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Age and period are the most widely used parameters for forecasting mortal-
ity rates. Empirical mortality rate differences in multiple populations often
show strong geometric patterns on the two-dimensional age-period plane.
The idea of this paper is to take these geometric patterns as the starting
point for the development of forecasts.

A parametric approach is presented and discussed which uses simple tech-
niques from spatial statistics. The proposed model is statistically parsimo-
nious and yields forecasts that are consistent with the historical data and
coherent for multiple populations.
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1. Introduction

Reliable forecasts for mortality rates of multiple populations have many applications, for
example, planning of healthcare provision, risk management of life insurance portfolios,
and quantification of future state pension liabilities. For some applications, in particular
the diversification of insurance portfolios, the differences in the mortality experiences of
multiple populations are relevant.
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Empirical European mortality rates show both, converging and diverging trends, be-
tween different regions. With the European countries becoming more closely linked in
all aspects of life, it seems likely that in the long-term the mortality rates will rather con-
verge than diverge. Recent research on mortality trend modeling therefore emphasizes
the need for forecasts that are coherent for different populations, see e.g. Li and Lee
[2005], Li and Hardy [2011], Cairns et al. [2011] and Börger et al. [2014]. A widespread
technique for achieving the coherence property is to model the total trend of a popula-
tion as the sum of a common trend and a specific trend for each subpopulation, where
the parametrization of the subpopulation trends is chosen in such a way that divergence
is avoided.

We also follow that concept, assuming that the total mortality trend can be decom-
posed into a common (European) trend and subpopulation (country-specific) trends.
The focus of this paper is solely on the modeling of the subpopulation trends, which
equals the respective mortality experience minus the European average. In order to get
complete forecasts, the subpopulation trend model proposed here has to be combined
with one of the various models from the literature for the common (European) trend.

Various parametric models have been proposed in the literature for the modeling of
mortality differences in multiple populations. Li and Lee [2005] expand the seminal
(single population) Lee-Carter model to multiple populations by adding a second trend
term of Lee-Carter type, where the original trend term is interpreted as a common
trend and the second trend term describes the deviations of the subpopulations. Cairns
et al. [2011] and Börger et al. [2014] follow a similar approach by extending not the
Lee-Carter model but other one-population models with additional subpopulation trend
terms. Jarner and Kryger [2011] and Ahcan et al. [2014] study the mortality of very small
subpopulations, also using the idea to add subpopulation trend terms on the common
log mortality rates. Hyndman et al. [2012] also propose a multi-population model, but
they study the ratios of the local differences instead of the local differences themselves.

All references mentioned above model the subpopulation trends in the age-period log
mortality data as a linear combination of one-dimensional trend effects. This means that
all of these models can describe only a very restricted set of two-dimensional geometric
structures on the age-period plane. Indeed, the empirical mortality differences in Euro-
pean data show various curved structures, which are not the typical outcomes of linear
combinations of one-dimensional trend effects. Inspired by the empirical observations,
we instead discuss the use of methods from spatial statistics that easily reproduce the
curved structures.

As Börger and Aleksic [2014] point out, many mortality trend models lack consis-
tency between historical data and forecasts. By using graphical analysis on the two-
dimensional age-period plane, Börger and Aleksic [2014] show that many models produce
forecasts that do not evolve in a natural way from the historical data but completely
differ in their geometrical structures. There is no apparent reason why such structural
breaks should occur. As our approach from spatial statistics takes the geometric struc-
tures in the historical data as the starting point for parametrization, we end up with
forecasts that naturally merge with the historical data. This is not a proof for the
correctness of the forecasts, but it is a desirable property which meets intuition.
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The idea to use spatial statistics to forecast age-period mortality rates already ap-
peared in Debón et al. [2010], yet with different motivation and objectives, which are
focused on single populations. Motivated by the empirical observation that the residuals
from Lee-Carter estimates still show a significant dependency structure, Debón et al.
[2010] suggest to model the residuals by a geostatistical approach. As a result, the total
mortality trend equals the sum of the original Lee-Carter trend term and the geosta-
tistical model term. In contrast, our objective is to study multiple populations and to
model the mortality differences between them.

We consider mortality rates of selected Western European countries. The common
mortality trend is filtered out by subtracting the mean mortality rates of all observed
countries from the mortality experiences in each country. For the modeling of these
differences for each country, we use simple semiparametric methods from geostatistics.
The residuals show the characteristics of a transformed Gaussian random field, and
dependencies between neighboring data on the age-period plane are described by its
covariance function. Conditional simulation of Gaussian random fields is used to predict
the country-specific mortality residuals.

This paper is structured as follows. Section 2 describes how the local mortality rate
differences are formed and how they can be modeled by spatial stochastic methods.
A Box-Cox data transform allows to see the residuals as transformed Gaussian random
fields. Section 3 presents the mortality data used here, describes simulation methods and
presents empirical results on the example of France (females) and Netherlands (males).
Our modeling approach is summarized in Section 4. The Appendix shows forecasts for
all 17 Western European countries under consideration.

2. A Spatial Model for Differences in Age–Period Mortality
Rates

In this section, a parametric model is presented that describes historic and future differ-
ences in observed gender-specific mortality rates of Western European countries. Follow-
ing the literature on coherent mortality forecasting (cf. Section 1), we see the mortality
trend of each country as a composition of a common European trend and a country-
specific part. The present paper solely focusses on modeling the country-specific parts.

In order to make the country-specific trends visible, we first eliminate the common
European trend by subtracting the mean mortality rate of all (considered) countries from
the mortality experiences of the single countries. In a second step, the historic country-
specific trends – describable as two-dimensional surfaces on the age-period plane (Lexis
plane) – are approximated by two-dimensional parametric functions. The residuals of
the fitted functions are transformed so that they represent a realization of a Gaussian
random field. By extrapolating the parametric non–random country-specific trend, using
conditional Gaussian simulation of the trend residuals and applying the inverse of all
transforms, we obtain forecasts for the country-specific mortality trends.

We consider annual mortality rates qx,t, which are defined as the probability that
an individual, who has an age of x (in years) on January 1 of year t, dies within this
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year. Furthermore, gender-, age- and year-specific population numbers are used. The
population size bx,t is defined as the number of individuals who have an age of x (in
years) on January 1 of year t. The annual mortality rates and population numbers will
be considered on the range

R := {x1, x2, . . . , xn} × {t1, t2, . . . , tm} ⊆ N0 × N,

where n ∈ N is the number of observed ages x1 < x2 < · · · < xn and m ∈ N is the
number of observed years t1 < t2 < · · · < tm .

2.1. Modeling of the Trends

We approximate the common European mortality trend by the average of the mortality
trends of all (considered) countries. Since the population sizes of the European countries
vary significantly, we use the population weighted average of the mortality rates. Using
superscripts to identify different countries, the country-specific mortality rate difference
of an arbitrary but fixed country k ∈ L is given by

fk(x, t) := qkx,t −

∑
l∈L

blx,t · qlx,t∑
l∈L

blx,t
= qkx,t −

∑
l∈L

dlx,t∑
l∈L

blx,t
, (x, t) ∈ R, (1)

where L denotes the set of all countries that are considered and dlx,t denotes the number of

deaths in country l at age x in year t. Since the mortality rates qkx,t lie in the interval [0, 1],

the differences in mortality rates fk(x, t) are in the range [−1, 1]. In order to simplify
the notation, in the following we will skip the superscript k, i.e. f(x, t) = fk(x, t).

In a next step, f will be approximated by a function g that captures the geometric
patterns in the country-specific trend. Yet, before doing that we normalize the variance
with respect to age x. This is important for the steps following afterwards. In general,
it can be assumed that the mortality differences f(x, t) are significantly heteroscedastic
with respect to age x. Without a variance normalization, the parametric approach would
approximate the geometric patterns very poorly in age ranges with low variances. As a
result, in the step following afterwards, where we do another variance normalization and
approximate the residuals by a Gaussian random field, the previously poorly approx-
imated geometric patterns would become visible, significantly violating the Gaussian
random field approach. We can avoid those problems by normalizing the variance in
each age as follows:

fvar(x, t) :=
f(x, t)

σf (x)
, (x, t) ∈ R, (2)

where

σ2f (x) =
1

m− 1

m∑
i=1

f(x, ti)−
1

m

m∑
j=1

f(x, tj)

2

.

This transformation can be easily continued into the future since it is constant with
respect to the time variable.
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Now we approximate fvar(x, t) by a function

g : N0 × N→ R : (x, t) 7→ g(x, t)

that matches the geometric patterns that we see in the historic data. In the geo-
statistic literature, there is a number of ways to estimate the space–time trend non–
or (semi)parametrically, see e.g. geoadditive regression, universal kriging or intrinsic
models of order k in Fahrmeir et al. [2013], Chilès and Delfiner [1999], Wackernagel
[1995], Cressie [1993]. In all its generality, this is mainly a task of functional regression
analysis. In our case, we have chosen a parametric approach driven by the concrete
application. The choice is motivated by simplicity, a small number of control parame-
ters, and a particular form of trend surfaces under consideration with mainly elliptic or
inverse power contours, cf. Figures 2 and 3. Thus, we suggest to use a function

g(x, t) := c1 · e−
Q1(x,t)

2 + c2 · e−
Q2(x,t)

2 + c3 · e−
Q3(x,t)

2 + c4

(
1

|x− b|

)p
+ d, (3)

where

Qi(x, t) =

(
t− µ2i−1
x− µ2i

)T

Σi

(
t− µ2i−1
x− µ2i

)
,

Σi =

(
cos(αi) − sin(αi)
sin(αi) cos(αi)

)T(
λ2i−1 0

0 λ2i

)(
cos(αi) − sin(αi)
sin(αi) cos(αi)

)
for i = 1, 2, 3. The first three terms in (3) describe elliptical patterns on the age-period
plane. The fourth term is designed to match pure age effects. We assume that the
parameters satisfy

αi ∈ [0, π], i = 1, 2, 3
b ∈ R \ N,
ci ∈ R, i = 1, 2, 3, 4
d ∈ R,
λi ∈ R+, i = 1, 2, . . . , 6
µ2i−1 ∈ (−∞, tm + τ ], i = 1, 2, 3
µ2i ∈ (−∞,∞), i = 1, 2, 3
p ∈ R.

The restriction of the αi’s to [0, π] is necessary for identifiability of the model. By
assuming that b is not a natural number, we avoid division by zero. The assumption
that the µ2i−1 are not greater than tm + τ avoids that the exponentials in g have their
maxima far in the future, which would result in unrealistic forecasts. For estimating the
parameters we use the method of least squares.

Our empirical analysis following later on will show that our choice of g leads to very
reasonable residuals. From a theoretical point of view, the suggested model has several
advantages.

First, the parametric functions in (3) allow to capture a wide variety of two-dimensional
patterns in the data. As we already pointed out in Section 1, other multi-population
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models in the literature only allow for a very restricted set of geometric patterns. How-
ever, apart from the empirical motivation, so far we are not aware of any biological or
medical justifications for the underlying geometric patterns.

Second, after fitting g to historical data, forecasts can be easily obtained by simply
extrapolating g. Our empirical examples will show that these forecasts carry forward the
historic geometric patterns in a reasonable way. As Börger and Aleksic [2014] pointed
out, other concepts in the literature often lead to structural breaks between historical
data and forecasts.

Third, for t towards infinity the function (3) converges to the sum of the fourth and
fifth terms, which are independent of t. So when we construct future country-specific
mortality trends by extrapolating the function g, we obtain forecasts that are coherent,
i.e. non-divergent.

Fourth, with just 22 parameters needed to describe g, our statistical model is still
parsimonious compared to alternative models in the literature. For example, the Lee-
Carter extension of Li and Lee [2005] needs n+m parameters, which means 81+50 = 131
parameters in our empirical example following later on.

2.2. Modeling of the Residuals

In order to quantify the uncertainty of forecasts, we need a model for the residuals

r(x, t) := fvar(x, t)− g(x, t). (4)

Typically, one will find that the residuals are neither stationary nor isotropic, and thus,
they need to be transformed. As our empirical analysis will confirm later on, after some
age normalization the residuals can be pretty well described as translated powers of
normal distributed random variables. The class of translated powers of normal random
variables can be interpreted as an expansion of the family of normal distributions to a
distribution class with four parameters.

More specifically, by assuming that z = {z(u) | u = (x, t) ∈ R2} is a realization of
a stationary Gaussian random field Z = {Z(u) | u = (x, t) ∈ R2} with mean 0 and
variance 1, we describe the residuals r by the parametric family

r(x, t) =

 σr(x)
(
k + ((µ+ z(x, t)σ)λ+ 1)

1
λ

)
, λ 6= 0

σr(x)
(
k + eµ+z(x,t)σ

)
, λ = 0

, (x, t) ∈ R. (5)

The factor σr(x) is the age normalization. The remaining factor is a translated power (or
exponential) of a normal random variable. The function in (5) can be seen as mapping
from z(x, t) to r(x, t), and by inverting this mapping we get the following equivalent
notion: The residuals r belong to the parametric family (5) if and only if the inverse
transform performed on the residuals leads to a stationary and standardized Gaussian
random field z. In the following we will use the latter notion, because it is the more
natural and constructive way when discussing the empirical fitting of the parameters.
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In our empirical data, the variance of the residuals r depends significantly on the age
but marginally on the year. So we normalize the average variance per age of the residuals
by dividing them by the parameter σr(x) given by

σ2r (x) =
1

m− 1

m∑
i=1

r(x, ti)− 1

m

m∑
j=1

r(x, tj)

2

. (6)

After the normalization of the residuals, one will find that the empirical data do not yet
have the characteristics of a Gaussian random field. Therefore, we apply the transfor-
mation introduced by Box and Cox [1964]. The Box-Cox transformation selects from a
family of transformations the one which is best to make the observations approximately
normally distributed. In addition, the Box-Cox transformation leads to a stabilization of
the variance. However, the Box-Cox transformation only allows strictly positive observa-
tions, so first the data are translated into the positive range by subtracting a parameter

k < min

{
r(x, t)

σr(x)

∣∣∣ (x, t) ∈ R
}
. (7)

The Box-Cox transformation is then applied to the strictly positive data:

y(λ)(x, t) =


(
r(x,t)
σr(x)

−k
)λ
−1

λ , λ 6= 0,

ln
(
r(x,t)
σr(x)

− k
)
, λ = 0.

(8)

The corresponding transformation parameter λ ∈ R is formed by maximizing the likeli-
hood function of the observations (cf. routine boxcox in Matlab software). The latter is
derived from the posterior distribution assuming that it is Gaussian, the expected value
has a linear structure and the variance is constant.

In a last step the data are standardised such that the empirical mean of the trans-
formed data is 0 and their empirical variance is 1. The standardisation parameters
are

µ =


1
nm

∑
(x,t)∈R

(
r(x,t)
σr(x)

−k
)λ
−1

λ , λ 6= 0,

1
nm

∑
(x,t)∈R

ln
(
r(x,t)
σr(x)

− k
)
, λ = 0,

σ2 =


1

nm−1
∑

(x,t)∈R

((
r(x,t)
σr(x)

−k
)λ
−1

λ − µ

)2

, λ 6= 0,

1
nm−1

∑
(x,t)∈R

(
ln
(
r(x,t)
σr(x)

− k
)
− µ

)2
, λ = 0.

(9)

After all these steps, the observations should be a realization of the stationary Gaus-
sian random field Z.
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We assume that the covariance of the observations depends only on the distance
between two points (second order isotropy of Z). So the covariance function

Cov(Z(u), Z(v)) = E(Z(u) · Z(v)), u, v ∈ R

of Z can be estimated by the empirical covariance of the observations (see e.g. Spodarev
[2013, p. 324]):

Ĉ(h) :=
1

|N(h)|
∑

(u,v)∈N(h)

z(u) · z(v) (10)

with
N(h) =

{
(u, v) ∈ R2 : ‖u− v‖ = h

}
,

where ‖ · ‖ is the Euclidean norm in R2.
In order to use the information of the empirical covariance function for the subsequent

simulation, a valid covariance model has to be chosen from a list of available models (see
e.g. Wackernagel [1995, pp. 334–336], [Spodarev et al., 2015, pp. 328–331]). Then it
has to be fitted to the empirical covariance using the method of least squares. Here we
use a stable covariance model with nugget effect

C(h) := b1 · e−ah
ν

+ b2 · 1{h=0} (11)

with h ≥ 0, a, b1, b2 > 0, ν ∈ (0, 2]. Its choice is justified by the form by its graph which
fitted best our data, cf. Figure 7.

Table 1 gives an overview of all modeling steps.

trend in mortality rate differences quantity formula

mortality data qkx,t
subtraction of common European trend f(x, t) see (1)

variance normalization with respect to age fvar(x, t) see (2)

parametric modeling g(x, t) see (3)

residuals of mortality rate differences

residuals of the parametric model r(x, t) see (4)

variance normalization with respect to age see (6)

shift to positive real line see (7)

Box-Cox transformation see (8)

standardization to mean 0 and variance 1 see (9)

parametric modeling of covariance C(h) see (11)

Table 1: Overview of the modeling steps

3. Empirical Analysis

Here we apply the concepts of Section 2 to real data. Although we perform the analysis
for a group of 17 countries, we will focus our presentation on just two exemplary popu-
lations: males in the Netherlands, for which the mortality rates are well reproduced by
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the model, and females in France, for which the model is less suitable. Further empirical
results can be found in the Appendix A.

3.1. Description of the Data

We use mortality data from the Human Mortality Database (HMD), University of Cal-
ifornia and Berkeley (USA) and Max Planck Institute for Demographic Research (Ger-
many) [2014]. The gender-, age- and year-specific annual mortality rates that we use
are available for age and time intervals of one year. The same is true for the population
size data. Note that for high ages the published mortality rates are partially smoothed
by linear interpolation.

For our empirical analysis we select the following 17 Western European countries:

Austria Belgium Denmark Finland France
Germany (West) Iceland Ireland Italy Luxembourg
Netherlands Norway Portugal Spain Sweden
Switzerland UK

We choose this group of countries because they have been closely linked for many decades.
The maximum period of time for which the data is available for all 17 countries ranges
from 1960 to 2009. The available age span ranges from 0 to 110. So our age-period
observation area is

R = {0, 1, . . . , 110} × {1960, 1961, . . . , 2009} .

Spain (1975) and Italy (1981) had territorial changes during the observation period.
So there are years for which there exist two data sets, referring to the population before
and after territorial change. We use the arithmetic mean of the population before and
after the territorial change.

Figure 1 shows mortality rate differences according to Formula (1) for males in the
Netherlands and females in France. We can see in important characteristics of the
HMD data that they have been smoothed from certain age levels onward, where the
latter differ from country to country (see Wilmoth et al. [2007, p. 35 ff.]). Since this
smoothing interferes significantly with our model, we disregard in our analysis all ages
beyond 85. Furthermore, we see significant children mortality differences in the sixties
and seventies, which disappear from the nineties onward. In order to avoid modeling of
these effects, which seem to be irrelevant for future forecasts, we exclude all ages below
5 from our analysis.

3.2. Fitting the Trend Model

Considering the data shown in Figure 1, non-random island-like structures can be rec-
ognized, which we denote as spots. In Figure 1 we see spots only for high ages. After
normalizing the variances in each age, we see spots also for low ages, see Figure 2. Look-
ing at the geometrical structures in Figure 2, functions with elliptical level sets (first
three terms in (3)) seem to be good candidates for fitting a model. We found that for
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Figure 1: Differences in mortality rates f for the Netherlands (male) and for France (female)
in various graphics

most countries a sum of three such functions is sufficient for modeling the non-random

trend structures. The fourth term c4 ·
(

1
|x−b|

)p
in (3) approximates the high gradients

in the direction of age, which cannot be represented by elliptical level sets. Figure 2
also suggests that the maxima of the exponential functions may be outside the observed
range. We restrict the location of the maxima in the future by tm + τ = 2014; otherwise
we might obtain extreme and implausible forecasts.

An enumeration of the exact limits for each parameter is given in Section 2.1. The
parameters of the approximation function are determined by using the method of least
squares. The adapted approximation function g for the Netherlands and France is illus-
trated in Figure 3 with parameter values given in Table 2.

Apparently, the approximation of the observed values by the parametric model (3)
works very well. In order to forecast future non-random trends, we simply extrapolate
the function g in (3) after the fitting. Figure 4 shows the fitted function g on the
extended domain T := {1960, 1961, . . . , 2060} × {5, . . . , 85}. The white lines in the
figure mark the boundary between the empirical fitting and the future extrapolation.
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Figure 2: Differences after variance normalization fvar for the Netherlands (male) and for France
(female)
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Figure 3: Adapted approximation function g on the area R for the Netherlands (male) and for
France (female)

Figure 4 exemplarily demonstrates a major advantage of the geometric approach: by
construction, the historic observations are continued into the future in a smooth way
and no structural breaks appear between historic observations and the forecast. By
forecasting till 2060 we do not comment on the reliability of the forecast, we just choose
this long time horizon in order to demonstrate the method.

The forecast for males in the Netherlands seems quite reasonable. The forecast for
females in France makes sense in the short range, but it is less convincing in the long
range as there appear strongly negative values for children around 2060. The reason

for these negative values is the term c4 ·
(

1
|x−b|

)p
. Better results could be achieved by

modifying (setting c4 = 0) the parametric function (3), which we choose as a compromise
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α1 α2 α3 b c1 c2 c3 c4
Netherlands 1.26 1.26 1.44 -10.98 262.02 -265.61 -3.27 7.91

France 0.07 4E-14 3E-04 -177.65 9.36 -12.19 13.49 -1E+06

d λ1 λ2 λ3 λ4 λ5 λ6 µ1
Netherlands 0.26 0.004 5E-04 0.004 5E-04 0.03 0.005 1963.35

France -1.93 5E-04 3E-04 0.002 0.003 0.02 0.003 1986.12

µ2 µ3 µ4 µ5 µ6 p

Netherlands 55.55 1962.43 55.16 1990.59 22.96 8.68

France 49.88 1984.05 79.28 1982.42 111.11 2.33

Table 2: Parameters of the adapted approximation function g for the Netherlands (male) and
for France (female) (rounded values)
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Figure 4: Forecast of the trend approximation function g on the domain T for the Netherlands
(male) and for France (female)

between all 17 countries.
Figure 5 shows the corresponding residuals after a normalization of the variance in

each age (see Section 2.2). We can clearly see cohort effects in the form of narrow
diagonal lines. However, as it can be seen in the example of France and the Netherlands,
the most significant diagonal lines do not affect the forecast area T \R. For this reason
we do not incorporate cohort effects in our parametric model.

We still see spots in Figure 5, but they seem to be randomly distributed. This leads
to the conclusion that the residuals are stationary. Moreover, the observed values are
close to a normal distribution but a slight skewness is present. The skewness vanishes
after the Box-Cox transformation.

Recall that the data have to be shifted to the positive real line before the Box-Cox
transformation, and that after the Box-Cox transformation we do another linear transfor-
mation such that the empirical mean is 0 and the empirical variance is 1. Figure 6 shows
that the univariate distribution of the transformed residuals is indeed well approximated

12



1960 1970 1980 1990 2000 2009

10

20

30

40

50

60

70

80

year

ag
e

Netherlands

 

 

−3

−2

−1

0

1

2

3

year

ag
e

France

 

 

1960 1970 1980 1990 2000 2009

10

20

30

40

50

60

70

80

−4

−3

−2

−1

0

1

2

3

Figure 5: Trend residual values after the normalization of the variance for the Netherlands
(male) and for France (female)

by a normal law.
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Figure 6: Representation of the Box-Cox transformed trend residual data in a histogram with
adjusted density function of the normal distribution (left) and a QQ-Plot (right) for
the Netherlands (male) and for France (female)
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3.3. Simulating the Residuals

We already mentioned in the previous section that the residuals in Figure 5 show ran-
domly distributed spots, which implies that there exist dependencies between data points
that are close together. Since these spots do not show clear directions, we may assume
that the correlation between two data points depends only on their distance. Due to
the transformations, the observed values are approximately normally distributed with
expectation 0 and variance 1. Thus, the data set may be seen as a realization of the
stationary and isotropic Gaussian random field Z = {Z(x) | x ∈ R} with mean 0, vari-
ance 1 and covariance function C. The covariance function C is chosen by least squares
fitting of a covariance model to the empirical covariance function Ĉ (see formula (10)).
As covariance model we use a stable covariance model with nugget effect, because it pro-
vides the smallest deviations from Ĉ, compare Figure 7. For large distance lags h there
exist just a small number of data pairs. Therefore, the empirical covariance function
oscillates strongly for large values of h. Because of that, Figure 7 shows only distances
up to h = 50.
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Figure 7: Fitting the covariance model to the empirical covariance of the residual trend data
for the Netherlands (male) and for France (female)

In order to simulate future trend residual values z, a conditional simulation of the
Gaussian random field Z, which is completely characterized by its expectation value 0
and its covariance function C, is performed. In the conditional simulation, values of z
within domain T are simulated provided that they coincide with the observed values
of Z on R. For this purpose, first an unconditional simulation is performed which is
converted into a conditional simulation by using simple Kriging (see Lantuejoul [2002,
p. 199 ff.]). The simple Kriging method ensures that the simulated values on R are
equal to the observed values and converge to the values of the unconditional simulation
on T \ R with increasing distance to R. The simple Kriging estimator Z∗ of Z is the
linear combination

Z∗(v) =
∑
u∈R

λu(v) · Z(u), v ∈ T,
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which minimizes the mean square error

E(Z∗(v)− Z(v))2, v ∈ T.

It can be shown that the coefficients λu(v) are the solutions of the following linear
equation system:

C(u1, u1) C(u1, u2) · · · C(u1, u|R|)

C(u2, u1) C(u2, u2) · · · C(u2, u|R|)
...

...
. . .

...
C(u|R|, u1) C(u|R|, u2) · · · C(u|R|, u|R|)

 ·

λu1(v)
λu2(v)

...
λu|R|(v)

 =


C(u1, v)
C(u2, v)

...
C(u|R|, v)

, (12)

where v ∈ T and C(u, v) = C(‖u − v‖) with u, v ∈ T . This results in the estimator z∗

of the observed values z:

z∗(v) =
∑
u∈R

λu(v) · z(u), v ∈ T.

Now an unconditional simulation r of the random field Z is performed on T . This
results in another estimator r∗ of r:

r∗(v) =
∑
u∈R

λu(v) · r(u), v ∈ T.

The coefficients λu(v) are a solution of the equation system (12). Simple Kriging is
exact, i.e.,

z∗(u′) =
∑
u∈R

λu(u′) · z(u) = z(u′), u′ ∈ R,

r∗(u′) =
∑
u∈R

λu(u′) · r(u) = r(u′), u′ ∈ R.

The covariance function C for two widely separated points is approximately 0. Hence,
for each v ∈ T that is far enough away from the region R, the solution of the Equation
System (12) is approximately equal to the zero vector. That means that the values of
z∗ and r∗ are approximately zero for all points v ∈ T that are far away from R. By
Lantuejoul [2002, Theorem 15.3.1] it holds that Z∗ := {Z∗(v) | v ∈ T} and Z − Z∗ :=
{Z(v)− Z∗(v) | v ∈ T} are two independent Gaussian random fields, and

Z(v) = Z∗(v) + Z(v)− Z∗(v), v ∈ T.

The values zCS(v) := z∗(v)+r(v)−r∗(v) for all v ∈ T obviously belong to a realization
of a Gaussian random field. Moreover, zCS is the result of a conditional simulation of
the random field Z, since for all u ∈ R it holds

zCS(u) = z∗(u) + r(u)− r∗(u)
= z(u) + r(u)− r(u)
= z(u).
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In addition, the values zCS tend to the values r of the unconditional simulation of Z
for all points v ∈ T that are far away from R:

zCS(v) = z∗(v) + r(v)− r∗(v)
≈ 0 + r(v)− 0
= r(v).

To carry out the unconditional simulation of Z, we use circulant Embedding from
Dietrich and Newsam [1997]. Circulant Embedding is a fast and exact method to sim-
ulate stationary Gaussian random fields on an equally spaced grid. Its basic idea is to
decompose the covariance matrix K into the product K = A · AT. If ε ∼ N(0, I) is a
standard normal vector, the random vector y = A · ε has an expected value of 0 and the
covariance matrix K. If random numbers are generated in this way, these have exactly
the desired correlation structure. The factorization of K is very expensive, so the matrix
K is embedded into a circulant matrix which can be factorized efficiently with the Fast
Fourier Transform (FFT).

For each of the observed populations we performed 1000 conditional simulations with
Matlab R2014a. For one population the CPU time of 1000 simulations on an Intel Xeon
X5570 2.93GHz processor is around 75 hours.

The results of exemplary conditional simulations on the grid T can be seen in Fig-
ure 8 for the examples Netherlands and France. The expected value and the correlation
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Figure 8: Exemplary conditional simulations of residuals for the Netherlands (male) and for
France (female)

structure of the values in the forecast period are the same as in the observation period.
Due to the use of simple Kriging, no obvious break between the values of the past and
the values of the future can be seen.

3.4. Forecast Results

If all previously performed transformations are reversed for the simulated values on T , we
obtain the predicted mortality rate differences. The forecast results based on exemplary
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simulations are shown in Figure 9. The distinctive structures in the past are continued
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Figure 9: Predicted differences in mortality rates from exemplary simulations for the Nether-
lands (male) and for France (female) (scaled with z 7→ sgn(z) · |z| 14 )

in a realistic way into the future. If we had not drawn the white line in Figure 9, it
would be almost impossible to locate the change point between observed and forecasted
values.

Additionally, we have performed 1000 simulations for males in Netherlands and females
in France. The maxima and minima of these simulations are shown in Figure 10 and
Figure 11, respectively. Figure 12 shows the predicted mortality rate differences based
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Figure 10: Maximal predicted differences in mortality rates for the Netherlands (male) and for

France (female) (scaled with z 7→ sgn(z) · |z| 14 )

on exemplary simulations for the life cycle of a single cohort, namely individuals with
age 30 in 2010. The upper and lower confidence bounds in Figure 12 are the maximal
and minimal values of 1000 simulations.

The inversion of the Box-Cox transformation can potentially change the correlation
structure of the underlying random field. In order to see if that happened here, we can-
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Figure 11: Minimal predicted differences in mortality rates for the Netherlands (male) and for

France (female) (scaled with z 7→ sgn(z) · |z| 14 )
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Figure 12: Predicted mortality rate differences from exemplary simulations for the life cycle
of the cohort that has age 30 in 2010 for the Netherlands (male) and for France
(female) with arithmetic mean and confidence bands.

not simply study the empirical covariance function according to (10) since the historical
and the predicted mortality rate differences are neither stationary nor isotropic. Instead,
we calculated the empirical covariance function (10) for the historical data before per-
forming the Box-Cox transformation and for the data based on exemplary simulations
after reversing the Box-Cox transformation. Figure 13 shows the result for the Nether-
lands (male) and France (female). We see that the Box-Cox transformation has not
significantly changed the correlation structure of the data here.

18



0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

h

em
pi

ric
al

 c
ov

ar
ia

nc
e

Netherlands

 

 
historical data
simulated data

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

h

em
pi

ric
al

 c
ov

ar
ia

nc
e

France

 

 
historical data
simulated data

Figure 13: Empirical covariance functions of the historical data prior to the Box-Cox transfor-
mation and of the data based on exemplary simulations after reversing the Box-Cox
transformation for the Netherlands (male) and for France (female)

4. Summary and Discussion

We presented and discussed a geometric approach on the age-period plane for modeling
mortality rate differences in multiple populations, using techniques from geostatistics.
Our empirical analysis of Western European data shows advantages and disadvantages
of the approach.

The idea to see the two-dimensional structures in historic age-period mortality data
as geometric objects offers a new perspective on mortality forecasting, differing from the
typical perspective in the existing literature. By extrapolating the geometric objects in
a natural way, we obtain plausible forecasts that are smooth and do not have the typical
structural breaks between the observed past and the forecasted future. Moreover, we
showed that the geometric approach also suits further important objectives in multi-
population modeling, e.g. statistical parsimony and coherence of forecasts.

The forecasts in our empirical examples seem to be very convincing for the short term,
but might be questionable for the long term. The problem is that there is no evidence
that the long term mortality trends follow the geometric patterns that we identified for
the short term and mid term. Moreover, our forecasts are coherent in the sense that they
are not diverging, but they are not necessarily converging to zero. With the European
countries becoming more closely linked in all aspects of life, a convergence to zero seems
to be a likely development, but our model does not use this extra information and hence
does not reflect that.

By modeling the residuals with the help of transformed Gaussian random fields, we
allow for stochastic forecasts that include possible dependencies across ages and years.
Also here our forecasts continue the observed past in a realistic way into the future
and show no structural breaks. However, the inversion procedure of the applied Box-
Cox transform might slightly change the correlation structure of the underlying random
field, compare Section 3.4.
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A. Forecast Results for all Countries

The following Figure 14 shows the forecasted differences in female (left) and male (right)
mortality rates for all observed countries resulting from exemplary simulations. As
before, we use the scaling z 7→ sgn(z) · |z|
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Figure 14: Predicted differences in female (left) and male (right) mortality rates based on ex-

emplary simulations for all observed countries (scaled with z 7→ sgn(z) · |z| 14 )
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