin, 1988). Additionally, choice of an 

appropriate spatial scale is important (Malpezzi, 2003), where the choice may range from national or regional 

scale, through metropolitan areas, to below the metropolitan level. Appropriate modelling of spatial heterogeneity 

depends on the choice of scale: the correct choice increases prediction accuracy of the estimated hedonic 

models and, in many cases, negates strong spatial dependence (Pesaran, 2006; Pesaran and Tosetti, 2011). 

We show how estimates of a hedonic regression model can be used to identify submarkets, by clustering jointly 

on the surface of the heterogenous slope β(s) and the hedonic features x(s). For this purpose, we propose a new 

framework to analyse housing markets, based on a synthesis of spatial econometrics, functional data analysis 

(FDA) and locally (geographically) weighted regression (GWR). We consider a spatial lag model, regressing 

logarithm of price per square meter of living space on logarithm of house area, allowing for spatial heterogeneity 

(spatial fixed effects and slope heterogeneity) and endogenous spatial dependence captured by a spatial weights 
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matrix W. This, in turn, leads to a functional regression model where the response variable is scalar and the 

functional regressor is a spatially weighted version of the average functional surface of the regressor. When 

kernel weights are used, the model is very similar to GWR. This synthesis of GWR and FDA offers a spatial 

statistical model that is very rich and enable the full range of spatial analyses of housing markets. This model 

addresses two main limitations of previous approaches. First, the framework does not require housing 

submarkets to be fixed a priori. They can be delineated ex post by spatial (or even non-spatial) clustering of an 

estimated functional regression slope and hedonic features. Second, estimation and endogeneity of spatial 

weights can be addressed with the proposed model. Application to the housing market of the Aveiro-Ílhavo urban 

area in Portugal implies submarkets that emphasize the historical and endogenous evolution of urban space.   

The paper is organised as follows. Section 2 discusses the recent spatial econometrics literature applied to the 

hedonic pricing model, followed by delineation of submarkets in section 3. Section 4 highlights limitations of the 

spatial econometrics framework, discusses alternative approaches and proposes a new synthesis of several 

methods. Based on this synthesis, section 5 develops methodology for submarket delineation, followed by an 

application to the urban housing market of Aveiro and Ílhavo in Section 6. Finally, section 7 concludes. An 

expanded version of the paper containing further details is included as online supplementary material. 

2. Spatial Econometric Hedonic House Price Models 

This paper uses hedonic models to study spatial dynamics and house prices. Typically, hedonic and repeated 

sales models of house prices reflect two spatial features – geographically varying price elasticities and 

substantial spatial clustering – that typically arise from supply rigidities, search costs and social segregation 

(Malpezzi, 2003). Such spatial clustering has been explained by neighbourhood characteristics such as crime 

rates, schooling, transport infrastructure and quality of public services, and social interaction and segregation; 

see, for example, Rothenberg et al. (1991). Therefore, empirical estimation of hedonic housing price models and 

the use of such estimates for evidence and policy have to take spatial effects explicitly into account. 

2.1. Hedonic pricing model 

Hedonic pricing models (Lancaster, 1966; Rosen, 1974) are frequently used in housing studies, particularly for 

valuation of housing attributes, neighbourhood features and access to central and local services, and for 

construction of price indices based on single sales data; see Malpezzi (2003) for an excellent review. In hedonic 

pricing models, dwelling unit values (or prices or rents) are regressed on a bundle of characteristics of the house:
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where Y denotes the value of the house (typically logarithm of price, or logarithm of price per unit area), and S, 

N, L, C and T denote respectively: Structural characteristics of the dwelling (living space, type of construction, 

tenure, etc.); Neighbourhood characteristics and local amenities; Location within the market (or access to 

employment/ business centre); other Characteristics (access to utilities and public services, such as water 

supply, electricity, central heating, etc.); and the Time when the value is observed. Estimation of a hedonic price 

function yields implicit prices for housing characteristics that can be interpreted as willingness-to-pay estimates. 

This allows analysis of various upgrading and policy scenarios, targeted on specific subgroups, defined either by 

socio-economic characteristics or by location. Thus, the model facilitates understanding of residential location, 

and therefore urban structure, and provides valuable input towards urban planning and housing policy.  

The two main limitations of traditional hedonic models are: (a) the frequent assumption that hedonic prices do not 

vary spatially; and (b) inadequate attention to spatial spillover effects. To overcome these problems, we consider 

a hedonic model incorporating both spatial dependence and spatial variation in the relationship between house 

prices and living space. Following Bhattacharjee et al. (2012), we adopt a log-log form, where logarithm of price 

per square meter of living space is regressed on logarithm of house area, conditioning on several other hedonic 

housing characteristics, used as control variables and modelled by statistical factor analysis.  

2.2. Spatial issues in hedonic pricing estimates 

The recent literature has discussed potential bias and loss of efficiency that can result when spatial effects are 

ignored in the estimation of hedonic models; see, for example, LeSage and Pace (2009), Anselin and Lozano-

Gracia (2008) and Anselin et al. (2010). Specifically, these biases can result both from inappropriate modelling of 

endogenous spatial effects and inadequate attention to spatial heterogeneity, while heteroscedasticity and 

spillovers in unobservable errors lead to inefficiency. Adequate modelling of spatial heterogeneity and spatial 

dependence is therefore crucial (Anselin, 1988), as well as the choice of an appropriate spatial scale (Malpezzi, 

2003). We now turn to a discussion of these spatial issues in the construction of hedonic pricing models.  

2.2.1. Spatial scale and housing submarkets  

The definition of the most appropriate scale in the analysis of urban spatial patterns is a crucial aspect. The 

spatial configuration usually varies with scale. A specific urban pattern that is structured at one scale may appear 
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to be disordered at other scales, leading to the so called “ecological fallacy”; one explanation is the different 

effects of agglomeration economies that emerge at specific scales (Anas et al., 1998; Fujita and Thisse, 2002). 

In practise, the metropolitan area is a common choice because it is usually thought of as a labour market, which 

in theory is approximately coincident with housing markets (Malpezzi, 2003). However, submarkets below the 

metropolitan level can be segmented by location (central city/suburb), or by housing quality, or even by race or 

income levels. Such segmentation informs both the study of residential neighbourhood choice and design of 

urban housing policy. The urban area of Aveiro has adequate size and variability to study spatial heterogeneity in 

the shadow (hedonic) price of housing space, and at the same time allow for spatial spillovers in house prices. 

2.2.2. Spatial heterogeneity and submarkets  

The model for spatial heterogeneity must, in principle, be based on a theoretical framework explaining why and 

how housing markets are segmented. As discussed above, the literature has defined submarkets either by 

similarity in hedonic housing characteristics (Rothenberg et al., 1991; Adair et al., 1996; Bourassa et al., 1999; 

Watkins, 2001), similarity in hedonic prices (Dale-Johnson, 1982; Rothenberg et al., 1991), or close 

substitutability of housing units (Grigsby et al., 1987; Goodman and Thibodeau 2007; Pryce, 2013). 

In the first approach, a submarket is a collection of regions, or housing units located therein, which have similar 

bundle quality, or supply a similar set of hedonic characteristics. The degree of similarity required is a matter of 

judgment, particularly since a perfectly homogeneous location may be very small and therefore not useful for 

estimating hedonic models (Bourassa et al., 2003). In any case, the delineation of submarkets implied by this 

approach can be directly applied to the data by clustering on hedonic characteristics. In essence, this approach 

has a logic that stresses the role of branding and social segregation as the driver of submarkets. 

The second approach defines submarkets as locations where hedonic (shadow) prices for different features are 

homogeneous. Submarkets can then be interpreted as clusters of houses with characteristics adjusted to a 

particular demand behaviour reflected in a set of equilibrium prices. This approach, proposed by Bourassa et al. 

(2003), is intimately related to the basic philosophy of hedonic models stating that, within the same submarket, 

the implicit prices for each housing feature must be homogeneous. This criterion also improves price predictions.   

The third criterion is the degree of substitutability (Grigsby et al., 1987). Pryce (2013) measures substitutability by 

cross-price elasticities of price at different locations, estimated using a spatial panel regression model where the 

logarithm of house prices at one location is regressed on log-price at the same location at another time point 
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together with a time trend.1  

By contrast with Pryce (2013), this paper takes the view that, in the context of a hedonic house price model 

based on cross-section data, a collection of suitably chosen housing characteristics constitutes a more natural 

set of latent factors. By the logic of a hedonic pricing model, one can expect that these factors account for any 

strong spatial dependence, which would then render the model as containing only weak spatial dependence.    

The above approaches are not necessarily compatible. One can envisage situations where homogeneity in 

hedonic characteristics does not imply close substitutability. If two locations with similar houses, similar provision 

of local services and amenities and similar accessibility to the centre are inhabited by two different social groups, 

it is expected that different tastes will generate local branding effects which mitigate against substitutability and 

create differences in hedonic prices. Nevertheless, two locations with both similar characteristics and similar 

hedonic prices must be good substitutes, as it will be very difficult to distinguish between them. Therefore, 

simultaneous similarity in hedonic characteristics and their shadow prices may be a sufficient condition for 

substitutability. However, this is not a necessary condition, because two types of houses with very different 

hedonic characteristics can be good substitutes. For example, a flat in a central location can be an alternative to 

a more peripheral detached house with a similar price; hence, proximity in location is also required. 

The conceptual notion behind spatial submarkets discussed above implies that the price determining (hedonic) 

mechanism can be heterogeneous over space. This spatial heterogeneity, reflecting the absence of a single 

equilibrium in the housing market, can originate from demand and supply side factors, institutional barriers or 

discrimination, each of which can cause differentials across neighbourhoods in the way housing attributes are 

valued by consumers and house prices determined (Anselin et al., 2010). However, if spatial submarkets exist 

and are ignored, an average price across all the territory is estimated that ignores submarket heterogeneity.  

The classical urban model in the Alonso-Muth-Mills tradition predicts a decrease in prices with distance from the 

city centre, though there may be spatial variation in relative preference for centrality itself. Other models based 

on localised amenities or multiple centres imply a stronger impact of access to local amenities. Like distances, 

                                                 
1 The underlying assumption is that the time trend is the sole latent factor, inclusion of which ensures that the spatial 
structure contains only spatial weak dependence (Pesaran and Tosetti, 2011). Pryce (2013) does not explicitly state this 
assumption, but it is implied by the methodology, based on computation of inflation in house prices at different locations. 
This assumes such an underlying spatial model, together with the assumption that inclusion of the time trend ensures spatial 
weak dependence. 
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the implicit prices for dwelling characteristics and size may also vary spatially, reflecting either supply constraints 

or residential sorting. Adair et al. (1996) and Malpezzi (2003), among others, discuss intra-urban variation in the 

price of housing amenities using hedonic models. Thus, heterogeneity is a key element of housing markets and 

its disregard seriously affects the understanding of market diversification. Also, it is likely to bias average price 

estimates because the error term of the regression model may be correlated with the included regressors. 

There are two main methods to model spatial heterogeneity. First, one may allow coefficients in the hedonic 

model to vary across submarkets, and use the estimated variation to infer on residential neighbourhood choice 

and urban spatial structure. The second method, geographically weighted regressions (GWR) (Fotheringham et 

al., 1998), is a form of locally weighted regression that we discuss later in the paper (section 4.2.1). 

2.2.3. Spatial dependence and spatial weights matrix 

Spatial dependence arising from spatial spillovers or contagion effects leads to spatial autocorrelation, implying 

that prices of nearby houses or related submarkets tend to be more similar. Spatial autocorrelation can also 

result from incorrectly modelled spatial heterogeneity, measurement errors in regressors, omitted variables or 

unmodelled spatial patterns in hedonic features (Anselin, 1988; LeSage and Pace, 2009).  

Spatial dependence is very common in housing markets, and a feature that we use in this paper to develop 

inferences for a functional regression model. The recent literature has discussed bias and loss of efficiency that 

can result when spatial effects are ignored in the estimation of hedonic models. The use of spatial econometric 

models to address spatial autocorrelation is becoming increasingly standard (Anselin and Lozano-Gracia, 2008; 

LeSage and Pace, 2009; Anselin et al., 2010). The usual approach to the representation of spatial interactions is 

to define a spatial weights matrix, denoted W, which represents a theoretical and a priori characterisation of the 

nature and strength of spatial interactions between different submarkets or dwellings.2 These spatial weights 

represent patterns of diffusion of prices and unobservables over space, and thereby provide a meaningful and 

easily interpretable representation of spatial interaction (spatial autocorrelation). Given a particular choice of the 

spatial weights matrix, there are two important and distinct ways in which spatial dependence is modelled – the 

spatial lag model and the spatial error model. In the former, the hedonic regression includes as an additional 

regressor – the spatial lag of the dependent variable y (which in this case is price), represented by Wy:  

                                                 
2 For a setting with n spatial units, W is an n×n matrix with zero diagonal elements. The off-diagonal elements are typically 
either dummy variables for contiguity or inversely proportional to distance between a pair of units. 
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   ,εβρ ++= XyWy         (2) 

where X denotes hedonic characteristics and the regression errors (ε) are idiosyncratic. By contrast, in the spatial 

error model, the regression errors are spatially dependent on their spatial lag, Wε:    

   .  , ηελεεβ +=+= WXy         (3) 

There is a large literature on estimation and inferences for these two models. In the spatial lag model, the 

endogenous spatial lag implies that OLS estimates are biased, while in the spatial error model, they will be 

unbiased but inefficient. The spatial weights are typically modelled either by spatial contiguity, or as functions of 

geographic or economic distance. The distance between two spatial units reflects their proximity with respect to 

prices or unobservables, and hence the spatial interaction between a set of units can be measured by a function 

of the distance between them. However, spatial data may be anisotropic, where spatial autocorrelation is a 

function of both distance and the direction separating points in space (Gillen et al., 2001). Similarly, spatial 

interactions may be driven by other factors, such as trade weights, transport cost, travel time, and socio-cultural 

distances. The choice typically differs widely across applications, depending not only on the specific economic 

context but also on availability of data; for extensive discussion, see Bhattacharjee and Jensen-Butler (2013). 

Most studies place emphasis on either spatial heterogeneity or spatial dependence but not both. Bhattacharjee 

et al. (2012) developed a framework that emphasizes all the three distinct but interconnected features of space – 

spatial heterogeneity, spatial dependence and spatial scale.  

Finally, while the traditional literature is based on an a priori known structure of spatial dependence, or a spatial 

weights matrix W, and then examined spatial dependence and spatial heterogeneity implied by this W, a branch 

of the current literature treats these weights as unknown. Based on a given definition of urban submarkets (or a 

fixed set of spatial locations) and panel data on these spatial units, Bhattacharjee and Holly (2013) and 

Bhattacharjee and Jensen-Butler (2013) proposed several methods to estimate the spatial weights matrix 

between the submarkets. Bhattacharjee et al. (2012) extended the methodology to a purely cross-section setting, 

where the delineation of submarkets was assumed known a priori. By contrast, this paper focuses on identifying 

submarkets in a setting where W may be known, or even unknown and potentially endogenous. 

3. Delineation of Housing Submarkets 

Dividing a large market into submarkets raises numerous theoretical and methodological questions (Rothenberg 
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et al., 1991). Theoretically, a submarket corresponds to a local equilibrium between supply and demand. 

However, the way submarkets are delineated depends on the level of aggregation and methods for clustering 

basic spatial units into submarkets. In practice, ad-hoc methods based on predefined geographical boundaries 

are often used; sometimes regions defined a priori are statistically tested for distinctness (Bourassa et al., 1999). 

3.1. Submarkets based on similarity in hedonic characteristics and prices 

A branch of the urban studies literature has focused on more systematic methods for defining submarkets. A 

common approach is to proceed first by conducting principal component or statistical factor analysis on a large 

number of hedonic characteristics of houses to extract a small number of meaningful factors. Next, clustering 

methods are used to obtain a set of submarkets that maximise the degree of internal (within-submarket) 

homogeneity and external (across submarket) heterogeneity; see Bourassa et al. (1999) for further discussion. 

This is related to the definition of submarkets by similarity of hedonic housing features (Rothenberg et al., 1991).  

Another approach is based on homogeneous hedonic prices, using as a measure of homogeneity small residuals 

from a hedonic pricing model estimated separately for each submarket (Bourassa et al., 1999, 2003). The 

objective is to use submarkets to improve accuracy of hedonic predictions for mass appraisal purposes. Further, 

homogeneity in hedonic prices is deeply rooted in the basic concepts which underlie hedonic models.  

3.2. Submarkets based on substitutability 

The above approaches are not entirely satisfactory from a housing economics point of view. They do not pay 

explicit attention to the demand side of the housing market, which is where individual households make 

neighbourhood and housing choice decisions. Similarity in hedonic housing characteristics relate to the supply 

side, and similarity in hedonic prices relate to market equilibria which is the outcome of demand and supply sides 

of submarkets. The concept of substitutability is useful to the extent that it can be interpreted as reflecting the 

synthetic valuation of houses by buyers, and therefore offers understanding of the demand side (Pryce, 2013).   

Grigsby et al. (1987) defined submarket as a region where the dwellings are reasonably close substitutes, but 

relatively poor substitutes for dwellings in other submarkets, and Pryce (2013) proposed submarket delineation 

by taking house prices as the determinant of housing choice3 and by evaluating the cross-price elasticity of price 

for each pair of housing properties. Two houses are deemed to lie within the same submarket if this cross-price 

                                                 
3 Taking house prices, rather than hedonic characteristics, as the sole basis for evaluation of substitutability is not an 
innocuous modelling assumption. See Pryce (2013) for further discussion. 
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elasticity is close to unity, implying therefore that they are substitutable. Thus, Pryce (2013) uses house price 

inflation for computation of the elasticities. Placing the above methodology within the context of a structural 

spatial econometric model is useful for our discussion. In essence, Pryce (2013) assumes a spatial error model:  

    ,  ,
1 tttttt

Wyy ηεεε +=+=
−

      (4)   

where yt denotes the vector of prices (in logarithms) across all houses, and yt–1 its lagged value, so that εt 

denotes the growth rate. Then, the elements of W are the cross-price elasticities for each pair of houses.4 The 

model does not include any regressors other than lagged logarithm of prices with unit coefficient, which is 

assumed to ensure that the regression errors (growth rates) are stationary in the temporal domain. Although 

simplistic, the model itself is structural because it assumes that the process of diffusion of shocks (ηt) is driven by 

an underlying spatial structure in W. Elements of W are estimated and then used for delineation of submarkets.  

From a spatial econometric point of view, this approach deals with potential temporal nonstationarity by inclusion 

of the lag on the right hand side. This also suggests a natural interpretation of elasticity as a cause-effect 

relationship over time. However, strong spatial dependence is a potential problem. This would be evident if some 

elements of W are close to unity (or even larger), which would imply violation of the spatial granularity condition 

(Pesaran and Tosetti, 2011). Further, violation of this condition is expected because cross-price elasticities are 

by definition close to unity for houses within the same submarket. One can ensure that cross submarket spatial 

diffusion is bounded, and therefore the spillover of house price shocks across the submarkets is spatially 

stationary. However, spatial weights of houses within the same submarket will be large. Therefore, without 

suitable modifications, model (4) cannot be cast into the framework of contemporary spatial econometrics.  

3.3. Submarkets based on a structural spatial lag model 

The above discussion suggests indicates that the model (4) may be extended in two ways. First, violation of the 

spatial granularity condition points towards spatial strong dependence, which is caused by ignoring the effect of 

common factors (Pesaran, 2006; Pesaran and Tosetti, 2011). The solution is to include regressors that will take 

strong dependence out of the model; see Bhattacharjee and Holly (2013) for further discussion. In the current 

                                                 
4 Since εt denotes the growth rate of prices, the spatial error part of (4) models how growth rate in a location is related 
linearly to the growth rates at all other locations. The elements of W are the corresponding coefficients, or cross-price 
elasticities. In Pryce (2013), two houses are viewed as being substitutable if the cross-price elasticity is close to unity, which 
in Equation (4) implies the corresponding spatial weights are close to unity. 
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context, hedonic characteristics can be added to the model, allowing the cross-price elasticities to be measured 

more robustly. Second, assumption of a spatial error model is somewhat simplistic. The common belief is that 

house prices are spatially endogenously determined by the interaction between housing choices of economic 

agents; hence the spatial lag model (2) is more appropriate and allows stronger structural interpretations.  

In a setting where W is unknown (Bhattacharjee and Holly, 2013; Bhattacharjee and Jensen-Butler, 2013), W 

and ρ are not separately identifiable. Hence, we assume without loss of generality that ρ = 1. Further, an 

unknown W is not in general identified, and structural assumptions are required for identification. Following 

Bhattacharjee and Jensen-Butler (2013), we make the assumption that W is symmetric. In applications, spatial 

weights matrix W is often based on distances, which are symmetric by definition.  

Based on the above discussion, we make the following assumption. 

Assumption 1. Spatial lag model. The dependent variable y follows a spatial lag model    

 ( ) ( ) .
11
εβεβ

−−
−+−=⇒++= WIXWIyXWyy               (5)  

with full spatial heterogeneity in both the slope and intercept (heterogeneity in β across the territory, plus location 

fixed effects). W is unknown but symmetric, and satisfies the spatial granularity condition 1)( <Wρ , where 
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max the row norm of W. The regression errors, ε , have mean zero, and X are regressors that 

are uncorrelated with ε and are not collinear, that is, have a positive definite covariance matrix.   

The spatial granularity condition implies that there is no spatial strong dependence (Pesaran and Tosetti, 2011). 

If there are latent factors that can cause violation of the condition, they are included as regressors in model (5).  

As an illustration, consider a simple spatial lag model regressing logarithm of price per square meter (y) on 

logarithm of living space (x), allowing for spatial heterogeneity and endogenous spatial dependence. Further, to 

fix ideas, let us first consider a sample of only two locations with potentially different slopes, with only one house 

in each location. Then:          
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where the final step follows because the spatial weights are very small compared to unity, so that 

[ ] [ ]WIWI +≈−
−1 . This assumption is valid under weak spatial dependence, in which case the spatial 

granularity condition in Assumption 1 holds.  

Equation (6) emphasizes that both y1 and y2 are endogenously determined by each other, and in addition are 

functions of x1, x2, β1 and β2. Further, the response at location i, yi, is a function of the regressor at the same 

location (xi) with slope βi, but also the regressor at every other location j, xj, but with a different slope (wij βj). 

Conceptually, y1, y2, x1, x2, β1 and β2 are thought of as functions of space, where s ϵ S is a representative point in 

the spatial domain. We assume that these are smooth functions so that all partial derivatives are well defined.  

Assumption 2. Smoothness. The functional regression coefficient, β(s) varies smoothly over the compact set 

S. That is, β(s) has derivatives at every s ϵ S. Likewise, the functional random variables x(s) and y(s) have mean 

functions, )(sX  and )(sY  respectively, that are smoothly varying over S.  

By Assumption 2, the partial derivatives ∂β/∂s, ∂x/∂s and ∂y/∂s are well defined. Then, we have the following 

result, where all partial derivatives are interpreted with respect to space, s ϵ S. 

Theorem 1: Under Assumptions 1 and 2, two houses are substitutable, that is the cross-price elasticity of price is 

close to unity, if their hedonic characteristics, prices and location are similar.  

Proof: By the granularity condition in Assumption 1, the elements of W are small, and hence up to first order 

Taylor expansion, )()( 1
WIWI +≈− −

. The idiosyncratic errors can be ignored in computation of cross-price 

elasticities. Then, for any two distinct houses in locations i and j: 
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where 1)1/()1( =++ ijji ww  since the spatial weights are symmetric (Assumption 1). Thus, sufficient 

conditions for houses i and j to be (approximately) substitutable are:  (i) xi ≈ xj; (ii) βi ≈ βj; and (iii) the locations i 

and j are in each other’s neighbourhood, so that by Assumption 2, dβi ≈ dβj and dxi ≈ dxj. The proof in the 

general case follows by noting that elasticities involve only a pairwise comparison between 2 properties i and j, 

and other houses can be ignored because elements of W are small.  

Theorem 1 has important implications for delineation of submarkets. First, a sufficient condition for (houses in) 

locations i and j to be substitutable is that the spatially varying x and β’s in the two locations match, and their 
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slopes match as well. This implies spatial clustering of the x’s and the β’s. In other words, based on the close 

substitutability definition, submarkets may be delineated by spatial clustering jointly on both these two 

dimensions. Second, the insights can be easily extended to the case of multiple regressors (or hedonic factors). 

Here, clustering should include all the included hedonic factors as well as their spatially varying slopes. Third, the 

method in Pryce (2013) is appropriate if there are no regressors. In this case, the cross-price elasticities will be 

solely determined by elements of W. However, because of spatial nonstationarity, the model will then not offer 

any useful structural interpretation, and the estimates of elasticities are also likely to be biased. 

4. A Synthesis of Empirical Approaches 

Next, we consider implementation of a procedure for delineating submarkets. For this purpose, we develop a 

synthesis of several empirical approaches rather than a purely spatial econometric framework.  

4.1. The limits of spatial econometrics? 

Recent spatial econometrics literature has considered estimation of spatial weights (Bhattacharjee and Holly, 

2013; Bhattacharjee and Jensen-Butler, 2013; Bailey et al., 2014), endogenous spatial structure (Kelejian and 

Piras, 2014), and connections between different aspects of space (Bhattacharjee et al., 2012). There are, 

however, two leading aspects where the framework needs to be extended.  

First, while the above framework uniquely combines spatial heterogeneity and spatial dependence, the way 

spatial dependence is modelled is somewhat unsatisfactory. Specifically, in restricting spatial spillovers to a 

spatial error model, adequate attention is not paid to endogenous evolution of space itself. At the same time, it is 

perhaps inevitable that housing markets are endogenously related over space. Location choices and 

consequently prices are not only spatially contingent, but also endogenously connected, which implies that 

spatial dependence through a spatial lag model is more appropriate. While the literature has paid elaborate 

attention to spatial lag dependence, for example, Anselin and Lozano-Gracia (2008) and Anselin et al. (2010), 

this has been in a context where the spatial weights are known a priori, and there is no spatial heterogeneity.  

Second, the above framework assumes a segmentation into housing submarkets which is given a priori. We 

need delineation of submarkets based on hedonic characteristics and prices that are spatially heterogeneous 

within a spatial context where spatial dependence is endogenous.  

4.2. Some alternate approaches 

In summary, a new framework is required. We now turn to alternative perspectives from the geography and 
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statistics literatures, specifically local regressions (for example, geographically weighted regressions, GWR) and 

functional data analysis (FDA).  

4.2.1. Geographically (or locally) weighted regression 

In the literature, spatial heterogeneity is typically modelled using locally weighted regressions (McMillen, 1996), 

of which the Geographically Weighted Regression (GWR) (Fotheringham et al., 1998) is perhaps the most 

popular. GWR is a nonparametric regression method that replaces the single regression coefficient in a linear 

model with a series of (geographically weighted) estimates:      

    ,)()(])()([ ,, ∫∫ +=
S

ihii

S

ih dssfsXdssfsYE βα      (8)     

where Y and X are both defined over a territory S determined by a medium or large urban housing market, i is a 

location within the spatial domain S, fh,i(s) is a kernel density with bandwidth h and centred on location i, the 

regression slope βi varies over space, and αi can be interpreted as a location specific fixed effect. In effect, this 

method provides pointwise estimates βi of the regression effect of a kernel weighted local average of Y on a 

similarly kernel weighted local average of X. 

4.2.2. Functional data analysis 

Functional data analysis (FDA) is a framework and collection of tools for statistical analysis of functional data, 

which refers to curves, surfaces or anything else that varies over a continuum; see, for example Ramsay and 

Silverman (2005). The main challenge in FDA is that functional data (curves or surfaces) are intrinsically infinite 

dimensional while sample sizes are limited. Hence the data have to be projected on the span of a suitable basis, 

assuming that the data are intrinsically smooth, while observed data include measurement error. In the typical 

case where the functional domain is time, inferences can be based on a Fourier basis for periodic data or 

smoothing splines for data that are not periodic (Ramsay and Silverman, 2005).  

In our spatial context, the functional linear regression model takes the form:    

    [ ] ( ) ( ),∫+=
S

ii sxsyE βα                (9)      

where the response (y) is scalar, and the regressor (x) and slope (β) are functional. Application of FDA in the 

spatial domain is not straight forward. Unlike time series, there is no well-defined ordering of spatial observations, 

and neither a direction of information flow. Hence the choice of a basis space is challenging. Guillas and Lai 
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(2010) proposed bivariate splines over triangulations. However, this does not take into account the spatial 

context in terms of the geography of the region or spatial dependence. Here, we adapt the intuitive and powerful 

functional principal components estimator (Cai and Hall, 2006; Hall and Horowitz, 2007) to our spatial context.  

4.3. A Proposed Synthesis of Different Perspectives 

Thus, we propose a new framework, based on a synthesis of spatial econometrics and functional data analysis. 

This framework addresses some of the limitations of the previous approaches. Intuition suggests that such a 

synthesis may be promising. For illustration, consider again the simple spatial lag model in (6) specific to two 

housing properties, but incorporating heterogeneity in slopes. As discussed above, the reduced form 
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implies a regression model where, in addition to xiβi, the right hand side also includes xjβj, but with a much 

smaller weight, since wji << 1. This suggests a functional regression model where the response variable is scalar 

and the functional regressor is xi(s) = xi fh,i(s) with kernel weights fh,i(s) proportional to the elements of 

[ ] [ ]WIWI +≈−
−1 . This intuition generalises to multiple locations and houses. 

Thus, the spatial lag model is a special case of the functional regression model, corresponding to a specific 

definition of the functional regressor. Further, as the bandwidth h reduces to zero, GWR and functional 

regression becomes very similar. This suggests that a synthesis of perspectives from spatial econometrics, GWR 

and FDA may deliver a spatial statistical model that is very rich and enable the full range of spatial analyses of 

housing markets. Importantly, the model offers efficiency and robustness by using information from neighbours 

through the spatial weights matrix. 

The above model addresses both the limitations of the previous approaches. First, the proposed framework 

combines the regressor (xi) and (kernel) spatial weights, fh,i(s), into a functional regressor, xi(s). This allows 

inference on a functional slope to proceed beyond the limitations of exogenously specified submarkets or spatial 

weights. Now, endogeneity in the spatial weights can be modelled in conventional ways. One would need either 

a dynamic model for how these weights evolve over time, or use suitable instruments for xi(s).  

Second, the framework allows submarkets to evolve endogenously without the need to delineate housing 

submarkets a priori. As discussed before, the literature has defined submarkets either as a collection of locations 
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that have close hedonic substitutability (Rothenberg et al., 1991; Bourassa et al., 2003), or by the degree of 

substitutability (Grigsby et al., 1987; Pryce, 2013). In the context of a hedonic model with homogenous slopes, 

the two definitions are equivalent. However, this is not true when there is heterogeneity across submarkets. This 

heterogeneity relates not only to the hedonic characters, but also the shadow prices of such features. As our 

Theorem 1 suggests, in the presence of such heterogeneity, housing submarkets should be delineated by spatial 

clustering jointly of the functional partial effect β(s) and the functional surface of the hedonic characteristics x(s). 

5. Methodology  

Our methodology for delineation of submarkets starts with estimating a functional regression model  

   ),()()(    ,)()()(][ , sfsxsxsxssyE ihi
S

ii =+= ∫ βα      (11) 

where yi is a scalar response at location i, x(s) is defined over a spatial domain S corresponding to an urban 

housing market (and, unlike the typical functional regression model, not a subset of the positive real line R+), and 

fh,i(s) is a kernel density with bandwidth h and centred on location i.  

5.1. Estimating the Functional Regression Model 

The functional linear regression model (11) is based on a large (and potentially infinite) dimensional functional 

regressor that needs to be regularised. Hence, estimation involves projection to a suitable basis space. We 

consider the functional principal components estimator (Hall and Horowitz, 2007). However, application of the 

method presents some challenges in our setting.  For a specific location i, the functional surface of xi(s) is a 

weighted form of xi, with the weights given by a kernel fh,i(s). This kernel places a large weight in the 

neighbourhood of location i, but relatively small weights elsewhere. This implies that the functional surface has 

very sparse information which in turn requires a large number of principal components and also produces a poor 

approximation. For this problem of regularisation, we develop a variant of functional principal components. 

Our data generating process is as follows. The data constitute a collection of dependent pairs (X1,Y1), 

(X2,Y2),…,(Xn,Yn) indexed on n locations in a compact set S ⊂ R². For a specific location i ϵ S, both Y and X are 

scalar random variables. The Yi are generated by a functional linear regression model     

          ,.,1      ,*
niXY i

S
ii K=++= ∫ εβα  

   { }








=≠∈=

=

=

otherwise.0

)(,,,,1if

if

)( ,

*
jffjinjufX

iuX

uX ihijijj

i

i K              (12) 



 18

The errors εi are potentially spatially dependent, but are identically distributed with finite variance and zero mean, 

and are independent of the explanatory variables; no distributional assumptions are made.  

The main issue with model (12) is that the functional regressor surface of Xi
* is very irregular. By assumption 2, 

the mean of the underlying regressor, )(uX , varies smoothly over S. However, the combination of a large (unit) 

weight at location i with a kernel function elsewhere renders Xi
* very irregular and spiky. Hence, usual 

regularisation by principal components as in Cai and Hall (2006) and Hall and Horowitz (2007) is not feasible. 

The tuning parameter (number of principal components) will be very large, and correspondingly, the spacings 

between eigenvalues are very small, so that the results in Hall and Horowitz (2007) are not directly applicable.  

Hence, our approach focuses on directly regularising the surface of )(uX  using functional principal 

components. To motivate the approach, consider the surface of the functional regressor Xi
* for the specific 

observation i. The challenge here is the spiky nature of Xi
*, due to a very large (unit) weight at the location of 

observation i, together with much lower weights (fij) at other locations. Our object of inference here is the 

functional surface of the regression coefficient (β) which is smooth (Assumption 2). Hence, the regressor at this 

location can be potentially combined with values in its neighbourhood. By averaging, the irregular functional 

regressor surface can be smoothed. This suggests that partitioning S into several (K) regions (say, 

{ }KPPP ,,, 21 K ) may be a good starting point. This may also be viewed as a first stage of regularisation, where 

the basis function is a histogram sieve. 

Then, we apply functional principal components to the averaged regressor process across the partitions, that is 

to ( Kxxx ,,, 21 K ), where .,,1),|( KkPiXEx kik K=∈=  The procedure poses two major challenges: (a) 

by averaging, we would lose variability across observations, and therefore implementation of functional principal 

components is challenging; and (b) if we were to implement principal components, we need to develop a method 

similar to Hall and Horowitz (2007) to then use these principal components to  estimate the functional surface of 

the regression coefficient (β). 

For (a), the same spike that was a problem earlier now helps once a histogram sieve (partition) has been placed. 

Consider the compact space S partitioned into K regions KPPP ,,, 21 K , with corresponding sample sizes 

Knnn ,,, 21 K , with .∑ = nnk  For notational simplicity, we denote by k(i)=k the partition that observation i 
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belongs to, that is i ϵ Pk. Then, the sieve functional regressor for observation i is 

( )[ ] ].,,,1,,,,[ 11,111,1222111 KiKKkkikkiiiiiikkikii xfnxfnxfnXfxfnxfnxfn KK +++−−− +−   (13) 

We divide the j-th element of the functional regressor vector (13) by the scalar exogenous weight nj fij,:  
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Now, there is variation in the functional regressor surface across observations within each partition, and hence 

functional principal components can be implemented. At the same time, 0→
−

iii

iiii

fn

xfX
 as n→∞, so that in 

large samples, (14) approximates the average process. Thus it is expected to be smooth over space since, by 

Assumption 2, the functional surface of the average )(sX  is smooth. In large samples, when variation in Xi 

does not matter for the construction of the functional regressor, ,* ZXX ≈  where [ ]KxxxX ,,, 21 K=  and Z 

is a vector with value 1 at location i and 0 otherwise. 

With (b) note that, for the data within a specific partition Pk, the functional regression coefficient for the partition is 

βk times nk fkk, where the coefficient itself corresponds to the k-th element of X**. Note also that, within this same 

partition, there is no cross-section variation in the other elements of X**, and hence their effects are 

encompassed within a fixed effect for the partition. Hence, the functional surface of the regression coefficient can 

be estimated by a functional regression model where the dependent variable is measured in deviations from the 

local (within partition) mean, and the functional regressor is given by equation (14).  

In our application, we have a finite but large-dimensional setting where the number of partitions (K) is large. 

Below, we assume that the spatial design, given by Z, is held fixed in repeated sampling. Finally, we obtain our 

estimator β̂  by dividing the k-th element of the functional regression estimator by the deterministic scalar nk fkk.  

Thus, consider the modified linear functional regression model:         
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The **

iX are random functions on S ⊂ R², the intercept a and the errors εi are scalars and the slope b, our main 

object of inference, is a function on S. Let (X**, Y, ε) denote a generic ( **

iX , Yi, εi). Define  
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where ∑−=
i iXnX (.)(.) **1** . Write the spectral expansions of K and K̂ as:     
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where 021 >>> Kκκ  and K,, 21 φφ  are the eigenvalue and corresponding orthonormal eigenvector 

sequences of the linear operator with kernel K, and similarly 0ˆˆ
21 ≥≥≥ Kκκ  and K,ˆ,ˆ

21 φφ  for the kernel K̂

. The sequences ( )jj φκ ˆ,ˆ  of eigenvalues and eigenvectors of the empirical covariance matrix of X** constitute an 

estimator of ( )
jj φκ , . Then, the functional principal components estimator (Hall and Horowitz, 2007) of the 

regression slope the slope b(.) is given by         
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where the spectral cutoff m is a tuning parameter, ,ˆˆˆ   ,ˆˆˆ 1
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Note that the functional regression estimator (16) is a least squares estimator, depending only on the sample 

covariance function of the functional regressor X**, truncated at a finite cutoff for the spectral expansion, and the 

covariance function of Y and X**. Thus, it is essentially a method of moments estimator that requires neither 

independent errors nor a specific error distribution, but is based on mean zero errors and orthogonality of the 

regressor and the errors. This is useful in our context, since the errors in our reduced form spatial model (7) are 

correlated. Further, the functional regressor in our spatial setting can be endogenous, either because we use 

estimated spatial weights, or because the underlying regressor X  or the weights matrix W are endogenous. In 

such cases, an instrumental variables estimator can be constructed. Finally, note that, in our setting, Y is 

measured in terms of deviation from the local (within partition) mean, thus allowing for spatial fixed effects.  

Next, we make assumptions required for consistency and convergence rates of our estimator. 
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Assumption 3: Technical assumptions for functional regression inference. 

(a) The data are generated by fixed spatial design, so that Z is not stochastic. 

(b) All other technical assumptions in Hall and Horowitz (2007) hold. Specifically, conditions on the 

distribution of X**, distribution of ε, eigenvalues and Fourier coefficients hold.  

i) X has finite fourth moments, and hence so does X**. The error εi are identically distributed with 

zero mean and finite variance not exceeding some constant C. 

ii) Consider the Karhunen-Loève expansion of the random function X**: 

,)(
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j jjXEX φξ  where the jξ  are pairwise uncorrelated zero mean random 

variables with variances jκ  that are eigenvalues of the expansion. The jκ  satisfy the spacing 

condition 11
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 for all j and some exponent α > 1. 

iii) Let 
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2
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Cjb j
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iv) The tuning parameter m increases with n such that 
( )δα 2/1

/
+

nm is bounded away from zero 

and infinity. 

Then, the functional surface b(s) can be estimated by the functional principal components estimator in Hall and 

Horowitz (2007). However, our object of inference is the functional surface of β(s) in (12) and not the b(s) in (15). 

Assumption 3(a) provides a simple way to go from the )(ˆ sb , estimated by functional principal components as in 

(16), to the )(ˆ sβ . In the finite but large dimensional setting, or when a histogram sieve is placed on the spatial 

domain, we simply have kkkk Psfnsbs ∈= ),/()(ˆ)(β̂ . Assumptions 3(b) are discussed in Hall and Horowitz 

(2007). Condition 3(b)i) is standard. Condition (b)ii) ensures that all eigenvalues have unit multiplicity, and their 

spacing decreases exponentially, so that we need a small smoothing spectral cutoff. Assumption (b)iii) ensures 

that the Fourier coefficients are bounded below and above. Condition (b)iv) ensures that the number of basis 

function terms used in the smoothing process of b is much smaller than n. Then, we have the following result. 

Theorem 2 (Hall and Horowitz, 2007): Let ( )δα ,,Cℑ  denote the set of distributions F of (X**, Y) that satisfy 

Assumption 3 for given values of C, α and δ. Let B denote a class of measurable functions b  of the data 
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For the technical details of the proof and associated discussion, refer to Hall and Horowitz (2007). The functional 

principal components estimator is a method of moments estimator. The identical distribution condition for the 

errors is stated in Assumption 3(b)i), but is not required in the proof of Theorem 2 beyond the zero covariance 

between X** and ε. The technique of proof is somewhat nonstandard, in showing that the supremum and 

infemum have the same rate of convergence, and moreover in using probability (PF) rather than expectation (EF) 

in the supremum statement. The rate of convergence ( ) ( )δαδ 2/12 +−−
n  is generic to noisy inverse problems. The 

main result was shown in Hall and Horowitz (2007). Our main innovation here is to adapt the above general 

result to an irregular (spiky) functional regressor surface. We achieve this by using a histogram sieve.  

Corollary 1: Under Assumption 3, )()(ˆ ss
P

ββ →  and for each ℑ∈F ,     
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S
  

Proof: The proof follows directly from Theorem 1, noting that by Assumption 3(a), nk fkk is a fixed scalar. Since 

kkkk Psfnsbs ∈= ),/()(ˆ)(β̂ , the result follows. 

Several extensions of the above result are possible. The case with random (but independent) sampling over 

space is discussed in the online supplementary material. Here we discuss briefly the case of endogenous spatial 

weights. The functional principal components estimator (16) is based on orthogonality of the error ε with both X 

and W. This estimator is consistent only when W is exogenous. If W is endogenous, then an instrument is 

required. Such a functional instrument V  has to be strictly exogenous but correlated with the functional regressor 

Xi
**. The instrument V may, for example, be based on a weights matrix where the elements are functions of 

geographic distances, which are exogenous by construction. Kelejian and Piras (2014) consider an application to 

demand for cigarettes in the USA, where consumers living close to the border of a state can travel some 
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distance into the neighbouring state to buy their tobacco. However, they would do so only if the travel distance is 

small and the prices in the neighbouring state are lower. This implies a weights matrix that is a combination of 

geographic distances and prices, and is endogenous because prices are endogenously determined. 

Endogenous spatial weights can also arise if the weights matrix is estimated using the same data. For example, 

in the context of our application here, a natural choice is the estimator of a symmetric spatial weights matrix 

proposed in Bhattacharjee et al. (2012). 

A natural extension of the our estimation to the endogenous functional regressor case is based on the 

covariance function of V. Note that, in the case of simple linear regression where the OLS is given by 

,/ˆ XXXYbOLS
′′=  the corresponding IV estimator is VXVYbIV

′′= /ˆ . As before, define    
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Then, we propose the following functional principal components IV estimator of b(.):    
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where m is the spectral tuning parameter, ,ˆˆˆ   ,ˆˆˆ
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The numerator and denominator in (17) are respectively the principal components estimators (Hall and Horowitz, 

2007) of the functional regression of Y on the functional instrument V, the regression of X** on V. Then, under an 

instrument validity condition, the estimator in (17) is consistent for b(s). 

Assumption 4: Technical assumptions for functional IV regression inference. 

(a) Instrument validity:  ( ) [ ] ( ) .,  allfor   0)()(  )]()([ , **** SStstEVtVsEXsXEtsG ×∈≠−−=  

(b) Technical assumptions in Hall and Horowitz (2007) hold for both the functional regressions: Y on V, and 

X** on V.  

i) V has finite fourth moments. The errors in the above two regressions are identically distributed 
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with zero mean and finite variance not exceeding some constant C. 

ii) Consider the Karhunen-Loève expansion of the random function V: ,)(
1

∑
∞

=

=−
j

jjVEV φξ  

where the jξ  are pairwise uncorrelated random variables that have zero means and 

variances jκ  that are eigenvalues of the expansion. The jκ  satisfy the spacing condition 
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 for all j and some exponent α>1. 

iii) Let 
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( )( )[ ])()()( uEVuVEYYEug −−=  and ( )∫ ∫= )()(, tstsGG jjj φφ . The bj’s and Bj’s 

satisfy { } 1,, max
2
1 +>≤ − αδδ

CjBb jj
. 

iv) The tuning parameter m increases with n such that 
( )δα 2/1

/
+

nm is bounded away from zero 

and infinity. 

Assumption 4(b) is very similar to Assumption 3. Assumption 4(a) imposes non-zero covariance between the 

functional regressor and the instrument everywhere over the spatial domain S. This may be a strong assumption, 

but can be relaxed at the cost of analytical complexity.  

Corollary 2: Under Assumption 4, )()(ˆ ss
P

IV ββ →  where kkkkIVIV Psfnsbs ∈= ),/()(ˆ)(β̂ .  

Proof: By Theorem 1, the numerator and denominator of )(ˆ sbIV  converge to the respective functional 

regression coefficients, and hence the ratio converges in probability. That is, ).()(ˆ sbsb
P

IV →  Then the proof 

follows as in Corollary 1, noting that nk fkk is a fixed number.  

Optimal choice of instruments is possible in this context, and weak instrument robust inference is a potential area 

of future research as well as alternative estimators; see the online supplementary material for further discussion.  

In the remainder of this paper, including the empirical application, we focus on an exogenous weights matrix. 

However, the proposed framework allows for potential endogeneity of spatial structure. This extends the 

literature substantially. The traditional spatial econometrics literature has focussed either on spatial dependence 

or on spatial heterogeneity, but not both of these aspects together. The recent literature has developed methods 

for estimating the spatial weights, or where the spatial weights are endogenous but known a priori. By contrast, 
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this paper presents inferences for endogenous (and potentially unknown) W together with spatial heterogeneity. 

5.2. Implementation of the Functional Principal Components Estimator 

Our objective is to estimate a spatial lag model with spatial heterogeneity in the slope of a regressor, with spatial 

weights defined exogenously. In our empirical application, we define spatial weights by a kernel function, as in 

(11). Inferences are conducted by expressing the spatial lag model in reduced form as a functional regression 

model (6), where the functional regressor has the form given by (12).  

First, the spatial domain S is partitioned into a large number (K) of small areas, denoted { }KIII ,,, 21 K . Next, 

we obtain average values of the regressor (hedonic characteristic) in each of these k locations, combined into a 

spatial vector ( )Kxxx ,,, 21 K . Finally, we conduct functional principal components on this vector of spatial 

averages. However, the above vector does not have any cross section variation. This is because the cross 

section variation in xi is sacrificed in the process of aggregation by local averaging. To recover this information, 

we replace 
kx , for observation i ϵ Ik, with         

   ( )[ ]kikii

ikik

i
ikk xfnfx

fnfn

f
xxX 00

00
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11
+−=

−
+= ,                

where f0i = fh,i(Ik) is the modal kernel density centred on the location of i, and nk denotes the sample size in 

partition Ik. Correspondingly, we transform the response variable (y) into local mean deviations: 

.   ,
*

kkii Iiyyy ∈−=  Then, functional regression proceeds by obtaining a small number of functional 

principal components and regressing the transformed response variable (y* ) on these principal components.  

The steps of the estimation method are as follows: 

1. Partition the spatial domain (territory), S, into k potential submarkets, denoted { }KIII ,,, 21 K . For 

each house i, identify the partition j to which it belongs: 
kIi ∈ . 

2. Construct the response variable as ,   ,
*

kjii Iiyyy ∈−=  and the functional average surface as 
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3. Conduct functional principal components on Xi
**, estimate the m principal component factors 

( ) Kmm <<,ˆ,,ˆ,ˆ
21 φφφ K , with corresponding eigenvalues 0ˆˆˆ

21 >>>>> mκκκ K . 
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4. Obtain the functional principal components estimator as (16):  ( ) ,,,1    ,ˆˆ)(ˆ
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5. Finally obtain the estimated FPC surface of the functional regression coefficient as   

   )/()(ˆ)(ˆ
0ikkk fnIbI =β . 

The proposed estimation methodology can now be applied to the data.  

5.3. Submarket Delineation by Spatial Clustering  

Once the functional regression slope surface is estimated, Theorem 1 suggests using the surface )(ˆ sβ  and 

)(sx  to compute housing submarkets by spatial clustering. The notion of clustering here is related to projections 

on the effective dimension reduction (EDR) space (Li and Hsing, 2010). Based on the importance accorded to 

spatiality, there are several ways such clustering can be used: spatial clustering (Knorr-Held and Raßer, 2000); 

clustering based only on similarities in functional variables (Booth et al., 2008); clustering based on a 

combination of spatial proximity and similarity in characteristic space (Zhang et al., 2014); or spatial clustering 

based on heterogeneous slope (Castro et al., 2015). 

Thus, we propose a two-stage procedure for submarket delineation. In the first stage, we estimate the functional 

surfaces )(ˆ sβ  and )(sx , by spatial functional regression and spatial local averaging, respectively. Then, in the 

second stage, we estimate submarkets by applying Ward’s aggregative clustering jointly to )(ˆ sβ  and )(sx . 

This iterative method proceeds by joining at each step the two subclusters that result in the minimum increase in 

the degree of within-cluster heterogeneity (sum of squares); see Everitt (1993). Theorem 1 shows that submarket 

delineation should be conducted by spatial clustering. However, the full development of spatial clustering 

methods in a spatial functional setting lies outside the domain of the current research, and is retained for future 

work. Nevertheless, the clusters estimated in our application are observed to have a strong spatial orientation, 

which relaxes the necessity to conduct spatial clustering in our case.  

6. Application to the Aveiro-Ílhavo Urban Housing Market in Portugal  

In this section, we apply the proposed methodology to delineate housing submarkets in a specific urban housing 

market – the neighbouring municipalities of Aveiro and Ílhavo in central Portugal. The municipalities of Aveiro 
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and Ílhavo have areas of 200 km² and 75 km2 respectively, and population of 78,454 and 38,317 inhabitants 

respectively (Census of Portugal, 2011). Excluding the lagoon, the population density is 600 inhabitants per km2, 

which is typical for an urban agglomeration in Portugal. 

The above spatial domain is divided into the following main zones, each representing aggregation of smaller 

administrative areas with relatively homogeneous neighbourhoods and house prices (Figure 1): i) The inner city 

of Aveiro, with a population of 32,000 inhabitants – the core of the urban municipality; ii) The smaller city of 

Ílhavo, with a population of 5,000 inhabitants, the second urban centre of the agglomeration; iii) A semi-rural area 

with 30,000 inhabitants, where a significant part of the land is used for agriculture, but almost the entire 

population works in the manufacturing and service sectors, and housing constitutes a mixture of new urban 

developments with old rural settlements; iv) A suburban area with 33,500 inhabitants spread around the city of 

Aveiro, with a settlement and employment pattern similar to the above semi-rural area but with a higher 

proportion of  new urban settlements; v) Gafanha da Nazaré, the port area with a population of 13,000 

inhabitants, characterized by a mix of industrial and residential areas; and vi) The seaside resorts Barra and 

Costa Nova, with a permanent population of 3,000 inhabitants and where secondary residences and holiday 

rental properties dominate. As the above description shows, the Aveiro-Ílhavo urban housing market has enough 

variation over space to enable use of the proposed methods and framework to delineate submarkets. 

The database was provided by the firm Janela Digital S.A., which owns and manages the real estate portal 

database Casa Sapo – the largest site in Portugal for real estate advertisement. The data pertain to the time 

period October 2000 and March 2010 and include around 4 million records of properties available for transaction. 

For the specific case of Aveiro and Ílhavo, the database included 47,188 different properties. This empirical work 

used 12,467 observations on completed transactions; for details on cleaning of data and omission of incomplete 

cases, see Bhattacharjee et al. (2012).  

In addition to the price of each property, the database includes two main categories of variables for each 

dwelling: i) the intrinsic physical attributes, and ii) the location and neighbourhood of the building. The first group 

includes number of rooms, state of preservation (restoration), age of construction and area (living space, built 

area, etc.). A set of other physical housing characteristics, obtained from a free text field where real estate 

advertisers describe the property, was also used. The second group of attributes relates to housing location and 

to the characteristics of the neighbourhood, aggregated into a set of distances from different urban, local utility, 
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recreation and transport facilities; see Bhattacharjee et al. (2012) for a full discussion. Since only a small 

proportion of houses were fully geo-referenced, the houses were placed within into the smallest homogeneous 

areas that the database can describe, and the centres of the 76 such areas were geo-referenced; see online 

supplementary material for further detail. 

The data reflect large variation in housing characteristics (Bhattacharjee et al., 2012). The average price (Euros 

per square meter) is 1,126, and ranges from 178 up to 5,714 across the 76 zones. The average living area 

across the 76 zones is 149 m2, varying between 20 m2 and 600 m2. 28.4% of the sample dwellings are single 

houses, 71.6% are flats and 12.3% are duplex (flats with two floors); 39.3% have a balcony, 18.2% have a 

terrace, 16.1% have garage space, and 10.3% have a garage; 43.3% have central heating while 28.9% have a 

fireplace. Location attributes show large spatial variation as well. On average, houses are located at 3.2 km from 

the CBD, while the maximum distance to the CBD is 16 km. 

In order to capture the main dimensions of the housing characteristics, maximum likelihood factor analysis with 

orthogonal varimax rotation was applied to the hedonic housing attributes. Thus, the hedonic features were 

organised into 5 factors, which together explain 54% of the total variation in 43 hedonic characteristics. The 

factors provide clear interpretation in terms of behavioural collections of housing characteristics: of the 5 factors, 

3 relate to location attributes (factor 1 - accessibility to the centre or central amenities; factor 2 - accessibility to 

local amenities; factor 3 - accessibility to beaches) and the other two represent the intrinsic attributes of dwellings 

(factor 4 - housing dimension; and factor 5 - additional desirable features).5 

We estimate a hedonic model using the above data, modeling house prices as a function of living area, the 

above 5 factors, and time on the market. In this paper, specific attention is focused on living area, the shadow 

price for which is expected to vary over the spatial domain, and may be considered a good candidate to analyse 

housing spatial segmentation in the Aveiro-Ílhavo area. Therefore, our functional regression slope, β(s), 

corresponds to living area, and the remaining attributes are assumed to have spatially fixed coefficients.6 

Our central inference is reported in a plot based on clustering along two different characters that represent the 

spatial housing segmentation for Aveiro and Ílhavo; detailed analyses are included in the online supplementary 

                                                 
5 Table 11 in Bhattacharjee et al. (2012) reports a detailed description of the factors. 
6 The prices reported in the dataset are asking prices and not final transaction prices. Time on the market is included to 
capture the wedge between asking and final prices (Bhattacharjee et al., 2012). 
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material. For this purpose, we apply cluster analysis (Everitt, 1993) jointly to: i) living area (measured in square 

meters) averaged across all houses within each zone, )(sx ; and ii) the estimated functional regression 

coefficient )(ˆ sβ , representing the shadow price of living space (Figure 2), using the methods developed in 

section 5. Theorem 1 (section 3) emphasizes spatial clustering, which we do not explicitly apply here. However, 

the clusters reflect clear spatial concentration. 

The spatial distribution of living area (Figure 2) shows a distinction between the smaller space in inner urban 

areas and the increasing available area as we move towards the periphery. The beach areas, secondary urban 

centres and main roads distort somewhat this regular concentric pattern. Within the inner city there is a 

distinction between areas with old traditional buildings and social houses (with the lowest living space) and more 

modern and affluent residential areas; there is a similar contrast between Barra and Costa Nova beaches. The 

smooth spatial variation in average living area suggests the application of functional principal components. We 

construct X** and conduct spectral decomposition. 

Next, we construct our dependent variable controlling for additional regressors and spatial fixed effects. We 

conduct fixed effects regression for the logarithm of price per square meter (y) on the 5 factors, plus time-on-the-

market, allowing for zone-level fixed effects. The regressor slopes are assumed fixed, not spatially varying. The 

residuals constitute our modified dependent variable, y*, for functional regression.  

Based on an exogenous distance-based spatial weights using a bivariate Gaussian kernel and the spectral 

decomposition of the covariance function of X**, we obtain our functional regression estimates, first of )(ˆ kIb , 

and then 76,,1),(ˆ K=kIkβ . From these estimates, we infer the estimated spatially varying living area 

elasticity of price. Note that, the response variable here is logarithm of price per unit living area, and not the 

logarithm of price in itself. Hence the estimated elasticity for zone k is given by )(ˆ1 kIβ+ . Finally, we conduct 

cluster analysis on these shadow prices, and report the spatial pattern in Figure 2.7 A concentric pattern of the 

shadow prices is also evident. The shadow price of living space is highest in the city centre and decrease as we 

move towards the periphery, meaning that the premium for a larger house is higher in the more urban areas.  

                                                 
7 Zone-boundaries are demarcated by Voronoi tessellations (Okabe et al., 2000), as convex polygons from the intersection 
of half-spaces between centres of neighbouring zones. 
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The above regular concentric pattern is punctuated by four exceptions: i) areas corresponding to urban 

expansion along the main axial roads; ii) the urban centre of Ílhavo; iii) the urban centre of Gafanha; and iv) the 

Barra seaside resort, where the predominant  new flats have a relatively strong premium for a larger apartment. 

Conversely, Costa Nova, a resort to the south of Barra, has mainly traditional small houses with rigid dimensions, 

attracting a very low premium for extra size (demand for a nice location and style of houses, and not so much for 

larger living space). The dominant pattern is one of inverse relationship between )(sx  and )(ˆ sβ ; the lower the 

average living space, the higher the shadow price. As a consequence, and in line with Theorem 1, the 

submarkets presented in Figure 2 conform to the two delineation principles – similarity in hedonic characteristics 

and similarity in hedonic prices.  

The resulting submarkets, ordered by decreasing value of average living space, show a concentric pattern, with 

some interesting features. The urban core of Aveiro corresponds to the submarket 6, with the smallest living area 

and the highest premium for additional space; submarket 4 corresponds to the outer ring of Aveiro, with 

extensions along the main roads, but also to some inner city areas (Gulbenkian and Bairro do Liceu) with 

relatively large high quality houses; submarket 5 corresponds to the previously discussed case of Costa Nova 

and three other areas with limited residential use, where the reduced living space is coupled with very low 

marginal returns to space; the remaining submarkets reflect the expected pattern of peripheral areas. 

In summary, the submarkets obtained from the above analysis, based on clustering jointly along two dimensions, 

)(sx  and )(ˆ sβ , produces submarkets that have a clear spatial context and approximately concentric pattern 

around the CBD of Aveiro. However, this concentric pattern is punctuated by processes of urban development – 

beach areas, secondary urban centres and main axial roads – that in turn reflect historical processes of 

development of the urban area.  

The results are based on a new functional regression framework and methodology accounting both for spatial 

dependence and spatial heterogeneity. In our empirical analysis, the spatial weights matrix is defined 

exogenously by a geographical-distance based independent bivariate Gaussian kernel. However, one can 

equally use estimated spatial weights, where a natural choice may be the estimator proposed in Bhattacharjee et 

al. (2012). However, in this case, the spatial weights and functional regressor will be endogenous. The IV 

estimator proposed here provides very similar submarket delineation, and the results are not reported separately. 
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7. Conclusion 

The main topic of this paper was the definition of housing submarkets in terms of its conceptualization and 

empirical delineation. A new framework and methods based on functional data analysis were developed, 

integrating ideas and approaches from functional data analysis, spatial econometrics and locally weighted 

regressions. This allows for spatial dependence and spatial heterogeneity, and can accommodate endogenous 

spatial weights. In allowing for endogenously determined submarkets and endogenous spatial regression, our 

work addresses important limitations of existing methods.  

In the literature, analysis of housing segmentation has been conducted in several ways: i) by similarity of hedonic 

housing characteristics, ii) by similarity of hedonic prices, or iii) by the degree of substitutability of housing units. 

We show that spatial clustering based on i) and ii) also imply iii). In our application to an urban housing market in 

Portugal, clustering by housing characteristics and shadow prices partly overlap, and spatial clustering based on 

both produces submarkets where houses are substitutable. 

The proposed synthesis and corresponding methods extend the literature along several directions. First, the 

framework can allow spatial structure and submarkets to evolve endogenously. Second, our framework extends 

FDA tools and methods to the spatial domain, and specifically the spatial lag model with spatial heterogeneity in 

slopes and spatial fixed effects. Third, once such submarkets have been delineated, spatial dependence can be 

examined by estimating cross- and within-submarket spatial weights (Bhattacharjee et al., 2012).  

Several further research problems develop from our work. First, while our framework aids analyses of 

endogenously produced submarkets, finding the asymptotic convergence rates for the proposed IV estimator for 

the functional regression model is retained for future work. Inferences robust to weak instruments in this setting 

may also be useful. Further, relaxing the fixed design assumption will enhance applicability of the methods. 

Second, combining the proposed approach with estimated spatial weights is a topic for further research. For 

conducting inference on W, one can exploit the fact that the error term in the reduced form is (I – W) –1 ε, and 

hence the spatial autocovariance matrix of these errors is a 1–1 function of a symmetric weights matrix 

(Bhattacharjee and Jensen-Butler, 2013). Further, the submarkets identified in the previous step can also be 

used to estimate within and between submarket spatial weights (Bhattacharjee et al., 2012). 

Finally, estimation and inferences on an unknown spatial weights matrix W has another important advantage. 

FDA on the partial effects can then borrow strength over the network (defined by W) using ideas and concepts 
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from small area statistics; see, for example, Castro et al. (2015). Perhaps most importantly, the proposed 

framework offers the possibility of studying the endogenous evolution of urban spatial structure. All these lines of 

future research are exciting. 
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Figure 1 – Major zones of the municipalities of Aveiro and Ílhavo 

 
 

Legend: 
 

 

 
Number of 
zones 

FDA elasticity 
(standardized values) 

Ln Area m2  
(standardized values) 

Submarket 1  2 -0.156 2.839 
Submarket 2  17 -1.050 1.124 
Submarket 3  18 -0.268 0.402 
Submarket 4 20 0.782 -0.524 
Submarket 5 5 -1.137 -0.948 
Submarket 6 14 0.931 -1.201 

Figure 2 - Submarkets based on Ward’s linkage clusters:  
Housing characteristics combined with marginal returns to living space  
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