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Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications
of Unactivated Alcohols: Experimental and Computational Study
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Abstract: Gold(I)-catalysed direct allylic etherifications have
been successfully carried out with chirality transfer to yield
enantioenriched, g-substituted secondary allylic ethers. Our
investigations include a full substrate-scope screen to ascer-
tain substituent effects on the regioselectivity, stereoselectiv-
ity and efficiency of chirality transfer, as well as control ex-
periments to elucidate the mechanistic subtleties of the chir-
ality-transfer process. Crucially, addition of molecular sieves
was found to be necessary to ensure efficient and general

chirality transfer. Computational studies suggest that the ef-
ficiency of chirality transfer is linked to the aggregation of
the alcohol nucleophile around the reactive p-bound Au–al-
lylic ether complex. With a single alcohol nucleophile, a high
degree of chirality transfer is predicted. However, if three al-
cohols are present, alternative proton transfer chain mecha-
nisms that erode the efficiency of chirality transfer become
competitive.

Introduction

a-Chiral ethers are present in many natural products, biologi-
cally active molecules and synthetic intermediates.[1] Therefore,
much effort has been directed towards efficient routes to
enantiomerically enriched chiral ethers through allylic etherifi-
cation reactions.[2] Within this context, there is currently ongo-
ing interest in utilising unactivated allylic alcohol electrophiles
in transition-metal-catalysed allylations of various nucleo-
philes,[3] as the use of unactivated allylic alcohol electrophiles
reduces the number of synthetic steps required (by virtue of
not requiring prior derivatisation) and minimises byproduct
formation. In terms of asymmetric intermolecular etherifica-
tions, a recent notable advance by Carreira et al. uses Ir cataly-
sis to effect allylic etherifications on secondary allylic alcohols
through formal SN2 selectivity.[4]

One of the key research efforts within our group has been
to develop gold-catalysed[5] regioselective methods towards al-
lylic ethers[6] and allylic thioethers.[7] Within this context, we re-
cently developed a mild and air-stable gold(I)-catalysed direct
allylic etherification of allylic alcohols.[8] This dehydrative formal
SN2’ procedure[9] requires neither the allylic alcohol electrophile
nor the alcohol nucleophile to be activated (either to install

a leaving group in the former or form an alkoxide in the
latter), leading to mild reaction conditions that are tolerant of
various functional groups as well as air and moisture (Sche-
me 1 a).[3a, 10] We were keen to extend this methodology to
asymmetric methods by investigating various chiral, non-race-
mic g-substituted substrates, which should be amenable to
chirality transfer. In theory, an enantioenriched chiral allylic al-
cohol with g-substitution (e.g. , 4, Scheme 1), which is easily ac-
cessible in good enantioselectivities by Sharpless kinetic reso-
lution[11] or enzyme resolution,[12] should be able to transfer its
chirality[13] to the allylic ether product 5, especially if a 6-mem-
bered ring hydrogen-bonded intermediate I is involved
(Scheme 1 b). Access to chiral, non-racemic a,g-disubstituted al-
lylic ethers such as 5 from unactivated alcohols also nicely
complements recent Ir-catalysed allylation methods by Carreira
et al. ,[4a] which are confined to formation of unsubstituted sec-
ondary allylic ethers (R1 = H). It should be noted that shortly
after our initial communication,[8a] Mukherjee and Widenhoefer
disclosed an independent report on the same reaction.[14]

Using a different set of catalysts and conditions, they carried
out a substrate-scope study on the racemic reaction. In addi-

Scheme 1. Previous work (racemic studies) and current chirality-transfer
target.
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tion, they also elegantly show one example of a chirality-trans-
fer reaction (see below). However, as the substrate scope of
their chirality-transfer reaction was not reported and there was
room for improvement with regards to the regioselectivity (5:1
of formal SN2’/SN2 5/6), we decided that it was still important
to continue with our independent studies. These are reported
here, and include optimisation to give greatly improved regio-
selectivities, full substrate-scope studies and experimental and
computational mechanistic investigations.

Results and Discussion

Our investigation began with the optimisation of reaction con-
ditions to improve the regioselectivity for allylic etherifications,
using secondary allylic alcohol 4 a as a model substrate
(Table 1). Our previously reported conditions provided a poor

2:1 ratio of formal SN2’/SN2 (5 aa/6 aa, entry 1), which needed
to be improved drastically before chirality transfers could be
investigated. During our optimisation, we discovered that addi-
tion of molecular sieves (MS) to the reaction mixture greatly
improved the selectivity, exclusively yielding the formal SN2’
product 5 aa (entries 2–8). 3 � MS provided slightly higher
yields compared to 4 � MS (entry 2 vs. entry 5), however, the
yields were modest when only 5 mol % of gold catalyst was
employed (42 % and 56 %, respectively). Portion-wise addition
of gold catalyst (2 � 5 mol %) greatly improved the yields (en-
tries 3 and 6), but addition of another portion of molecular
sieves makes little difference (entry 3 vs. entry 4). Finally, as
a compromise between shorter reaction times and acceptable
yield, we settled for the protocol shown in entry 8 as our opti-
mised conditions for investigating the chirality-transfer reac-
tion. Note that under these newly optimised conditions, the
formal SN2’ product 5 is formed exclusively for all subsequent
substrate-scope screens (Tables 2 and 3).

With these optimised conditions in hand, we turned our at-
tention to effecting chirality transfer in etherifications of
a range of enantioenriched allylic alcohols (Table 2). For this
assay, alcohol 2 b was chosen as the nucleophile for ease of

chiral stationary phase (CSP)-HPLC enantiomer separation in
the product. Gratifyingly, our first attempt with enantioen-
riched n-butyl allylic alcohol (R)-4 a gave the desired product
(E)-5 ab in 88:12 e.r. from >99:1 e.r. of the starting material.
The minor (Z)-isomer (Z)-5 ab was obtained in 84:16 e.r.

Table 1. Optimisation of catalytic conditions for secondary allylic alco-
hols.

Entry Mol % Cat. t [h] MS Results[a]

1 10 48 None 62 %, 2:1 5/6, 10:1 E/Z
2 5 67 4 � MS 42 %, >20:1 5/6, 9:1 E/Z
3 2 � 5 24 + 39 4 � MS 84 %, >20:1 5/6, 9:1 E/Z
4 2 � 5 24 + 39 2 � 4 � MS 81 %, >20:1 5/6, 8:1 E/Z
5 5 66 3 � MS 56 %, >20:1 5/6, 9:1 E/Z
6 2 � 5 20 + 20 3 � MS 90 %, >20:1 5/6, 7:1 E/Z
7 2 � 2.5 20 + 20 3 � MS 67 %, >20:1 5/6, 10:1 E/Z
8 2 � 5 8 + 16 3 � MS 84 %, >20:1 5/6, 7:1 E/Z

[a] Isolated yields. 5/6 and E/Z ratios determined by 1H NMR analysis.

Table 2. Allylic alcohol scope.

Entry Allylic alcohol Product Result[a]

1

78 %, 7:1 E/Z
88:12 e.r. (E)[b]

16:84 e.r. (Z)[b]

2

71 %, 11:1 E/Z
76:24 e.r. (E)[b]

16:84 e.r. (Z)[b]

3

78 %, 5:1 E/Z
98:2 e.r. (E)[b]

16:84 e.r. (Z)[b]

4

77 %, 10:1 E/Z
89:11 e.r. (E)[c]

46:54 e.r. (Z)[c]

5

80 %, 9:1 E/Z
77:23 e.r. (E)[c]

47:53 e.r. (Z)[c]

6

81 %, 5:1 E/Z
77:23 e.r. (E)[c]

13:87 e.r. (Z)[c]

7

74 %,>20:1 E/Z
99:1 e.r. (E)[c]

8

from 4 h : 67 %, 14:1 E/Z
racemic
from 4 i : 73 %, 12:1 E/Z
racemic

9

59 %, 6:1 E/Z
98:2 e.r. (E)[c]

38:62 e.r. (Z)[c]

10

79 %, 9:1 E/Z
71:29 e.r. (E)[c,d]

11

71 %, >20:1 E/Z
67:33 e.r. (E)[c]

12

72 %, >20:1 E/Z
51:49 e.r. (E)[c]

13

62 %, >20:1 E/Z
53:47 e.r. (E)[c]

[a] Isolated yields. >20:1 5/6 (formal SN2’/formal SN2) by 1H NMR analysis
where applicable. E/Z ratios determined by 1H NMR analysis. [b] Deter-
mined by CSP-HPLC of a derivative. [c] Determined by CSP-HPLC. [d] E.r.
of Z isomer not determined.
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(entry 1). Alternatively, starting with (Z)-allylic alcohol 4 b, the
opposite enantiomer of the product could be obtained with
good transfer of chirality (entry 2). It should be noted, howev-
er, that the Z-allylic alcohol starting materials (e.g. , 4 b, entry 2)
are more difficult to access in high e.r. , resulting in poorer e.r.
of product 5 bb, despite displaying a good degree of chirality
transfer (81:19!76:24 e.r.). Reversing the substituents at the
a- and g-positions of the allylic alcohol similarly gave high
yield of product 5 cb with a high degree of chirality transfer
(entry 3). Replacing the n-butyl substituent with the sterically
more demanding cyclohexyl also works well with the Cy at the
a-position, but only moderately at the g-position (entries 4–5).
To verify that a more sterically hindered substituent at the g-
position causes a drop in chirality transfer, allylic alcohol 4 f,
with an iPr at the g-position was investigated. Indeed, moder-
ate chirality transfer of >99:1!77:23 e.r. is observed (entry 6).

Benzyl-substituted allylic alcohol 4 g provided the best result
in this assay, with excellent chirality transfer (>99:1!99:1 e.r.)
and >20:1 E/Z observed (entry 7). Replacing the benzyl in 4 g
(entry 7) with a Ph substituent (4 h, entry 8) causes a drastic
change (racemic product 5 hb). Unlike with alkyl substituents
(entries 1 vs. 3 and entries 4 vs. 5), swapping the Ph substitu-
ent around now forms the same product (4 i!5 hb, entry 8),
so aryl substituents appear to be detrimental to both chirality
transfer and formal SN2’ selectivity. Next, we decided to com-
pare our procedure with substrate 4 j, which was the substrate
chosen by Widenhoefer et al. in their studies (entry 9).[14] The
chirality transfer is once again excellent (99:1!98:2 e.r.). It
should be noted that using our newly optimised conditions,
etherification proceeds with significantly higher formal SN2’ se-
lectivity (>20:1 vs. 5:1 formal SN2’/SN2).

Certain substituents on the allylic alcohol substrate were
found to cause the chirality transfer to proceed moderately to
poorly (entries 10–13). For example, dimethyl allylic alcohol 4 k
gave a high degree of racemisation (71:29 e.r. of E-5 kb from
4 k of >99:1 e.r.) ; likewise, increasing the steric bulk of the
substituent at the alcohol centre to tert-butyl alcohol 4 l also
led to some racemisation during reaction (entry 11). Substrates
with b-substituents performed the worst: 4 m and 4 n both
give excellent >20:1 E/Z ratios, but almost complete racemisa-
tion under these conditions (entries 12–13) and are therefore
not suitable substrates for chirality transfer.

We next turned our attention to investigating the tolerance
of a range of different nucleophile alcohols by using model al-
lylic alcohol substrate (R)-4 a (Table 3).[15] Although para-bromo-
benzyl alcohol 2 d (entry 3) gave a comparable result to the
original nucleophile alcohol 2 b, benzyl alcohol 2 c and para-
methoxybenzyl alcohol 2 e yielded products 5 ac and 5 ae, re-
spectively, with a greater degree of chirality transfer (97:3 e.r. ,
entry 2 and >95:5 e.r. , entry 4).[16] Furfuryl alcohol 2 f was also
tolerated, though with a reduction of enantioenrichment in
product 5 af (entry 5). We then turned our attention to alkyl al-
cohols. Extending the alkyl chain of benzyl alcohol by two
methylene units preserved yield, formal SN2’/SN2 and E/Z
alkene selectivity as well as chirality-transfer efficiency (entry 2
vs. entry 6). Next, we set out to test functional group tolerance.
Pleasingly, trifluoromethyl substitution of the nucleophile was

tolerated (entry 7) as were haloalkanes (entry 8) and unprotect-
ed terminal alkenes (entry 9). When utilising diol 2 k, reaction
occurred exclusively through the primary alcohol to give 5 ak
in high yield and selectivity (entry 10). No product from subse-
quent reaction through the tertiary alcohol was observed.
Acid-labile groups such as acetals 2 l and 2 m were also found
to be compatible with the reaction (entries 11 and 12). Finally,
we demonstrated that the reaction also proceeds very well
(>99:1 e.r.) using a more hindered secondary nucleophile alco-
hol such as cyclohexanol 2 n (entry 13).

Table 3. Nucleophile alcohol scope.

Entry Nucleophile 2 Product Result[a]

1
78 %, 7:1 E/Z
88:12 e.r. (E)[b]

21:79 e.r. (Z)[b]

2
82 %,10:1 E/Z
97:3 e.r. (E)[c]

<1:99 e.r. (Z)[c]

3
73 %, 6:1 E/Z
87:13 e.r. (E)[b]

25:75 e.r. (Z)[b]

4
84 %,10:1 E/Z
>95:5 e.r. (E)[d]

<5:95 e.r. (Z)[d]

5
76 %, 4:1 E/Z
86:14 e.r. (E)[c]

9:91 e.r. (Z)[c]

6
76 %,10:1 E/Z
98:2 e.r. (E)[c]

4:96 e.r. (Z)[c]

7
74 %, 2:1 E/Z
93:7 e.r. (E)[e]

29:71 e.r. (Z)[e]

8
67 %, 6:1 E/Z
94:6 e.r. (E)[e]

35:65 e.r. (Z)[e]

9[f]

71 %, 6:1 E/Z
98:2 e.r. (E)[c]

14:86 e.r. (Z)[c]

10
81 %, 5:1 E/Z
86:14 (E)[c]

9:91 e.r. (Z)[c]

11

83 %, 1:1.1 d.r.
>20:1 E/Z
98:2 e.r. (d 1)[e]

97:3 e.r. (d 2)[e]

12

77 %,>20:1 d.r.
10:1 E/Z
93:7 e.r. (E)[c]

10:90 e.r. (Z)[c]

13[g]

76 %,14:1 E/Z
>99:1 e.r. (E)[c]

7:93 e.r. (Z)[c]

[a] Isolated yields, >20:1 5/6 (formal SN2’/formal SN2) by 1H NMR analysis.
E/Z ratios and d.r. values determined by 1H NMR analysis. [b] Determined
by CSP-HPLC of a derivative. [c] Determined by CSP-HPLC. [d] Determined
by chiral shift 1H NMR spectroscopy. [e] Determined by CSP-GC. [f] Using
allylic alcohol (S)-4 j, >99:1 e.r. [g] Using allylic alcohol (R)-4 g, >99:1 e.r.
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The mechanism that we originally proposed for the allylic
etherification reaction[8a] can also account for the chirality
transfer and stereospecificity of the reaction (Scheme 1). As
gold(I) is an excellent p-Lewis acid,[5e] it is likely to activate the
alkene functionality in the allylic alcohol towards attack by an
external alcohol nucleophile (I, Scheme 2).[10f] Demetallation
and elimination of water (enabled by intramolecular hydrogen-
bonding, II) will then regenerate the catalyst and produce the
desired allylic ether product 5. A tightly bound chair-like 6-
membered ring transition state[17] is required for efficient chir-
ality transfer, and also accounts for the stereospecificity of the
E and Z isomers. As shown in Scheme 1 a, the E isomer has its
substituent R in the equatorial position, whereas the Z isomer
has R axial (Scheme 2 b), thus leading to the different stereo-
chemical outcomes. Having the substituent R’ equatorial also
accounts for the E-selectivity of the reaction.

It is clear from the proposed mechanism in Scheme 1 that
the hydrogen-bonded 6-membered transition state I is crucial
for the chirality transfer, and also the E-selectivity. Any erosion
of ee could therefore be attributed to the disruption of this hy-
drogen-bonding pattern that would allow the reaction to
occur without this 6-membered transition state I. One such
mechanism is explored in the computational section below
(see Scheme 9). However, a second possibility for erosion of ee
is the racemisation of the product 5 through isomerisation be-
tween the formal SN2’ (5) and formal SN2 (6) products, cata-
lysed by gold(I).[6b, c, 17] Indeed, during our related studies using
thiols for thioetherification reactions, chirality transfer does not
occur in the thioetherification reactions.[7a, 18] Experimental and
computational studies showed that the racemisation is due to
isomerisation between the formal SN2’ and SN2 thioether prod-
ucts. Clearly, using alcohol instead of thiol as a nucleophile
allows for successful chirality transfer, except in certain sub-
strates, such as b-substituted 4 m and 4 n (entries 12–13,
Table 2). Therefore, we carried out several control experiments
to ascertain the role of isomerisation of the products 5 and 6
in the erosion of ee.

Firstly, product 5 db (entry 4, Table 2) was resubjected to the
reaction conditions and no change was observed after 24 h
(Scheme 3 a). Next, 5 eb was investigated, as this product was
formed with only moderate chirality transfer (77:23 e.r. , entry 5,
Table 2). Once again, no change was observed upon resubjec-
tion to the reaction conditions (Scheme 3 b). Finally, product
5 mb, which is formed as a racemic mixture by our method
(entry 12, Table 2) was investigated. This species, obtained in
98:2 e.r. by an alternative route,[19] was found to racemise upon

resubjection to the reaction conditions (Scheme 3 c).[20] From
these results, it appears that slight erosion of ee is not caused
by isomerisation/racemisation of the product (see later and
Scheme 9 for plausible racemisation mechanism). However, in-
stances of complete racemisation, such as the formation of
5 mb and 5 nb from b-substituted 4 m and 4 n, respectively,
could be due to isomerisation and racemisation of the prod-
ucts under the reaction conditions.

Next, we wanted to ascertain the role of molecular sieves in
the reaction. It is clear from the results in Table 1 that addition
of molecular sieves is the key factor to improving the formal
SN2’/SN2 (5/:6) regioselectivity. Our next control reaction
(Scheme 4) shows that molecular sieves are also crucial for

chirality transfer and E/Z selectivities. Removing molecular
sieves from the reaction results in a completely racemic prod-
uct 5 db and a poor 3:1 E/Z ratio (vs. 89:11 e.r. and 9:1 E/Z
with molecular sieves added).[21]

Previously, Widenhoefer et al. had shown that chirality trans-
fer is possible on substrate 4 j, without the need for molecular
sieves (Scheme 5).[14] Having just ascertained that molecular
sieves are crucial to avoid racemisation, we therefore thought
it important to investigate whether the conditions in Scheme 5
allow for the omission of molecular sieves in chirality-transfer

Scheme 2. Proposed mechanism for successful chirality transfer and stereo-
specificity.

Scheme 3. Resubjection of products 5 db, 5 eb and 5 mb to the reaction
conditions.

Scheme 4. Allylic etherification of 4 d without molecular sieves results in rac-
emic product.

Scheme 5. Results by Widenhoefer et al.[14]

Chem. Eur. J. 2015, 21, 1 – 11 www.chemeurj.org � 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim4&&

�� These are not the final page numbers!

Full Paper

http://www.chemeurj.org


reactions, or whether successful chirality transfer without mo-
lecular sieves is in fact specific to substrate 4 j. Our results in
Scheme 6 show that the latter is true. Employing the condi-
tions of Widenhoefer et al. on substrate 4 d (which undergoes
chirality transfer with molecular sieves under our conditions,
Table 2, but racemises in the absence of 3 � MS, Scheme 4), re-
sults in racemic product 5 db. However, employing substrate
4 j under conditions that usually result in racemisation (i.e. , no
3 � MS), results in efficient chirality transfer. Therefore, it ap-
pears that the substituent on substrate 4 j plays a significant
role in allowing the chirality-transfer process to proceed effi-
ciently even without molecular sieves. For a more general sub-
strate scope, however, the addition of molecular sieves to the
reaction is crucial for successful chirality transfer.

The effect of molecular sieves in the reaction is stark as well
as puzzling. There are several possibilities regarding the mode
of action of molecular sieves in the reaction that may lead to
the observed chirality-transfer outcome. Possible reasons for
this could be: i) removal of excess water from the reaction;
ii) the slightly basic nature of molecular sieves, which may de-
activate the gold catalyst ;[22] and iii) the polar surface of molec-
ular sieves may result in the reaction occurring closer to the
surface, thereby changing the aggregation levels or transition
state. However, a control reaction to test point (i) shows that
chirality transfer is observed regardless of whether the molecu-
lar sieves are activated or not, thus ruling out this possibility
(Scheme 7). In fact, the reaction occurs with even better yields
and e.r. with unactivated vs. activated sieves (67 %, 94:6 e.r. vs.
90 %, 98:2 e.r. , Scheme 7).

Density functional theory (DFT) calculations were therefore
employed to explore the mechanism of these direct allylic

etherification reactions. In particular, we sought to understand
why our initial expectation of chirality transfer (cf. Scheme 1
and 2) was not borne out, except in the presence of molecular
sieves. In the calculations we have studied the symmetrically
substituted dimethyl allylic alcohol 4 k (as the R,E-isomer) re-
acting with ethanol (2 o) to give 5 ko. This choice removes the
potential complication of any subsequent SN2’ reaction at 5 ko
as this would return the same 5 ko product. Experimental stud-
ies indicate that the catalysis is not significantly affected by
the nature of the alcohol and so ethanol was chosen for sim-
plicity. The calculations (run with SDD pseudopotentials and
basis sets on Au and P, with d-orbital polarization on the latter,
and 6-31g** basis sets on other centres) report free energies
derived from a BP86-D3(toluene) protocol, that is, gas-phase
free energies based on BP86 optimisations, corrected for dis-
persion and toluene solvation (using Grimme’s D3 parameter
set and the PCM approach respectively, see Supporting Infor-
mation for full details).

The Au-catalysed direct allylic etherification reaction is
thought to proceed[23] via coordination of the {Au(PPh3)}+ frag-
ment at the C=C p-bond of the allylic alcohol. As shown by
Mukherjee and Widenhoefer,[14] if the alcohol nucleophile at-
tacks at the opposite face to Au then only two outcomes are
possible with an enantiopure substrate: with (R,E)-4 k either
(S,E)-5 ko or (R,Z)-5 ko will be formed (Scheme 8). The forma-

tion of both products (alongside water) is computed to be
thermodynamically downhill, with the E-isomer favoured over
the Z-form by 1.3 kcal mol�1. This equates to a E/Z ratio of ap-
proximately 9:1 at 298 K, fairly typical of the E/Z selectivities
seen with dialkyl-substituted allylic alcohols (Tables 1 and 2).
This result also suggests the reaction may be proceeding
under thermodynamic control.

For the computed mechanism, we consider the direct etheri-
fication to start from the p-bound adduct [(Ph3P)Au{(R,E)-4 k}]+

·EtOH, I, in which the EtOH is hydrogen-bonded to the OH
group of the allylic alcohol.[24] Several arrangements of this
adduct were located in the course of this study and the most
stable of these, I a, has the EtOH lying over the Au centre (i.e. ,
syn to Au), with interactions to both the O of the allyl group
(1.86 �) and also to one C�H bond of the PPh3 ligand (2.26 �,
see Figure 1, which also provides the associated labelling
scheme). The most stable adduct, where the EtOH is located

Scheme 6. Control reactions to ascertain effects of conditions vs. substrate.
(a) Standard substrate by using the conditions of Widenhoefer et al. (b) Sub-
strate 4 j by using conditions that usually result in racemisation.

Scheme 7. Comparing results of reactions with no molecular sieves, activat-
ed sieves and unactivated sieves.

Scheme 8. Possible outcomes of the Au-mediated reaction of (R,E)-4 k with
ethanol (2 o) to give either (S,E)- or (R,Z)-5 ko. Computed product free ener-
gies are indicated in kcal mol�1, relative to the reactant set to 0.0 kcal mol�1.
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on the other side of the C=C p-bond (i.e. , anti to Au, I b), is
6.6 kcal mol�1 higher in energy, with the EtOH showing close
contacts with one allylic proton,
as well as the OH group. All en-
ergies in this section will be
quoted relative to I a set to
0.0 kcal mol�1.

The key steps and associated
energetics for direct etherifica-
tion through anti-attack of EtOH
are outlined in Figure 2. Starting
from I b, C�O bond formation
proceeds through a transition
state at + 10.9 kcal mol�1 to give
intermediate II b at + 9.1 kcal
mol�1. The computed structure
of this species is shown in
Figure 3 and displays the antici-
pated hydrogen-bonded chair-
like structure with the Au and
both Me substituents all occupy-

ing equatorial positions. Similar
structures have been reported at
a {Au(NHC)}+ fragment.[17a] From
here H+ transfer induces loss of
water and concomitant forma-
tion of the Au�C3 bond to give
intermediate III b in which the al-
lylic ether product is bound
through the C2=C3 bond and
water is hydrogen-bonded to
the ether oxygen. Dissociation
will give 5 ko as the S,E-form. Of
the two transition states, the
higher is TS(II–III)b at + 11.1 kcal
mol�1. An analogous series of
events accounts for the forma-
tion of (R,Z)-5 ko. Starting from
I c (G = + 6.8 kcal mol�1), the

chair-like intermediate II c is formed via TS(I–II)c at
+ 11.1 kcal mol�1. II c is similar to II b but now has one
methyl substituent in an axial position. Loss of H2O
via TS(II–III)c at + 13.2 kcal mol�1 leads to III c from
which the allylic ether product is lost as the (R,Z)-
form. Overall, these two allylic etherification process-
es proceed with modest barriers (<14 kcal mol�1). In
addition, as these reactions are only marginally
downhill thermodynamically (Scheme 8), they are
likely to be reversible under the reaction conditions.
Hence, a thermodynamic distribution of products is
seen that favours the (S,E)-5 ko product.

The observation of the enhanced stability of pre-
cursor I a in which EtOH is positioned syn to Au sug-
gests the possibility of alternative syn attack mecha-
nisms and two such processes have been character-
ised (see Figure 4). Hydrogen-bonded chair-like inter-
mediates II a and II d are located, but now with the

Au in an axial position (see Figure 3 for the structure of II a).
Loss of water from II a and II d then leads to the formation of

Figure 1. Computed structures of two forms of [(Ph3P)Au{(R,E)-4 k}]+ ·EtOH, I, with computed free energies (kcal
mol�1, relative to I a set to zero) and selected distances in �. Phosphine H atoms are omitted for clarity, with the
exception of that interacting with the EtOH molecule in I a.

Figure 2. Key intermediates and energetics for the Au-catalysed reaction of (R,E)-4 k with
ethanol (2 o) through anti attack to give either (S,E)-5 ko or (R,Z)-5 ko (L = PPh3). Comput-
ed free energies are indicated in kcal mol�1 and quoted relative to I a set to 0.0 kcal
mol�1.

Figure 3. Different forms of intermediate II : II b and II c are alternative species formed by anti attack of ethanol,
whereas II a is formed by syn attack. Computed free energies (kcal mol�1) are quoted relative to I a set to zero and
selected distances are in �. Phosphine phenyl substitutents are truncated at the ipso carbon for clarity.
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(R,Z)-5 ko and (S,E)-5 ko, respectively, that is, the same
products as seen in the anti attack processes. syn
attack, however, entails barriers of 17.7 and 18.4 kcal
mol�1, and so these processes will not be competitive
with the anti attack mechanisms described above.

The mechanisms outlined so far are consistent
with the transfer of chirality shown in Widenhoefer’s
example (Scheme 5) and anticipated prior to our
work. However, our experimental studies have shown
that in most cases such chirality transfer only occurs
in the presence of molecular sieves and that in fact
under sieve-free conditions loss of chirality domi-
nates. To account for this a mechanism, involving nu-
cleophilic attack at one face of the allylic alcohol and
loss of water from the opposite face is required. One
way to achieve this is to invoke a proton chain trans-
fer mechanism[25] involving several EtOH molecules.
This is illustrated in Scheme 9 for the case of three
EtOH molecules. Pathway (i) is equivalent to the anti
attack in Scheme 8, where a three EtOH molecule

chain now promotes loss of water anti to Au with formation of
(S,E)-5 ko. In contrast, pathway (ii) is able to accommodate
a syn attack by EtOH while still delivering a proton onto the al-
lylic hydroxyl group that is in an anti position. This leads to the
formation of (R,E)-5 ko. If the barriers to pathways (i) and (ii) are

comparable, the result will be the loss of chirality
transfer that is seen experimentally.

A model incorporating three ethanol molecules
was set up to test these ideas (see Figure 5), three
being the minimum number of EtOH molecules re-
quired to access pathway (ii), which requires both
faces of the allylic alcohol substrate to be engaged.
As in the single EtOH system, the most stable form of
the hydrogen-bonded precursor has one EtOH posi-
tioned over the Au centre. This species, I a3(ii), leads
ultimately to the (R,E)-5 ko product along pathway
(ii), as described below. The alternative arrangement
relevant for pathway (i) is seen in I a3(i) and lies
8.7 kcal mol�1 higher in energy. Both the initial attack
of EtOH at this species (via TS(I–II)a3(i) at + 12.8 kcal
mol�1) and the subsequent loss of water (via TS(II–

III)a3(i) at + 14.0 kcal mol�1) occur anti to the Au and hence
yield the (S,E)-5 ko product. The overall barrier for pathway (i)
is 14.0 kcal mol�1.

In pathway (ii), the EtOH molecule lying over the Au centre
in I a3(ii) is linked through two hydrogen-bonded EtOH mole-
cules to the allylic hydroxyl group, which maintains a position
anti to the Au. syn attack of EtOH proceeds to give II a3(ii) (G =

+ 6.0 kcal mol�1) via TS(I–II)a3(ii) at + 15.6 kcal mol�1. Figure 6
shows the computed structure of II a3(ii) and highlights the anti
arrangement of the EtOH nucleophile and the putative H2O
leaving group. In this case, the water dissociation is the easier
step and so (R,E)-5 ko is formed with an overall barrier of
15.6 kcal mol�1. Similar barrier heights are therefore computed
for the formation of both (S,E)-5 ko (DG�

calc = 14.0 kcal mol�1)
and (R,E)-5 ko (DG�

calc = 15.6 kcal mol�1) and this, coupled with
reversibility of these transformations, means that both enantio-
mers will be formed over the timescale of the reaction, leading
to the unexpected loss of chirality transfer.[26]

Figure 4. Key intermediates and energetics for the Au-catalysed reaction of (R,E)-4 k with
ethanol (2o) by syn attack to give either (S,E)-5 ko or (R,Z)-5 ko (L = PPh3). Computed free
energies are indicated in kcal mol�1 and quoted relative to I a set to 0.0 kcal mol�1.

Scheme 9. Possible mechanisms accounting for loss of chirality transfer in
the Au-mediated reactions of (R,E)-4 k with three ethanol molecules to form
both (S,E)-5 ko (pathway (i)) and (R,E)-5 ko (pathway (ii)).

Figure 5. Key intermediates and energetics for the Au-catalysed reaction of (R,E)-4 k in
the presence of three ethanol molecules to give (i) (S,E)-5 ko and (ii) (R,E)-5 ko (L = PPh3).
Computed free energies are indicated in kcal mol�1 and quoted relative to I a3(i) set to
0.0 kcal mol�1.
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A plausible explanation for the requirement of molecular
sieves for efficient chirality transfer is their role in disrupting
the type of proton chain transfer mechanism (i.e. , aggregation
levels of alcohol) shown in Scheme 9, which are a potential
cause of racemisation. To test our hypothesis, the reaction was
carried out with a large excess of alcohol nucleophile[27]

(Scheme 10), which should outcompete the role of the molecu-

lar sieves. Indeed, very poor enantiomeric ratios are observed
in the presence of 20 equivalents of alcohol 2 i (Scheme 10),
thereby lending support to our theory. Following this train of
thought, we postulated that the reason substrate 4 j does not
require molecular sieves for chirality transfer (Schemes 5 and 6)
is because the ether moiety (-CH2OBn) within the substrate
may be playing a similar role to molecular sieves: disrupting
the proton chain transfer mechanism, presumably by hydro-
gen-bonding. Indeed, when the reaction with 4 j is repeated
with a large excess (20 equiv) of alcohol nucleophile, this over-
rides any effect of the ether moiety as well as molecular sieves
and produces racemic product 5 jb in a poor 1:1 5 jb/6 jb re-
gioselectivity (Scheme 11).

An additional explanation for erosion of chirality transfer is
possible for allylic ether products such as 5 kb. In this case,
a second formal SN2’ reaction on 5 kb will lead to the same
product, but with chirality transfer to the opposite enantiomer.
Calculations indicate that the barrier for the second formal SN2’
is readily accessible (via a transition state at 9.8 kcal mol�1 for

5 ko). As, by definition, the energies of these two enantiomers
of 5 kb are the same, these reversible processes will produce
a racemic mixture. This is exemplified by control experiments
shown in Scheme 12, where the product 5 kb from Table 2,
entry 10 is resubjected to the reaction conditions without

sieves to produce a racemic mixture. In contrast, in the pres-
ence of sieves, this process is considerably slowed
(Scheme 12). Although the reasons for the remarkable impact
of the molecular sieves on these transformations are currently
unclear, nevertheless, their effect in providing kinetic control
for these experiments is remarkable and, moreover, synthetical-
ly useful.

Conclusion

We have successfully developed conditions for highly regiose-
lective, gold(I)-catalysed direct allylic etherification of alcohols
with chirality transfer to access enantioenriched g-substituted
secondary allylic ethers. A thorough substrate screen shows
that very high levels of chirality transfer can be achieved (up
to >99:1 e.r.). The reaction is very functional-group tolerant
and proceeds in the presence of unprotected groups such as
alkyl halides, tertiary alcohols, alkenes and acid-sensitive ace-
tals. Both primary and the more hindered secondary alcohol
nucleophiles are tolerated well. Furthermore, we demonstrate
that the addition of molecular sieves is crucial not only for ex-
cellent formal SN2’ selectivity, but also to ensure efficient chiral-
ity transfer. The molecular sieves need not be activated to ach-
ieve this effect, which implies that it is not aiding the selectivi-
ty by removal of water. DFT calculations suggest that chirality
transfer should proceed under conditions that promote the re-
action of a single alcohol as nucleophile. However, at higher al-
cohol concentrations proton chain transfer mechanisms
become accessible, which permit alternative pathways that will

Figure 6. Computed structure of intermediate II a3(ii) located along path-
way (ii) on route to the formation of (R,E)-5 ko. The computed free energy is
in kcal mol�1 and is relative to I a3(i) set to zero. Selected distances are in �
and phosphine phenyl substituents are truncated at the ipso carbon for
clarity.

Scheme 10. Comparing results of reactions with no molecular sieves, unacti-
vated sieves and large excess of alcohol nucleophile.

Scheme 11. Large excess of alcohol nucleophile results in racemisation with
4 j, overriding the effect of the ether moiety (CH2OBn) and molecular sieves.

Scheme 12. Resubjecting 5 kb to reaction conditions: racemisation without
molecular sieves and much slower erosion of e.r. with molecular sieves.
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erode the chirality transfer. A plausible role of the molecular
sieves is to disrupt the aggregation of alcohol molecules in
order to prevent loss of chirality through this pathway. What-
ever the underlying reasons, the impact of molecular sieves in
controlling the outcome of these allylic etherification reactions
is remarkable and synthetically useful.

Experimental Section

General procedure

A solution of [PPh3AuNTf2] (2:1 toluene adduct, 5 mol %), allylic al-
cohol 4 (0.101 mmol), alcohol 2 (0.506 mmol) and 3 � molecular
sieves (8 mg) in toluene (260 mL) was stirred at 50 8C under air for
8 h. Then, [PPh3AuNTf2] (2:1 toluene adduct, 5 mol %) was added
and the resulting solution was stirred at 50 8C for a further 16 h.
The resulting solution was filtered through a short plug of silica,
washing with 9:1 hexane/Et2O. The filtrate was evaporated under
reduced pressure to give the crude product, which was purified by
flash column chromatography. Full experimental procedures, char-
acterisation for all new compounds and copies of 1H and 13C NMR
spectra are provided in the Supporting Information.
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Chirality Transfer in Gold(I)-Catalysed
Direct Allylic Etherifications of
Unactivated Alcohols: Experimental
and Computational Study

Sieving out chirality : Regioselective
gold(I)-catalysed direct allylic etherifica-
tions have been successfully carried out
with chirality transfer to yield enan-
tioenriched, g-substituted allylic ethers.
The addition of molecular sieves was
found to be crucial for excellent formal

SN2’ regioselectivity as well as efficient
chirality transfer. Computational studies
characterise proton chain transfer mech-
anisms that erode chirality transfer and
suggest that the molecular sieves act by
disrupting alcohol aggregation.
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