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Summary

Emerging evidence shows that hydrocarbonoclastic
bacteria (HCB) may be commonly found associated
with phytoplankton in the ocean, but the ecology of
these bacteria and how they respond to crude oil
remains poorly understood. Here, we used a natural
diatom-bacterial assemblage to investigate the diver-
sity and response of HCB associated with a cosmo-
politan marine diatom, Skeletonema costatum, to
crude oil. Pyrosequencing analysis revealed a dra-
matic transition in the diatom-associated bacterial
community, defined initially by a short-lived bloom
of Methylophaga (putative oil degraders) that was
subsequently succeeded by distinct groups of
HCB (Marinobacter, Polycyclovorans, Arenibacter,
Parvibaculum, Roseobacter clade), including putative
novel phyla, as well as other groups with previously
unqualified oil-degrading potential. Interestingly,
these oil-enriched organisms contributed to the
apparent and exclusive biodegradation of substituted
and non-substituted polycyclic aromatic hydrocar-
bons (PAHs), thereby suggesting that the HCB com-
munity associated with the diatom is tuned to
specializing in the degradation of PAHs. Furthermore,
the formation of marine oil snow (MOS) in oil-
amended incubations was consistent with its forma-
tion during the Deepwater Horizon oil spill. This work

highlights the phycosphere of phytoplankton as
an underexplored biotope in the ocean where HCB
may contribute importantly to the biodegradation
of hydrocarbon contaminants in marine surface
waters.

Introduction

Marine eukaryotic phytoplankton, or micro-algae, are
primary producers that contribute significantly to Earth’s
total produced oxygen (accounting for approximately 50%
in the atmosphere) (Field et al., 1998) and are pivotal in
controlling atmospheric carbon dioxide levels through
their capacity to fix carbon photoautotrophically (Raven,
1994). Over the years it has become apparent that
eukaryotic phytoplankton and bacteria share an intimate
coexistence. Eukaryotic phytoplankton harbour on their
cell surface, or phycosphere, communities of bacteria
whose presence is non-coincidental. Several studies
investigating the relationship between phytoplankton
and their bacterial associates have shown evidence of
some forms of symbiotic relationship in this eukaryotic–
prokaryotic partnership, often one that is mediated
through a reciprocated sharing of a specific nutrient(s).
Amin and colleagues (2009), for example, showed a
mutual sharing of iron and fixed carbon between several
species of phytoplankton and bacteria, whereas Kazamia
and colleagues (2012) reported the supply of bacterial-
produced vitamin B12 to the eukaryote partner in
exchange for fixed carbon. The significance of these sym-
biotic relationships is highlighted by the fact that few phy-
toplankton cultures can be maintained in the laboratory
and sub-cultured for long periods axenically (i.e. com-
pletely devoid of their bacterial community).

Emerging evidence over the past decade has revealed
the occurrence of eukaryotic phytoplankton as a poten-
tially important biotope for finding hydrocarbon-degrading
bacteria (Green et al., 2004; Gutierrez and Aitken,
2014; Gutierrez et al., 2014), including obligate
hydrocarbonoclastic bacteria (Gutierrez et al., 2012a,b;
2013). The ecology and life cycle of these types of bac-
teria in the ocean, respective to their possible interactions
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with and close dependence on other organisms, is an
area that is in a nascent phase of understanding. A
common misconception when isolating bacteria from sea-
water is that they are thought to have been occurring in
a free-living state, and frequently no attention is given to
the possibility that they may have been associated, or
attached, to other planktonic surfaces. Aside from the
many salts and dissolved inorganic and organic carbon
that constitute seawater, the ocean contains enormous
quantities of transparent exopolymer, particulate organic
matter and planktonic eukaryotic organisms (e.g. phyto-
plankton, zooplankton), all of which can act as a surface
to which bacteria can be found attached. The occurrence
of hydrocarbon-degrading bacteria living with marine
eukaryotic phytoplankton is an intriguing pairing that
remains to be qualified in terms of establishing the under-
lying reason(s) for this partnership. There is evidence that
this association may stem from the capacity of eukaryotic
phytoplankton cells to accumulate hydrocarbons on their
cell surfaces. Some studies, for example, have shown
phytoplankton cells to accumulate polycyclic aromatic
hydrocarbon (PAH) molecules from the surrounding
seawater (Binark et al., 2000; Kowalewska, 1999),
which would create a PAH-enriched zone around the
phycosphere of the phytoplankton cells and in turn attract
PAH-degrading bacteria to colonize this zone. The ability
of some eukaryotic phytoplankton to synthesize PAHs
(Andelman and Suess, 1970; Gunnison and Alexander,
1975), or long-chain hydrocarbon-like compounds, such
as alkenones (Marlowe et al., 1984), may also explain the
occurrence of hydrocarbon-degrading bacteria found
associated with these organisms.

Sea surface oil slicks can mediate the accumulation of
high concentrations of hydrocarbons, particularly PAHs,
within the upper layers of the water column. During the
Deepwater Horizon (DwH) disaster, for example, high
concentrations of n-alkanes were measured in both
surface and plume waters at the spill site (Hazen et al.,
2010), whereas high-molecular-weight PAHs were found
to preferentially predominate in surface waters (Diercks
et al., 2010a,b; Hazen et al., 2010; Camilli et al., 2010).
PAHs are recognized as high-priority pollutants in the
environment (Agency for Toxic Substances and Disease
Registry, 2007), and their accumulation in the upper
layers of the water column, in particular the euphotic
zone, where primary production is mainly confined, can
have significant impacts to phytoplankton (Harrison et al.,
1986). This was evidenced within the first few weeks
following the onset of the DwH spill on 15 April 2010,
where a dramatic decline in phytoplankton occurred at the
vicinity of the spill site, even before the application of
dispersant (Abbriano et al., 2011). This Gulf of Mexico
phytoplankton community may have acted as a natural
seed of hydrocarbon-degrading bacteria in surface oil

slicks and sub-surface dispersed oil in the upper water
column. However, the response of natural bacterial com-
munities associated with eukaryotic phytoplankton to
oil contamination has, to our knowledge, not been
addressed. In light of the evidence showing the occur-
rence of hydrocarbon-degrading bacteria associated with
phytoplankton (Green et al., 2006; Gutierrez et al.,
2012a,b; 2013; 2014; Gutierrez and Aitken, 2014), this
putative symbiotic relationship, including how these
natural consortia respond to oil, deserves attention as it
would improve our understanding of the biotopes and
ecology of oil-degrading bacteria in the ocean.

Photosynthetically enhanced biodegradation of oil
hydrocarbons has been demonstrated using artificial
combinations of phytoplankton-bacterial consortia
(Safanova et al., 1999; Borde et al., 2003; Muñoz et al.,
2003; Warshawsky et al., 2007). However, little is known
about this process in natural assemblages of these organ-
isms. Furthermore, experiments to address this in the field
can be quite challenging and lack the level of control
required to make accurate interpretations. Here, we con-
ducted a laboratory-based oil spill-simulated experiment
using a non-axenic culture of the marine diatom
Skeletonema costatum to investigate its response to
crude oil and that of its associated bacterial community.
16S rRNA gene pyrosequence analysis and quantitative
polymerase chain reaction (qPCR) were used to monitor
the response of the total bacterial community and of the
specific hydrocarbon-degrading taxa in oil-amended and
non-amended incubations, as well as to infer their possi-
ble contribution to the overall biodegradation of the oil.

Results

Degradation of PAHs and Alaska North Slope (ANS)
crude oil

Table 1 shows the degradation of each of the five PAHs as
measured during incubation of non-axenic S. costatum
CCAP 1077/1C with the five different PAH compounds.
For enrichments utilizing ONR7a medium, significant
(P < 0.05) amounts of naphthalene (NAP) and
phenanthrene (PHE) were degraded after 28 days –
86.2% ± 5.2% and 72.5% ± 3.0% respectively. No signifi-
cant degradation of anthracene (ANT), pyrene (PYR) or
fluorine (FLU) was detected in incubations using ONR7a
medium. For the enrichments utilizing ZM/100 medium,
significant amounts of NAP, PHE and FLU were degraded
after 28 days – respectively 94.6% ± 4.8%, 81.7% ± 2.2%
and 17.7% ± 6.0% of the total initial amount added. No
degradation of ANT or FLU was measured in these enrich-
ments. Uninoculated controls showed no significant loss
of PAHs. Degradation studies in our laboratory with axenic
cultures of S. costatum showed an inability to utilize
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hydrocarbons as a carbon and energy source (•• ••,
unpubl. results).

In the crude oil enrichment experiment, we determined
the concentrations of various aromatic and aliphatic
hydrocarbon species at the time point when the cultures
were amended with ANS crude oil (day 7) and at the
termination of the enrichment (day 64). For this, desig-
nated cultures were sacrificed for whole-culture extrac-
tion, as described above. Compared with acid-inhibited
controls, the concentrations of some hydrocarbon species
were found to have significantly decreased (P < 0.01)
after 64 days in the uninhibited incubations. As shown
in Table 2, these hydrocarbons, and the per cent they
were biodegraded compared with their concentrations
in acid-inhibited controls, were NAP (19.9 ± 1.1%),
1-methylnaphthalene (5.8 ± 0.4%), 2-methylnaphthalene
(29.5 ± 0.9%), biphenyl (11.1 ± 0.2%), C1-naphthalenes
(19.6 ± 1.5%) and PHE (2.0 ± 0.2%). No significant bio-
degradation of aliphatic hydrocarbons analysed (C1–C40)
was measured in the uninhibited incubations after 64
days.

Skeletonema costatum and prokaryotic
population dynamics

To assess the diatom and its associated prokaryotic (bac-
terial and archaeal) community response to crude oil,
changes in Chlorophyll a (Chl a) and total DAPI (4′6-
diamidino-2-phenylindole) counts were determined. Chl a
concentrations increased from initial values of 0.06 ± 0.00
to 0.16 ± 0.01 μg ml−1 at day 7 across all incubations
(Fig. 1), except in the acid-inhibited controls (K7-9) as was
expected (results not shown). Amendment of flasks O1-3
with crude oil at day 7 (Fig. 1A), however, had a marked

effect on Chl a concentrations compared with the
untreated control incubations (Fig. 1B). Although growth
of the diatom continued in the untreated control, with
Chl a concentrations reaching 2.41 ± 0.11 μg ml−1 by the
end of the experiment at day 64, in the oil-treated incu-
bations, however, its growth was completely suppressed
within 4 days after addition of the oil at day 7 (Fig. 1A).
Chl a concentrations reached maximum levels at
day 11 (0.25 ± 0.02 cells ml−1) and thereafter gradually
decreased to 0.16 ± 0.05 cells ml−1 compared with
2.4 ± 0.11 cells ml−1 in the untreated incubations (C4-6) at
day 64. Microscopic examination of the culture liquid from
the oil-treated incubations a day after addition of the oil
revealed the majority of the diatom cells to have taken on
a dark-brown appearance and over time to progressively
become bleached. Conversely, S. costatum cells in the
untreated incubations (C4-6) displayed a healthy reddish–
brown appearance.

Prokaryotic (bacteria and archaea) abundance in
the oil-amended incubations (O1-3) increased at an
average rate of 3.8 × 104 cells l−1 day−1 between days 7
and 41 and reached a maximum cell concentration of
2.6 × 106 cells l−1 at day 64 (Fig. 1A). Prokaryotic numbers
in the untreated control (Fig. 1B) showed a similar trend,
but their rate of increase (1.1 × 104 cells l−1 day−1) and
final abundance at day 64 (9.7 × 105 cells l−1) were mark-
edly lower compared with that in the oil-treated incuba-
tions (Fig. 1A). Visually, the oil-treated ‘live’ incubations
gradually became more turbid compared with the
untreated controls after day 7, which was indicative of
prokaryotic growth due to the addition of the oil. We note
that although our DAPI counts demonstrate an expected
pattern for prokaryotic dynamics in the oil-amended and
untreated control incubations, these counts are markedly
underestimated because we observed high numbers of
DAPI-stained prokaryotic cells associated with marine oil
snow (MOS), or oil flocs, that were practically impossible
to count accurately because of their density and localiza-
tion within and on the surface of the MOS flocs.

Table 1. Biodegradation of various PAH compounds by the bacterial
community associated with non-axenic S. costatum strain CCAP
1077/1C.

Treatment
Avg % (±SD) of compound
biodegradeda

PAH enrichments in ONR7a:
Naphthalene 86.2 ± 5.2
Phenanthrene 72.5 ± 3.0
Anthracene –
Pyrene –
Fluorene –

PAH enrichments in ZM/100:
Naphthalene 94.6 ± 4.8
Phenanthrene 81.7 ± 2.2
Anthracene –
Pyrene –
Fluorene 17.7 ± 6.0

a. Values are from triplicate measurements and expressed as a
percentage of compound biodegraded after 28 days relative to
uninoculated/acid-inhibited controls.
–, no significant degradation measured; SD, standard deviation.

Table 2. Hydrocarbons biodegraded during enrichment of non-
axenic S. costatum strain CCAP 1077/1C with ANS crude oil.

Hydrocarbon
Avg % (±SD) of compound
biodegradeda

Naphthalene 19.9 ± 1.1
1-Methylnaphthalene 5.8 ± 0.4
2-Methylnaphthalene 29.5 ± 0.9
Biphenyl 11.1 ± 0.2
C1-Naphthalenes 19.6 ± 1.5
Phenanthrene 2.0 ± 0.2

a. Values are from triplicate measurements and expressed as a
percentage of compound biodegraded after 64 days relative to acid-
inhibited controls.
SD, standard deviation.
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Dynamics of qPCR-targeted hydrocarbon degraders

The 16S rRNA gene abundance of Polycyclovorans
algicola and Marinobacter were quantified by qPCR in the
oil-treated (flasks O1-3) and untreated (flasks C4-6) incu-
bations. As shown in Fig. 2, the Marinobacter 16S rRNA
gene abundance increased by approximately two orders
of magnitude by day 8 (1 day after addition of the oil) in
both the oil-treated (Fig. 2A) and untreated (Fig. 2B) incu-
bations. Thereafter, the dynamic of these organisms
became markedly delineated between both treatments. In
the oil-treated incubations, the Marinobacter 16S rRNA
gene abundance continued to increase, reaching maximal
concentrations (7.4 ± 0.5 Log genes ml−1) by day 24 –
approximately five orders of magnitude higher compared
with initial concentrations (Fig. 2A). By day 8 in the
untreated control incubations, however, the 16S rRNA

gene copy number for these organisms had reached
maximal concentrations (4.5 ± 0.1 Log genes ml−1) and
remained at these levels for the remainder of the experi-
ment (Fig. 2B).

In the case of P. algicola, the 16S rRNA gene abun-
dance for these organisms increased by almost one order
of magnitude by day 8 in both treatments – from initial
concentrations of 1.9 ± 0.3 Log genes ml−1 to 2.8 ± 0.3
Log genes ml−1 in the oil-treated incubations (Fig. 2A),
and from initial concentrations of 2.6 ± 0.2 Log genes ml−1

to 3.3 ± 0.2 Log genes ml−1 in the untreated incubations
(Fig. 2B). In the untreated controls, the 16S rRNA gene
abundance of these organisms continued to increase
and reached maximal levels (4.8 ± 0.3 Log genes ml−1) by
day 24, thereafter remained at these levels for the remain-
der of the experiment. In the oil-treated incubations,
however, the copy number continued to gradually

Fig. 1. Chlorophyll a concentrations (open
circles) and prokaryotic (bacterial and
archaeal) cell numbers (solid circles) in
incubations of non-axenic S. costatum strain
CCAP1077/1C amended with (A) or without
(B) ANS crude oil – respectively flasks O1-3
and C4-6. The hatched line at day 7 (top
panel) indicates the time point the oil was
added. Note difference in scale of the
left-hand y-axis in the two plots. Some error
bars are smaller than the symbol.
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increase, reaching 4.2 ± 0.2 Log genes ml−1 by day 36. It
then increased by more than another order of magnitude
to 5.5 ± 0.3 Log genes ml−1 within a period of 6 days, and
remained at these concentrations for the remainder of the
experiment.

For both the oil-treated and untreated incubations the
concentration of total DNA, as a proxy for biomass (bac-
terial, archaeal and S. costatum), showed a general
increase throughout the experiment (Fig. 2), although it
was markedly more pronounced in the oil-treated incuba-
tions (Fig. 2A). For the latter incubations, total DNA con-
centrations appeared to partially reflect the dynamics of
Marinobacter and P. algicola 16S rRNA gene abundance
up until day 42. Thereafter, DNA concentrations dramati-
cally increased until the termination of the experiment,
reaching maximal concentrations of 13.7 ± 0.5 ng
DNA l−1. On the other hand, total DNA concentrations in

the untreated control incubations reached maximal levels
of only 2.7 ± 0.6 ng DNA l−1 by the termination of the
experiment. As expected, no increase in DNA mass was
measured in the acid-inhibited incubations (results not
shown).

Bacterial community analysis

Barcoded 16S rRNA gene pyrosequencing was used to
analyse the bacterial communities present in two repli-
cates of each of the oil-treated and untreated incubations
– respectively, Flasks O1 and O2, and Flasks C4 and C5.
This was performed at day 7 (immediately prior to oil
addition), and then at days 10, 35 and 64. Initially, before
addition of the oil, the 16S rRNA gene pyrosequencing
results revealed a complex bacterial community associ-
ated with S. costatum that was dominated (57–70% of

Fig. 2. Abundance of Polycyclovorans
algicola TG408T (solid circles) and
Marinobacter (open circles) 16S rRNA genes
in incubations of non-axenic S. costatum
strain CCAP1077/1C amended with (A) or
without (B) ANS crude oil – respectively flasks
O1-3 and C4-6. Each circular point on the
graph represents the average and standard
deviation of triplicate qPRC measurements
calculated as the abundance of 16S rRNA
genes per ml of culture. Squares are the
average and standard deviation of triplicate
measurements of the total mass of DNA per
sample. The hatched line at day 7 (top panel)
indicates the time point the oil was added.
Some error bars are smaller than the symbol.
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total 16S rRNA gene sequence reads) by cultured and
uncultured members of the Bacteroidetes, mainly of the
family Flavobacteriaceae and members of the Class
Flavobacteria, with minority representation from Flam-
meovirgaceae, Sphingobacteriales and Flexibacteraceae.
The community was also dominated by a complex assem-
blage of Gammaproteobacteria and Alphaproteobacteria
that, respectively, included members of the Pisci-
rickettsiaceae and of the Rhodobacteraceae and unclas-
sified Rhizobiales (Fig. 3; Table S1). Minority groups
included members of the Hyphomonadaceae and
Rhodobacterales. By day 10, the Flavobacteriaceae,
and to a lesser extent other unclassified Bacteroidetes,
were the major dominating groups. By day 35 and 64,
the dominant members of the community belonged
to the order Xanthomonadales, Alphaproteobacteria,
Flavobacteriaceae, Rhodobacteriaceae and Rhizobiales.
Lower levels of representation to total sequences in each
the libraries at the different time points were also contrib-
uted by unclassified proteobacteria and members of the
order Pirellulales (phylum Planctomycetes).

Three days following addition of the oil at day 7 to Flasks
O1 and O2, the community changed compared with
the untreated (no oil) control and became dominated
by members of the family Piscirickettsiacae, mainly
Methylophaga. By day 35, the major dominating groups
were members of the class Gammaproteobacteria,

including the Marinobacter group (Fig. 4). By day 64,
members of the order Xanthomonadales and family
Rhodobacteraceae dominated the community as reflected
also in the untreated control incubations. However,
compared with the untreated control incubations,
members of the Oceanospirillales, particularly
Marinobacter, were markedly enriched. Overall, 10 opera-
tional taxonomic units (OTUs) were identified to have
become enriched by the oil: OTU-512 (Parvibaculum),
OTU-282 (Saccharospirillum), OTU-142 (Arenibacter),
OTU-9 (Seohaeicola), OTU-256 (Rhoseovarius), OTU-
506 (Parvularcula), OTU-202 (Arenibacter), OTU-499
(Methylophaga), OTU-477 (Marinobacter) and OTU-758
(Marinobacter). As shown in Fig. 4, the latter three OTUs
showed the strongest succession pattern in the oil-
amended incubations, with OTU-499 (Methylophaga)
peaking in relative abundance on day 10, OTU-477
(Marinobacter) on day 35 and OTU-758 (Marinobacter) on
day 64. The 16S rRNA gene sequence reads of these
OTUs from this pyrosequence survey were compared with
related GenBank sequences, including sequences belong-
ing to related hydrocarbon-degrading bacteria (Fig. 5).

Discussion

Although the properties that govern the toxicity of hydro-
carbons to phytoplankton remain poorly understood, the

Fig. 3. Composition of bacterial 16S rRNA gene pyrosequencing reads from incubations of Skeletonema costatum amended with or without
ANS crude oil. The relative abundance of taxa present at > 1% relative abundance is shown. Sequences were classified to family-level
taxonomy when possible and otherwise a higher level classification is shown.
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gradual decline of the diatom following exposure to the
ANS crude oil was not unexpected. Toxicological effects
of hydrocarbons to phytoplankton, particularly PAHs
(Harrison et al., 1986; Ozhan et al., 2014a), have been
reported in several studies (Ostgaard et al., 1984a,b;
Sargian et al., 2005), including to S. costatum species
(Huang et al., 2011); PAHs have been reported to cause
toxicity to phytoplankton at concentrations as low as
1 μg l−1 (Ozhan et al., 2014b and references therein).
Drawing parallels with the DwH oil spill, a marked decline
in phytoplankton abundance, lasting several weeks, was
measured immediately following the Macondo blowout in
the Gulf of Mexico and was likely associated with expo-
sure of phytoplankton cells to toxic concentrations of
Macondo oil hydrocarbons (Abbriano et al., 2011). Fur-
thermore, the aggregation and formation of MOS in the
oil-enrichment incubations (flasks O1–O3) following addi-
tion of the crude oil at day 7 was consistent with the
formation of large quantities of MOS comprising microbial
(phytoplankton and bacterial) flocs observed in surface
waters within the first week of the DwH blowout in the field
(Diercks et al., 2010a,b; Passow et al., 2012). Their for-
mation has been demonstrated in laboratory roller table
bottle incubations using fresh oil slick samples and Gulf of
Mexico surface water (Ziervogel et al., 2012); MOS is

suggested to originate through the production of copious
quantities of extracellular polymeric substances (EPS)
by eukaryotic phytoplankton (Passow and Alldredge,
1994), in particular diatoms (Passow and Alldredge,
1994; Passow et al., 1994), and their interaction with dis-
solved hydrocarbons and/or emulsified oil droplets
(Passow et al., 2012). EPS produced by certain groups
of oil-degrading bacteria (Alteromonas, Halomonas,
Pseudoalteromonas) that were enriched during the DwH
spill has also been shown to trigger the formation of MOS
in the presence of crude oil (Gutierrez et al., 2013; and ••
••, unpubl. results). Hence, by nature of their stickiness,
these macromolecules, whether produced by S. costatum
or any of its associated bacterial members, may have
participated in the observed aggregation and subsequent
sedimentation of the diatom in our oil-treated incubations.

Although the addition of the ANS crude oil at day
7 impacted the diatom negatively, pyrosequencing analy-
sis revealed a dramatic transition in the associated
bacterial community. The community was initially
dominated by members of the Flavobacteriaceae and
Alphaproteobacteria – groups that are typically found
associated with marine eukaryotic phytoplankton (Buchan
et al., 2014) – and included recognized oil-degrading taxa
such as Marinobacter, as well as putative oil-degrading

Fig. 4. Heatmap of all OTUs enriched in both oil flasks, but not controls. OTUs were considered enriched if there was a mean increase of at
least 1% relative abundance (e.g. Shift from 1% to 2%) in at least one time point for replicate incubations, and if the difference was
statistically significant (P < 0.05, false discovery rate-corrected for multiple comparisons). Colour key indicates square-root normalized relative
abundance (%). A strong succession pattern in oil flasks was apparent for three OTUs: OTU-499 (Piscirickettsiaceae) peaked in relative
abundance on day 10; OTU-477 (unclassified Gammaproteobacteria) peaked in relative abundance on day 35; and OTU-758 (unclassified
Oceanospirillales) peaked in relative abundance on day 64.
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bacterial groups. After addition of the oil, the community
shifted and became dominated initially by members of
the Piscirickettsiaceae, including Methylophaga. A few
studies have reported the enrichment of Methylophaga in
oil-contaminated field samples and in laboratory experi-
ments with oil or individual hydrocarbons (Röling et al.,
2002; Yakimov et al., 2005; Coulon et al., 2007; Vila et al.,
2010). Although members of this genus are known to
exhibit an almost exclusive requirement for C1 sources
(methanol, methylamine, dimethylsulfide) as sole growth
substrates, with the exception of some species that are
also capable of utilizing fructose (Janvier and Grimont,
1995), recent work has shown that some Methylophaga
species possess the ability to utilize hydrocarbons as a
sole source of carbon and energy (Mishamandani et al.,
2014). Intriguingly, the Methylophaga identified in some of
these previous studies were, like in the present study,
found to have bloomed in abundance within 3 days of
exposure to hydrocarbons and thereafter decreased to
almost undetectable levels. The reason for this initial and
ephemeral bloom by this group of organisms is intriguing
and warrants further investigation. In the meantime,
however, we posit that this short-lived bloom may be due
to the ability of these Methylophaga to respond quickly
upon exposure to oil hydrocarbons before succumbing,
within just a few days, to being outcompeted by other
members of the Gammaproteobacteria. We also note that
these Methylophaga that bloomed in the oil-treated incu-
bations, represented by OTU-499, may represent novel
species because they share < 98% 16S rRNA gene
sequence identity to their closest relative, the type strain
Methylophaga nitratireducenticrescens strain JAM1T

(Auclair et al., 2010).
Following this initial bloom of Methylophaga and by

other members of the Piscirickettsiaceae, our community
analysis revealed that S. costatum harbours bacterial
groups, such as Arenibacter (OTUs 142 and 202) and
Marinobacter (OTUs 477 and 758) – genera comprising
members reported to degrade hydrocarbons (Yakimov
et al., 2007; Gutierrez and Aitken, 2014; Gutierrez et al.,
2014) – that were able to respond positively to the crude
oil. The closest type strain to Arenibacter OTUs 142 and
202 was to Arenibacter echinorum strain KMM 6032T –
respectively 95% and 96% 16S rRNA gene sequence
identity – isolated from a sea urchin Strongylocentrotus
intermedius (Nedashkovskaya et al., 2007). The closest
type strain to Marinobacter OTUs 477 and 758 was
to Marinobacter xestospongiae strain UST090418-1611T

– respectively 96% and 95% 16S rRNA sequence
identity – isolated from the marine sponge Xestospongia
testudinaria collected from the Red Sea (Lee et al., 2012).
As expected, P. algicola strain TG408T, which was previ-
ously identified living associated with S. costatum and
other eukaryotic phytoplankton species, and which is a

specialist aromatic hydrocarbon degrader (Gutierrez
et al., 2013), had also become positively enriched by the
oil. Intriguingly, a few reports have described the identifi-
cation of organisms, albeit uncultivated clones, with
> 97% 16S rRNA gene sequence identity to strain TG408T

by sequencing surveys of marine, brackish or sediment
environments (Patel et al., 2014; Zeng et al., 2014) and
near-coastal terrestrial oil-contaminated environments
(Kim and Crowley, 2007). A possible explanation for this
may lie in the fastidious and narrow substrate spectrum of
these organisms, and/or their ecology, which may be
somewhat confined to living associated with eukaryotic
phytoplankton (Gutierrez et al., 2013). This may explain
why these organisms have remained practically recalci-
trant to routine cultivation efforts. Their association
with eukaryotic phytoplankton may be viewed as a
co-evolutionary adaptation based on the ability of phyto-
plankton to synthesize PAH chemicals, or to sequester
them from the surrounding seawater in the marine water
column. Roseovarius was also found enriched in the
crude oil-amended incubations. This is a taxonomic group
of the Roseobacter clade, which is commonly found in
high abundance during algal blooms (González et al.,
2000). Their enrichment can be attributed to encoding
multiple ring-cleaving pathways that participate in the
degradation of monocyclic and PAHs (Moran et al., 2007).
Based on a BLASTn analysis of their 16S rRNA gene,
these oil-enriched organisms may represent novel
species because they shared < 96% identity to closest
type strains.

Other members of the bacterial community associated
with the diatom that had also become enriched included
Parvibaculum (OTU-512), Saccharospirillum (OTU-282),
Seohaeicola (OTU-9) and Parvularcula (OTU-506). Based
on a BLASTn analysis of their 16S rRNA gene sequences,
these organisms may also represent novel species
since they each shared < 97% identity to closest type
strains. Of these four genera, only Parvibaculum contains
members that have been reported to degrade hydrocar-
bons – namely Parvibaculum hydrocarboniclasticum
strain EPR92T (Rosario-Passapera et al., 2012) and
Parvibaculum lavamentivorans strain DS-1T (Schleheck
et al., 2004). Although there are no reports, to our knowl-
edge, that describe the ability of any member within the
genera Saccharospirillum, Seohaeicola and Parvularcula
to degrade hydrocarbons, further work would be needed
to evaluate this phenotype for these organisms. It should
be noted that Saccharospirillum is most closely related
to Oceanospirillum and to members of the family
Halomonadaceae (Labrenz et al., 2003), both groups of
which contain oil-degrading representatives and, hence,
suggesting the possibility that this group may have contrib-
uted to the biodegradation of the crude oil in the oil-
amended incubations.
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Marinobacter is recognized as a generalist oil
degrader with a preference for utilizing aliphatic/n-alkane
hydrocarbons as a sole carbon and energy source
(Yakimov et al., 2005). During an oil spill at sea, the
microbial response often commences with the enrich-
ment of aliphatic-degrading bacteria, which is typically
succeeded by groups of bacteria with a preference
for utilizing aromatic hydrocarbons (Head et al., 2006
and references therein). Upon challenge with the ANS
crude oil, the observed initial increase in abundance of
Marinobacter by day 24, followed thereafter by the PAH
degrader TG408T by day 42, reflects this bacterial suc-
cession that is commonly observed during an oil spill at
sea. However, the results of our hydrocarbon analysis
did not appear to support this aliphatic-to-aromatic
hydrocarbon degradation trend because the aromatic
fraction of the ANS crude oil was, based on our biodeg-
radation analysis, preferentially degraded over the
aliphatic/n-alkane fraction. In fact, we found no quantifi-
able biodegradation of any aliphatic hydrocarbons (C1–
C40) in the ANS crude oil (Table 2). Although members
of the Marinobacter genus are commonly associated
with the degradation of aliphatic/n-alkane hydrocarbons
(Gauthier et al., 1992; McGowan et al., 2004), these
organisms can be quite versatile and some species
have been reported to degrade aromatic hydrocarbons
(Hedlund et al., 2001; Gao et al., 2013). Strains of
Marinobacter with the ability to degrade PAHs, such as
NAP and PHE, have been isolated by our group from
various species of marine eukaryotic phytoplankton,
including the S. costatum strain employed in this
study (•• ••, unpubl. results). Indeed, some species of
Marinobacter exhibit an association with eukaryotic phy-
toplankton, such as M. adhaerens found living associ-
ated with the diatom Thalassiosira weissflogii (Kaeppel
et al., 2012). These results indicate that S. costatum har-
bours a community of hydrocarbon-degrading bacteria
that are better adapted to degrading aromatic hydrocar-
bons. Possibly the aromatic-degradation pathway of
these phycosphere-dwelling hydrocarbon degraders
is almost always in a state of up-regulation – i.e. con-
stantly primed – for degrading aromatic hydrocarbons.
Indeed, eukaryotic phytoplankton can synthesize
aromatic chemicals that could support an actively
primed community of associated PAH-degrading bacteria
(Pastuska, 1961; Andelman and Suess, 1970; Gol’man
et al., 1973; Gunnison and Alexander, 1975; Zelibor
et al., 1988).

Interestingly, the bacterial community throughout the
duration of this 64-day enrichment was found to maintain
a high species diversity. This is atypical to what is com-
monly observed in laboratory oil-enrichment experiments
and in the field during a spill where, quite often, one or
more oil-degrading bacterial groups become markedly

dominant and representing up to 70% of total 16S rRNA
gene sequencing libraries (Head et al., 2006; Yakimov
et al., 2007). As noted earlier, the death and observed
aggregation and sedimentation of the diatom to the
bottom of the culture flasks (O1–O3) following exposure
to the ANS crude oil is analogous to the observed forma-
tion of MOS during the DwH oil spill. We posit that in these
oil-amended incubations, MOS formation likely supported
opportunistic heterotrophs, not necessarily just oil degrad-
ers, within the Gammaproteobacteria, which had become
markedly enriched. Studies exploring the impact of high-
molecular-weight dissolved organic matter (DOM) on
microbial community structure and activity have also
shown a selective enrichment of marine heterotrophs
within this class under DOM amendment derived from
phytoplankton blooms (McCarren et al., 2010). Therefore,
other groups within the diatom-associated bacterial com-
munity that are not necessarily capable of utilizing oil
hydrocarbons could have been supported by the rich
supply of DOM and MOS, and thereby providing a mecha-
nism for supporting a wider diversity of species in the
oil-amended incubations.

To the best of our knowledge, this study represents
the first systematic investigation on the dynamics of the
bacterial community associated with a marine eukaryotic
phytoplankton in response to crude oil, including a par-
alleled analysis of the biodegradative capacity of the
community to degrade various hydrocarbon species
that are present in crude oil. Moreover, this work has
added to our current knowledge on the diversity of
hydrocarbon-degrading communities associated with
phytoplankton in the ocean, and their capacity to
respond to petrochemicals. Taken collectively with
results from other studies that have described the isola-
tion of novel taxa of oil-degrading bacteria from marine
phytoplankton across the three major lineages (diatoms,
dinoflagellates, coccolithophores) (Green et al., 2006;
Gutierrez et al., 2012a,b; 2013; 2014; Gutierrez and
Aitken, 2014), this work highlights the phycosphere of
eukaryotic phytoplankton as an underexplored biotope in
the ocean, where novel taxa of oil-degrading bacteria
are found, and which would be capable of responding to
oil contamination. We hope that this work will spur other
investigators to conduct their studies on oil biodegrada-
tion processes in ocean systems by taking into account
the importance of eukaryotic phytoplankton as a reser-
voir of hydrocarbon-degrading bacterial communities.
Field research on the potential role of phytoplankton-
associated bacteria in oil bioremediation would be an
appropriate extension of our microcosm studies. This
algal–bacterial association may have potentially pro-
found implications for the natural purging of the marine
water column and help contribute to the overall health of
the marine ecosystem.
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Experimental procedures

Micro-algal strain used

The algal strain used in this investigation was a non-axenic
laboratory culture of the marine diatom S. costatum strain
CCAP 1077/1C that was originally isolated from an unspeci-
fied location in the North Sea. The strain was purchased from
the Culture Collection of Algae and Protozoa (CCAP; Oban,
Scotland) and maintained in f/2 + Si algal medium (Guillard,
1975; Guillard and Ryther, 1962) in a temperature-controlled
12°C illuminated incubator.

Measurement of PAH degradation in enrichments with
S. costatum

The ability of the prokaryotic community associated with
S. costatum strain CCAP 1077/1C to degrade PAHs was
determined in acid-washed (0.1 N HCl) steam-sterilized glass
test tubes (13 × 100 mm) fitted with screw caps lined with
Teflon-lined silicone septa (Chromacol). Stock solutions of
NAP (approximately 9000 mg l−1), PHE, ANT, PYR and FLU
(each at approximately 3000 mg l−1) dissolved in acetone
were prepared – when used, the acetone was allowed to
volatilize prior to inoculation. Two types of media were used in
these PAH enrichment experiments: ONR7a, which is defined
synthetic seawater medium (Dyksterhouse et al., 1995), and
ZM/100, which is a 100-fold dilution of Zobell’s 2216 marine
medium (Zobell, 1941). Enrichments were performed with
individual PAH compounds rather than a PAH mixture
because of the possibility that competitive inhibition might
occur (Stringfellow and Aitken, 1995). For each enrichment
on a PAH compound (NAP, PHE, ANT, PYR or FLU) and
using one media type (ONR7a or ZM/100), one set of three
test tubes was prepared, each containing a PAH and 2.8 ml of
the respective medium. The three test tubes were then each
inoculated with 200 μl of exponentially growing culture of
S. costatum. Uninoculated controls, acid-killed controls and
tubes that were inoculated but without any added PAH were
also prepared. The initial amounts of the PAHs in the respec-
tive tubes were 0.9 ± 0.02 mg for NAP, 0.33 ± 0.01 mg for
PHE, 0.35 ± 0.01 mg for ANT, 0.42 ± 0.02 mg for PYR and
0.47 ± 0.02 mg for FLU. All test tubes were incubated in
the dark with gentle shaking (100 r.p.m.) at 21°C. A
spectrophotometric method was used to quantify the amount
of each PAH after 28 days incubation in the enrichments, as
previously described (Gutierrez et al., 2012b). A significant
decrease (P < 0.05) in the PAH concentration measured in
the inoculated test tubes, relative to the uninoculated con-
trols, was indicative of degradation.

Crude oil enrichment set-up

To examine the dynamics of the diatom and its associated
bacterial community in response to crude oil exposure, nine
1 l of Erlenmeyer glass flasks were prepared, each contain-
ing 500 ml of f/2 + Si media and inoculated with a growing
culture of the diatom S. costatum CCAP1077/1C to 1% (v/v).
To three of the flasks (designated K7, K8, K9), 85% phos-
phoric acid was added to a final concentration of 3% to serve
as the acid-inhibited control. All nine flasks were incubated in

a temperature-controlled 12°C illuminated incubator with a
12:12 light/dark cycle and at a photon flux density of
25–50 μmol s−1 m−2, which is at the lower end of light intensity
for the North Sea from where the diatom was originally iso-
lated. On day 7, ANS crude oil was added to three of the ‘live’
(uninhibited) flasks (designated O1, O2, O3) at 1% v/v – an
amount that has been used to simulate laboratory-controlled
oil enrichments (Piehler et al., 1999). The oil had been pre-
sterilized before use by passing it through a 0.2 μm of filter.
An equal amount of the oil was also added at this time point
to the acid-inhibited flasks K7, K8 and K9. Oil was not added
to the other three culture flasks (designated C4, C5, C6) to
serve as untreated controls. ANS crude oil was obtained from
the cargo hold of the Exxon Valdez tanker in 1989 and has
since been stored at −20°C. It was selected for use in this
study because its composition has been well characterized. It
is considered a moderately heavy crude oil consisting of
36.8% naphthenes, 27.3% alkanes, 25.3% aromatics and
10.6% polar and other compounds (Elmendorf et al., 1994).
Samples for algal and bacterial counts were taken daily in the
first 10 days, then every 4–5 days until day 28, and then
every 7 days until the termination of the experiment at day 64.
Samples for molecular analysis were taken at days 0, 7, 10,
22, 35, 42, 50, 56 and 64.

In order to analyse for changes in the composition of the oil
due to biodegradation, an additional eight flasks were pre-
pared in the same way with f/2 + Si medium and the diatom.
Of these eight flasks, four were treated with acid (as above)
to act as the acid-inhibited controls, and all eight flasks were
incubated in parallel together with the flasks above. Similarly
to the treatment of the nine flasks above (O1-3, C4-6, K7-9),
ANS crude oil was added to these eight flasks at the 7-day
time point. Immediately after addition of the oil, two of the
uninhibited and two of the acid-treated flasks were randomly
selected and sacrificed for extraction of total petroleum
hydrocarbons (TPHs) and subsequent analysis for individual
hydrocarbon constituents by gas chromatography/mass
spectrometry (GC-MS), as detailed below. The other four
flasks (two uninhibited and two acid-treated) were kept in the
temperature-controlled illuminated incubator. At the termina-
tion of the experiment (day 64), these other four flasks were
extracted for TPH for GC-MS analysis (described below).

Hydrocarbon analysis

Each flask was sacrificed at specified time points for extrac-
tion of TPH by placing the contents into 250 ml of separatory
funnels with dichloromethane (DCM) at an oil/water mix to
DCM ratio of 2:1. The DCM fraction was removed and the
oil/water mix re-extracted an additional two times. The
extracts were combined and stored at 4°C for subsequent
analysis of individual aromatic and aliphatic hydrocarbon
constituents.

Quantification of up to 50 aromatic hydrocarbon constitu-
ents was measured by GC-MS at the Department of Environ-
mental and Molecular Toxicology, North Carolina State
University, as previously described (Page et al., 1995, Stout
et al., 2001, Douglas et al., 1996). An Agilent 6890 gas chro-
matograph, with a Restek RTX-5MS and Integra-Guard
column (30 m length × 0.25 mm internal diameter × 0.25 μm
film thickness) that was connected to an Agilent 5973 mass
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selective detector, was used and operated in selected ion
monitoring mode. Helium was the carrier gas. Pressure in the
inlet was held at 25 psi using a splitless injection technique.
Each sample (2 μl) was injected into a 300°C single taper
inlet liner with a deactivated glass wool plug. The carrier gas
pressure was reduced 1 min after injection and flow was kept
constant at 1.2 ml min−1 throughout the run. The initial tem-
perature was 40°C for 1 min, increased at 25°C min−1 to
100°C, then ramped at 5°C min−1 to a final temperature of
310°C, which was held for 15 min. The transfer line was
heated to 300°C, the mass spectrometry source was heated
to 230°C and the quadrupole was heated to 150°C.

Quantification of aliphatic hydrocarbon constituents was
performed by Fugro ERT in Edinburgh using a HP 6890
Series gas chromatograph (GC) with 7673 auto-injector on a
100% dimethylpolysiloxane bonded fused silica column
(60 m length × 0.32 mm internal diameter × 0.25 μm film
thickness). Samples (1 μl) were injected and run with hydro-
gen as the carrier gas at a constant flow rate of 3.8 ml min−1.
The oven temperature program was set to 40°C for 4 min,
40°C to 330°C at 15°C min−1, and 330°C for 7 min. The
source detector temperature was 350°C.

Concentrations of aromatic and aliphatic hydrocarbon
species/groups that were biodegraded after 64 days were
calculated by subtracting the respective hydrocarbon con-
centrations measured in the acidified controls from those of
the non-acidified incubations. A Student’s t-test was per-
formed to test for significant differences (P < 0.05) in the
degradation of the hydrocarbons analysed between the dif-
ferent treatments.

Quantification of the prokaryotic population and
S. costatum by DAPI staining and Chl a measurements

Samples (2 ml) for Chl a determinations were extracted using
a modified version of EPA Method 445 (Arar and Collins,
1997). For this, each 2 ml of sample was added to 50 ml of
sterile-filtered (0.1 μm) natural seawater immediately upon
collection. The suspensions were filtered through a 25 mm
Glass Fiber Filter (GF/F) and then placed in 50 ml of Falcon
centrifuge tubes (BD Biosciences) containing 10 ml of 90%
acetone. The tubes were sonicated in an iced water bath for
10 min in the dark and then maintained at −20°C for approxi-
mately 20 h. The samples were then centrifuged to remove
particulate matter and the supernatant fractions allowed
to equilibrate in the dark at room temperature prior to
fluorometric analysis on a Fluoromax-4 fluorometer (Horiba
Scientific) using an excitation wavelength of 430 nm with a
5 nm slit width. Emission was measured by recording the
maximum reading from 500 to 750 nm by increments of 5 nm.
Chl a concentrations were calculated from a standard curve
constructed from serial dilutions of a Chl a spinach extract
(Sigma-Aldrich, Saint Louis, MO, USA) as per the method of
Welshemeyer (1994).

Samples (2 ml) for prokaryotic cell counts were fixed with
2% paraformaldehyde (PFA) and stored at 4°C prior to stain-
ing with DAPI for fluorescence microscopy, as adapted from
the method of Porter and Feig (1980). For this, each 2 ml of
PFA-fixed sample was diluted with a known volume of filter-
sterilized seawater and then stained with DAPI to a final
concentration of 0.01 μg ml−1 for 10 min. DAPI-stained solu-

tions were then filtered through 0.2 μm pore-size GTBP
polycarbonate filters (Millipore, 25 mm diameter) using a
glass vacuum filtration system (Millipore). Each filter was
embedded in Citifluor mounting solution (AF1, glycerol/
PBS solution) and visualized with an Olympus BX51
epifluorescense microscope (Tokyo, Japan) equipped with a
Hamamatsu C8484 digital camera (Hamamatsu City, Japan).
Cells were enumerated with METAMORPH image analysis soft-
ware version 7.6.0.0 (Sunnyvale, CA, USA) from at least 10
microscopic fields of view (selected randomly) and expressed
per ml of original sample volume as calculated per the
method of Bloem and Vos (2008).

Extraction of DNA

Cell biomass from samples taken at each sampling point was
collected by filtration using a glass vacuum filtration system
(Millipore) with 47-mm cellulose acetate membrane filters
(0.2 μm pore size; Millipore) and the filters stored at −20°C.
DNA was extracted from one quarter of each filter using the
FastDNA spin kit (MP Biomedicals, Solon, OH, USA) as per
the manufacturer’s instructions. All DNA extracts were puri-
fied using the QIAquick nucleotide removal kit (Qiagen,
Valencia, CA, USA) and eluted into a final volume of 30 μl of
1✕ TE buffer. Purified DNA was stored at −20°C for subse-
quent quantification and molecular analysis.

Real-time qPCR

Preliminary results from our laboratory indicated the occur-
rence of Marinobacter associated with this and other species
of Skeletonema (•• ••, unpubl. results), so we decided to
quantify the abundance of Marinobacter 16S rRNA genes by
qPCR in the oil-enrichment incubations (Flasks O1-3) and
non-oil-treated controls (C4-6). For this, we adapted an oli-
gonucleotide FISH (fluorescence in-situ hybridization) probe,
Mrb-0625-a (5′-CAGTTCGAAATGCCGTTCCCA-3′), that
was recently designed and optimized for the detection of
Marinobacter in environmental samples by FISH (McKay
et al., 2014), for the quantitative detection of Marinobacter in
this study. The adapted primer, designated here MB1r for
qPCR, targeted ∼75% of the monophyletic Marinobacter
group (McKay et al., 2014) and was used together with the
universal eubacterial primer 533f (5′-GTGCCAGCAGCC
GCGGTAA-3′) (Weisburg et al., 1991). The optimal annealing
temperature for the 533f/MB1r primer set (62°C) was deter-
mined using an Eppendorf (Hauppauge, NY, USA)
Mastercycler gradient thermal cycler. The template for con-
struction of a standard curve for qPCR was the 16S rRNA
gene of Marinobacter algicola (DSM 16394) that was ampli-
fied using PCR with primers 27f (Wilmotte et al., 1993) and
1492r (Lane, 1991), and the resultant amplicon purified using
the QIAquick nucleotide removal kit (Qiagen, Valencia, CA,
USA). The limit of quantification for the target strain using
these primers was 114 gene copies per reaction. When
threshold cycle (CT) values beyond the highest value in the
linear range of the standard curve (CT range, 12.1–34.5) were
measured, the gene was considered detected but below the
quantification limit of the assay. The amplification efficiency of
the primers (Pfaffl, 2001) was determined to be 1.9.

Primers for qPCR targeting P algicola strain TG408T, a
novel PAH degrader previously identified living associated
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with S. costatum 1077/1C and other species of eukaryotic
phytoplankton (Gutierrez et al., 2013), were used to track the
abundance of this bacterial strain in the oil enrichments and
untreated controls. These TG408-specific qPCR primers are
Pcy120f (5′-TACATAGGAATCTGCCCGA-3′) and Pcy223r
(5′-AGACATAGGCTCCTCCAA-3′), and the qPCR method
for their use is described elsewhere (Gutierrez et al., 2013).

DNA extracted from incubations with and without oil was
quantified using a NanoDrop ND-3300 fluorospectrometer
(Thermo, Waltham, MA, USA) and the Quant-iT Picogreen
double-stranded DNA (dsDNA) kit (Invitrogen, Carlsbad, CA,
USA). Identification of the target organisms (Marinobacter or
P. algicola TG408T) in these extracts was determined by
qPCR as described previously (Singleton et al., 2006). Dupli-
cate reactions were performed on each triplicate DNA extrac-
tion (from triplicate samples) taken at each time point.

Barcoded amplicon pyrosequencing

Barcoded 16S rRNA gene pyrosequencing was used to
analyse the bacterial community in the purified DNA extracts
from samples collected at days 7 (prior to oil amendment),
10, 35 and 64. Ten-fold dilutions of extracted DNA in
water were used as a template for triplicate PCR reactions
for each sample. A two-step barcoded PCR method was
used, as previously described by Berry colleagues (2011).
The first PCR step employed non-barcoded primers
909f (5′-ACTCAAAKGAATWGACGG-3′) and 1492r (5′-
NTACCTTGTTACGACT-3′). Each 20 μl of PCR master mix
contained 1.25 U Taq DNA polymerase, 50 mM KCl, 30 mM
Tris-HCl, 1.5 mM Mg2+, 0.2% Igepal®-CA630, and 200 μM of
each dNTP, 0.3 μM of each primer and 1 μl of DNA as tem-
plate. PCR was run using an Eppendorf (Hauppauge, NY,
USA) Mastercycler Gradient thermal cycler before verification
of the proper amplicon size on a 1% agarose gel. An addi-
tional set of PCR reactions (in triplicate) was run in parallel
using Escherichia coli DNA as template to act as an internal
control for the pyrosequencing data analysis; E. coli was
chosen because it is not part of the bacterial community
associated with S. costatum 1077/1C.

For the second PCR step, the products from step 1 were
re-amplified using the same primers, with the exception that
the reverse primer (1492r) was linked to a 2 bp spacer on the
5′-end of the primer sequence and a 8 bp barcode sequence
that was unique to each sample (Hamady et al., 2008). In
addition, amplification was performed for only five cycles in
order to reduce PCR bias introduced by the adapter and
barcode sequence during amplification (Berry et al., 2011).
The reactions were run on a 1% agarose gel to verify the
proper amplicon size. Triplicate reactions were then pooled
and purified with a QIAquick PCR Purification Kit (Qiagen)
and eluted in 30 μl of 10 mM Tris-HCl (pH 8.5) buffer. The
DNA concentration of pooled amplicons was then quantified
as described above prior to combining into a single sample at
a concentration suitable for pyrosequencing. The E. coli PCR
product was added at 100-fold lower concentration, as inter-
nal control, than the samples (Berry et al., 2011). The sample
was submitted to the High-Throughput Sequencing Facility at
the University of North Carolina at Chapel Hill for sequencing
using the 454 Life Sciences Titanium platform (Roche Diag-
nostics, Branford, CT, USA).

Pyrosequencing reads were trimmed and filtered using the
LUCY program with a minimum PHRED score of 27.5 and
minimum length of 200 nt to remove low-quality regions,
short reads and plastid sequences (Kunin et al., 2010).
Reads were de-multiplexed based on an 8 nt barcode iden-
tifier and the primer and barcode regions were removed using
QIIME (Caporaso et al., 2010). To form OTUs, the reads were
clustered at 97% sequence identity with UCLUST (Edgar,
2010) and the most abundant unique read within each cluster
was used as its representative sequence. Initial phylogenetic
identification was made using BLAST (Altschul et al., 1990)
and chimeras were detected with CHIMERA SLAYER (Haas
et al., 2011) and removed. Reads with a significant BLAST

match to S. costatum (FJ002160) were also removed prior to
analysis. Sequence data were submitted to the European
Nucleotide Archive Sequence Read Archive under the study
accession numbers (ERS725072–ERS725089).

Phylogenetic tree

Representative 16S rRNA gene sequences of OTUs repre-
senting dominant hydrocarbon degraders identified from the
pyrosequencing analysis were aligned and manually curated
in ARB (Ludwig et al., 2004). The sequences and type strains
(from the Living Tree Project) (Yarza et al., 2010) with the
highest similarity from the SILVA SSU NR 119 NR database
(Quast et al., 2013) were also used for tree construction. A
neighbour-joining tree was constructed with Jukes–Cantor
correction and bootstrapped replication (n = 1000), and
Verrucomicrobium spinosum (X90515) was used as an
outgroup.

Acknowledgements

This work was supported by a Marie Curie International Out-
going Fellowship (PIOF-GA-2008-220129) within the 7th
European Community Framework Programme. Partial
support was also provided through the US National Institute
of Environmental Health Sciences, grant 5 P42ES005948,
and a MASTS Visiting Fellowship to David Berry. We also
thank Damian Shea, of North Carolina State University, for
assistance with GC-MS analysis of aromatic hydrocarbons
and for providing us with the ANS crude oil, and David Sin-
gleton for assistance with qPCR. Finally, we would like to
thank the anonymous reviewers for their valuable comments
during the preparation of the manuscript. The authors declare
no conflict of interest.

References

Abbriano, R.M., Carranza, M.M., Hogle, S.L., Levin, R.A.,
Netburn, A.N., Seto, K.L., et al. (2011) Deepwater Horizon
oil spill: a review of the planktonic response. Oceanogra-
phy 24: 294–301.

Agency for Toxic Substances and Disease Registry (2007)
CERCLA priority list of hazardous substances. Agency for
Toxic Substances and Disease Registry, Atlanta, GA.
[WWW document]. URL http://www.atsdr.cdc.gov/SPL/
index.html.

Andelman, J.B., and Suess, M.J. (1970) Polynuclear aro-
matic hydrocarbons in the water environment. Bull World
Health Organ 43: 479–508.

EMI12988

Alga-bacterial dynamics to crude oil exposure 13

© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology

1bs_bs_query

2bs_bs_query

3bs_bs_query

4bs_bs_query

5bs_bs_query

6bs_bs_query

7bs_bs_query

8bs_bs_query

9bs_bs_query

10bs_bs_query

11bs_bs_query

12bs_bs_query

13bs_bs_query

14bs_bs_query

15bs_bs_query

16bs_bs_query

17bs_bs_query

18bs_bs_query

19bs_bs_query

20bs_bs_query

21bs_bs_query

22bs_bs_query

23bs_bs_query

24bs_bs_query

25bs_bs_query

26bs_bs_query

27bs_bs_query

28bs_bs_query

29bs_bs_query

30bs_bs_query

31bs_bs_query

32bs_bs_query

33bs_bs_query

34bs_bs_query

35bs_bs_query

36bs_bs_query

37bs_bs_query

38bs_bs_query

39bs_bs_query

40bs_bs_query

41bs_bs_query

42bs_bs_query

43bs_bs_query

44bs_bs_query

45bs_bs_query

46bs_bs_query

47bs_bs_query

48bs_bs_query

49bs_bs_query

50bs_bs_query

51bs_bs_query

52bs_bs_query

53bs_bs_query

54bs_bs_query

55bs_bs_query

56bs_bs_query

57bs_bs_query

58bs_bs_query

59bs_bs_query

60bs_bs_query

61bs_bs_query

62bs_bs_query

63bs_bs_query

64bs_bs_query

65bs_bs_query

66bs_bs_query

67bs_bs_query

68bs_bs_query

69bs_bs_query

70bs_bs_query

71bs_bs_query

72bs_bs_query

73bs_bs_query

74bs_bs_query

75bs_bs_query

76bs_bs_query

77bs_bs_query

78bs_bs_query

79bs_bs_query

80bs_bs_query

81bs_bs_query

82bs_bs_query

83bs_bs_query

84bs_bs_query

85bs_bs_query

86bs_bs_query

87bs_bs_query

88bs_bs_query

89bs_bs_query

90bs_bs_query

91bs_bs_query

92bs_bs_query

93bs_bs_query

94bs_bs_query

95bs_bs_query

96bs_bs_query

97bs_bs_query

98bs_bs_query

99bs_bs_query

100bs_bs_query

101bs_bs_query

102bs_bs_query

103bs_bs_query

104bs_bs_query

105bs_bs_query

106bs_bs_query

107bs_bs_query

108bs_bs_query

109bs_bs_query

110bs_bs_query

111bs_bs_query

112bs_bs_query

113bs_bs_query

114bs_bs_query

115bs_bs_query

116bs_bs_query

117bs_bs_query

118bs_bs_query

119bs_bs_query

42
bs_bs_query

43
bs_bs_query

44
bs_bs_query

45
bs_bs_query

46
bs_bs_query

47
bs_bs_query

48
bs_bs_query

49
bs_bs_query

50
bs_bs_query

51
bs_bs_query

52
bs_bs_query

http://www.atsdr.cdc.gov/SPL/index.html
http://www.atsdr.cdc.gov/SPL/index.html


Borde, X., Guieysse, B., Delgado, O., Muñoz, R., Hatti-Kaul,
R., Nugier-Chauvin, C., et al. (2003) Synergistic relation-
ships in algal–bacterial microcosms for the treatment of
aromatic pollutants. Bioresour Technol 86: 293–300.

Buchan, A., LeCleir, G.R., Gulvik, C.A., and Gonzalez, J.M.
(2014) Master recyclers: Features and functions of bacteria
associated with phytoplankton blooms. Nat Rev Microbiol
12: 686–698.

Camilli, R., Reddy, C.M., Yoerger, D.R., Van Mooy, B.A.S.,
Jakuba, M.V., Kinsey, J.C., et al. (2010) Tracking hydrocar-
bon plume transport and bio- degradation at Deepwater
Horizon. Sci 330: 201–204.

Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D.J.,
Zhou, Z., Guo, L., et al. (2010a) Characterization of sub-
surface polycyclic aromatic hydrocarbons at the Deepwa-
ter Horizon site. Geophys Res Lett 37: L20602.

Diercks, A.-R., Asper, V.L., Highsmith, R., Woolsey, M.,
Lohrenz, S., McLetchie, K., et al. (2010b) NIUST – Deep-
water Horizon Oil Spill Response Cruise. OCEANS 2010,
in OCEANS-IEEE series.

Gao, W., Cui, Z.S., Li, Q., Xu, G.S., Jia, X.J., and Zheng, L.
(2013) Marinobacter nanhaiticus sp. nov., polycyclic aro-
matic hydrocarbon-degrading bacterium isolated from the
sediment of the South China Sea. Antonie Van Leeuwen-
hoek 103: 485–491.

Gauthier, M.J., Lafay, B., Christen, R., Fernandez, L.,
Acquaviva, M., Bonin, P., and Bertrand, J.C. (1992)
Marinobacter hydrocarbonoclasticus gen. nov., sp. nov.,
a new extremely halotolerant, hydrocarbon-degrading
marine bacterium. Int J Syst Bacteriol 42: 568–576.

Gol’man, L.P., Mikhaseva, M.F., and Reznikov, V.M. (1973)
Infrared spectra of lignin preparations of pteridophytes and
seaweeds. Dokl Akad Nauk BSSR 17: 1031–1033.

González, J.M., Simo, R., Massana, R., Covert, J.S.,
Casamayor, E.O., Pedoros-Alio, C., et al. (2000)
Bacterial community structure associated with
dimethylsulfoniopropionate-producing North Atlantic algal
bloom. Appl Environ Microbiol 66: 4237–4246.

Green, D.H., Llewellyn, L.E., Negri, A.P., Blackburn, S.I., and
Bolch, C.J.S. (2004) Phylogenetic and functional diversity
of the cutlivable bacterial community associated with the
paralytic shellfish poisoning dinoflagellate Gymnodinium
catenatum. FEMS Microbiol Ecol 47: 345–357.

Green, D.H., Bowman, J.P., Smith, E.A., Gutierrez, T., and
Bolch, C.J.S. (2006) Marinobacter algicola sp. nov., iso-
lated from laboratory cultures of paralytic shellfish toxin-
producing dinoflagellates. Int J Syst Evol Microbiol 56:
523–527.

Gunnison, D., and Alexander, M. (1975) Basis for the resist-
ance of several algae to microbial decomposition. Appl
Microbiol 29: 729–738.

Gutierrez, T., and Aitken, M.D. (2014) Role of methylotrophs
in the degradation of hydrocarbons during the Deepwater
Horizon oil spill. ISME J 8: 2543–2545.

Gutierrez, T., Singleton, D.R., Aitken, M.D., and Semple, K.T.
(2011) Stable-isotope probing of an algal bloom identifies
uncultivated members of the Rhodobacteraceae associ-
ated with low molecular-weight PAH degradation. Appl
Environ Microbiol 77: 7856–7860.

Gutierrez, T., Green, D.H., Nichols, P.D., Whitman, W.B.,
Semple, K.T., and Aitken, M.D. (2012a) Algiphilus

aromaticivorans gen. nov., sp. nov., an aromatic
hydrocarbon-degrading bacterium isolated from a culture
of the marine dinoflagellate Lingulodinium polyedrum,
and proposal of Algiphilaceae fam. nov. Int J Syst Evol
Microbiol 62: 2743–2749.

Gutierrez, T., Nichols, P.D., Whitman, W.B., and Aitken, M.D.
(2012b) Porticoccus hydrocarbonoclasticus sp. nov., an
aromatic hydrocarbon-degrading bacterium identified in
laboratory cultures of marine phytoplankton. Appl Environ
Microbiol 78: 628–637.

Gutierrez, T., Green, D.H., Whitman, W.B., Nichols, P.D.,
Semple, K.T., and Aitken, M.D. (2013) Polycyclovorans
algicola gen. nov., sp. nov., an aromatic hydrocarbon-
degrading marine bacterium found associated with labora-
tory cultures of marine phytoplankton. Appl Environ
Microbiol 79: 205–214.

Gutierrez, T., Rhodes, G., Mishamandani, S., Berry, D.,
Whitman, W.B., Nichols, P.D., et al. (2014) PAH degrada-
tion of phytoplankton-associated Arenibacter and
description of Arenibacter algicola sp. nov., an aromatic
hydrocarbon-degrading bacterium. Appl Environ Microbiol
80: 618–628.

Hazen, T.C., Dubinsky, E.A., DeSantis, T.Z., et al. (2010)
Deep-sea oil plume enriches indigenous oil-degrading bac-
teria. Sci 330: 204–208.

Head, I.M., Jones, M.D., and Roling, W.F.M. (2006) Marine
microorganisms make a meal of oil. Nat Rev Microbiol 4:
173–182.

Hedlund, B.P., Geiselbrecht, A.D., and Staley, J.T. (2001)
Marinobacter strain NCE312 has a Pseudomonas-like
naphthalene dioxygenase. FEMS Microbiol Lett 201:
47–51.

Huang, Y.-J., Jiang, Z.-B., Zeng, J.-N., Chen, Q.-Z., Zhao,
Y.-Q., Liao, Y.-B., et al. (2011) The chronic effects of oil
pollution on marine phytoplankton in a subtropical bay,
China. Environ Monit Assess 176: 517–530.

Kaeppel, E.C., Gärdes, A., Seebah, S., Grossart, H.-P., and
Ullrich, M.S. (2012) Marinobacter adhaerens sp. nov., iso-
lated from marine aggregates formed with the diatom
Thalassiosira weissflogii. Int J Syst Evol Microbiol 62: 124–
128.

Kim, J.S., and Crowley, D.E. (2007) Microbial diversity in
natural asphalts of the Rancho La Brea Tar Pits. Appl
Environ Microbiol 73: 4579–4591.

Labrenz, M., Lawson, P.A., Tindall, B.J., Collins, M.D.,
and Hirsch, P. (2003) Saccharospirillum impatiens gen.
nov., sp. nov., a novel γ-Proteobacterium isolated from
hypersaline Ekho Lake (East Antarctica). Int J Syst Evol
Microbiol 53: 653–660.

Lee, O.O., Lai, P.Y., Wu, H.-X., Zhou, X.-J., Miao, L., Wang,
H., and Qian, P.-Y. (2012) Marinobacter xestospongiae sp.
nov., isolated from the marine sponge Xestospongia
testudinaria collected from the Red Sea. Int J Syst Evol
Microbiol 62: 1980–1985.

McGowan, L., Herbert, R., and Muyzer, G. (2004) A compara-
tive study of hydrocarbon degradation by Marinobacter sp.,
Rhodococcus sp. and Corynebacterium sp. isolated from
different mat systems. Ophelia 58: 271–281.

Marlowe, I.T., Green, J.C., Neal, A.C., Brassell, S.C.,
Eglinton, G., and Course, P.A. (1984) Long chain (n-C37-
C39) alkenones in the Prymnesiophyceae. Distribution of

EMI12988

14 S. Mishamandani, T. Gutierrez, D. Berry and M. D. Aitken

© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology

1bs_bs_query

2bs_bs_query

3bs_bs_query

4bs_bs_query

5bs_bs_query

6bs_bs_query

7bs_bs_query

8bs_bs_query

9bs_bs_query

10bs_bs_query

11bs_bs_query

12bs_bs_query

13bs_bs_query

14bs_bs_query

15bs_bs_query

16bs_bs_query

17bs_bs_query

18bs_bs_query

19bs_bs_query

20bs_bs_query

21bs_bs_query

22bs_bs_query

23bs_bs_query

24bs_bs_query

25bs_bs_query

26bs_bs_query

27bs_bs_query

28bs_bs_query

29bs_bs_query

30bs_bs_query

31bs_bs_query

32bs_bs_query

33bs_bs_query

34bs_bs_query

35bs_bs_query

36bs_bs_query

37bs_bs_query

38bs_bs_query

39bs_bs_query

40bs_bs_query

41bs_bs_query

42bs_bs_query

43bs_bs_query

44bs_bs_query

45bs_bs_query

46bs_bs_query

47bs_bs_query

48bs_bs_query

49bs_bs_query

50bs_bs_query

51bs_bs_query

52bs_bs_query

53bs_bs_query

54bs_bs_query

55bs_bs_query

56bs_bs_query

57bs_bs_query

58bs_bs_query

59bs_bs_query

60bs_bs_query

61bs_bs_query

62bs_bs_query

63bs_bs_query

64bs_bs_query

65bs_bs_query

66bs_bs_query

67bs_bs_query

68bs_bs_query

69bs_bs_query

70bs_bs_query

71bs_bs_query

72bs_bs_query

73bs_bs_query

74bs_bs_query

75bs_bs_query

76bs_bs_query

77bs_bs_query

78bs_bs_query

79bs_bs_query

80bs_bs_query

81bs_bs_query

82bs_bs_query

83bs_bs_query

84bs_bs_query

85bs_bs_query

86bs_bs_query

87bs_bs_query

88bs_bs_query

89bs_bs_query

90bs_bs_query

91bs_bs_query

92bs_bs_query

93bs_bs_query

94bs_bs_query

95bs_bs_query

96bs_bs_query

97bs_bs_query

98bs_bs_query

99bs_bs_query

100bs_bs_query

101bs_bs_query

102bs_bs_query

103bs_bs_query

104bs_bs_query

105bs_bs_query

106bs_bs_query

107bs_bs_query

108bs_bs_query

109bs_bs_query

110bs_bs_query

111bs_bs_query

112bs_bs_query

113bs_bs_query

114bs_bs_query

115bs_bs_query

116bs_bs_query

117bs_bs_query

118bs_bs_query

119bs_bs_query

120bs_bs_query

121bs_bs_query

122bs_bs_query

53
bs_bs_query

54
bs_bs_query



alkenones and other lipids and their taxonomic signifi-
cance. Br Phycol J 19: 203–216.

Moran, M.A., Belas, R., Schell, M.A., Gonzalez, J.M., Sun, F.,
Sun, S., et al. (2007) Ecological genomics of marine
roseobacters. Appl Environ Microbiol 73: 4559–4569.

Muñoz, R., Guieysse, B., and Mattiasson, B. (2003)
Phenanthrene biodegradation by an algal-bacterial consor-
tium in two-phase partitioning bioreactors. Appl Microbiol
Biotechnol 61: 261–267.

Myklestad, S.M. (1995) Release of extracellular products by
phytoplankton with special emphasis on polysaccharides.
Sci Total Environ 165: 155–164.

Nedashkovskaya, O.I., Kim, S.B., Lysenko, A.M., Lee, K.H.,
Bae, K.S., and Mikhailov, V. (2007) Arenibacter echinorum
sp. nov., isolated from the sea urchin Strongylocentrotus
intermedius. Int J Syst Evol Microbiol 57: 2655–2659.

Ostgaard, K., Eide, I., and Jensen, A. (1984a) Exposure of
phytoplankton to Ekofisk crude oil. Mar Environ Res 11:
183–200.

Ostgaard, K., Hegseth, E.N., and Jensen, A. (1984b)
Species-dependent sensitivity of marin planktonic algae to
Ekofisk crude oil under different light conditions. Botanica
Marina 27: 309–318.

Ozhan, K., Miles, M.S., Gao, H., and Bargu, S. (2014a)
Relative phytoplankton growth responses to physically-
and chemically-dispersed South Louisiana sweet crude oil.
Environ Monit Assess 186: 3941–3956.

Ozhan, K., Parsons, M.L., and Bargu, S. (2014b) How were
phytoplankton affected by the Deepwater Horizon oil spill?
Bioscience 64: 829–836.

Passow, U., and Alldredge, A.L. (1994) Distribution, size and
bacterial colonization of transparent exopolymer particles
(TEP) in the ocean. Mar Ecol Progr Ser 113: 185–198.

Passow, U., Alldredge, A.L., and Logan, B.E. (1994) The role
of particulate carbohydrate exudates in the flocculation of
diatom blooms. Deep Sea Res I 4: 335–357.

Passow, U., Ziervogel, K., Asper, V., and Diercks, A. (2012)
Marine snow formation in the aftermath of the Deepwater
Horizon oil spill. Environ Res Lett 7: ••–••. doi:10.1088/
1748-9326/7/3/035301.

Pastuska, G. (1961) Die Kieselgelschicht-Chromatographie
von Phenolen und Phenolcarbensiuren. I Z Anal Chem
179: 355–358.

Patel, V., Munot, H., Shouche, Y.S., and Madamwar, D.
(2014) Response of bacterial community structure to sea-
sonal fluctuation and anthropogenic pollution on coastal
water of Alang-Sosiya ship breaking yard, Bhavnagar,
India. Bioresour Technol 161: 362–370.

Rosario-Passapera, R., Keddis, R., Wong, R., Lutz, R.A.,
Starovoytov, V., and Vetriani, C. (2012) Parvibaculum
hydrocarboniclasticum sp. nov., a mesophilic, alkane-
oxidizing alphaproteobacterium isolated from a deep-sea
hydrothermal vent on the East Pacific Rise. Int J Syst Evol
Microbiol 62: 2921–2926.

Safanova, E.T., Dmitrieva, I.A., and Kvitko, K.V. (1999)
The interaction of algae with alcanotrophic bacteria in

black oil decomposition. Res Conserv Recycling 27: 193–
201.

Sargian, P., Mostajir, B., Chatila, K., Ferreyra, G.A., Pelletier,
E., and Demers, S. (2005) Non-synergistic effects of water-
soluble crude oil and enhanced ultraviolet-B radiation on a
natural plankton assemblage. Mar Ecol Progr Ser 294:
63–77.

Schleheck, D., Tindall, B.J., Rosselló-Mora, R., and Cook,
A.M. (2004) Parvibaculum lavamentivorans gen. nov., sp.
nov., a novel heterotroph that initiates catabolism of linear
alkylbenzenesulfonate. Int J Syst Evol Microbiol 54: 1489–
1497.

Singleton, D.R., Sangaiah, R., Gold, A., Ball, L.M., and
Aitken, M.D. (2006) Identification and quantification of
uncultivated proteobacteria associated with pyrene degra-
dation in a bioreactor treating PAH-contaminated soil.
Environ Microbiol 8: 1736–1745.

Stringfellow, W.T., and Aitken, M.D. (1995) Competitive
metabolism of naphthalene, methylnaphthalenes, and
fluorene by phenanthrene-degrading pseudomonads. Appl
Environ Microbiol 61: 357–362.

Teira, E., Lekunberri, I., Gasol, J.M., Nieto-Cid, M.,
Alvarez-Salgado, X.A., and Figueiras, F.G. (2007) Dynam-
ics of the hydrocarbon-degrading Cycloclasticus bacteria
during mesocosm-simulated oil spills. Environ Microbiol 9:
2551–2562.

Warshawsky, D., LaDow, K., and Schneider, J. (2007)
Enhanced degradation of benzo[a]pyrene by Mycobacte-
rium sp. in conjunction with green alga. Chemosphere 69:
500–506.

Yakimov, M.M., Timmis, K.N., and Golyshin, P.N. (2007) Obli-
gate oil-degrading marine bacteria. Curr Opin Biotechnol
18: 257–266.

Zelibor, J.L., Romankiw, L., Hatcher, P.G., and Colwell, R.R.
(1988) Comparative analysis of the chemical composition
of mixed and pure cultures of green algae and their decom-
posed residues by 13C nuclear magnetic resonance spec-
troscopy. Appl Environ Microbiol 54: 1051–1060.

Zeng, J., Deng, L.J., Lou, K., Zhang, T., Yang, H.M., Shi,
Y.W., and Lin, Q. (2014) Molecular characterization of the
planktonic microorganisms in water of two mountain brack-
ish lakes. J Basic Microbiol 54: 509–520.

Supporting information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Table S1. Composition of pyrosequenced 16S rRNA gene
fragments, classified to phylum, class or family level. When
robust classification was not possible, the group name was
prepended with ‘uc’ to denote that the OTUs are unclassified.
The number of OTUs within each taxanomic group listed is
indicated under ‘OTU richness’. The relative abundance (as
% of total reads in each respective library) is given for each
incubation and each time point.
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