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Abstract 

Enhanced basic perceptual discrimination has been reported for pitch in individuals with 

autism spectrum conditions. We test whether there is a correlational pattern of 

enhancement across the broader autism phenotype and whether this correlation occurs for 

the discrimination of pitch, time and loudness. 

Scores on the Autism-Spectrum Quotient (AQ) correlated significantly with the pitch 

discrimination (r=-0.51, p<0.05) and the time-interval discrimination (r=-0.45, p<0.05) 

task that were based on a fixed reference. No correlation was found for intensity 

discrimination based on a fixed reference, nor for a variable reference based time-interval 

discrimination. The correlations suggest a relationship between autistic traits and the 

ability to form an enhanced, stable and highly accurate representation of auditory events 

in the pitch and time dimensions.  

 

Keywords: Autism-Spectrum Quotient, Sensory processing, Audition, Pitch, Time, 

Loudness, Enhanced representation 
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1. Introduction 

Autism spectrum conditions (ASC) are characterised by differences in social interaction, 

social communication and restricted, repetitive behaviours compared with typically 

developing individuals (American Psychiatric Association, 2013). In addition to the 

defining traits of ASC, enhanced discrimination of basic perceptual information has been 

found for visual and auditory stimuli in ASC (Bertone, Mottron, Jelenic, & Faubert, 

2005; Plaisted, Saksida, Alcántara, & Weisblatt, 2003). One model, the Enhanced 

Perceptual Functioning model (Mottron & Burack, 2001; Mottron, Dawson, Soulières, 

Hubert, & Burack, 2006), suggests that persons with ASC have enhanced low-level 

processing of basic perceptual information.  

Traits or features of ASC are present both in relatives of those with ASC and in the 

typically developed population (Baron-Cohen, et al., 2001; Dawson, et al., 2007; Hurley, 

Losh, Parlier, Reznick, & Piven, 2007). Parents of children with ASC have higher autistic 

character trait scores than parents of typically developing children, and individuals with 

ASC score higher than typically developing controls on autistic traits as measured by the 

Autism-Spectrum Quotient (AQ) (Baron-Cohen, et al., 2001; Bishop, et al., 2004; Kurita, 

Koyama, & Osada, 2005). The AQ is a self-administered questionnaire designed to 

measure the extent to which adults with normal intelligence possess traits associated with 

ASC. The scale is not a diagnostic measure, although it was developed using diagnostic 

criteria, rather it is a measure of the levels of autistic traits (Baron-Cohen, et al., 2001). In 

line with a continuum theory of the autism spectrum between persons with ASC and the 

typically developed population, similarities in processing styles are found in those who 
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score highly on the AQ compared with those with ASC (Almeida, Dickinson, Maybery, 

Badcock, & Badcock, 2010; Baron-Cohen, et al., 2001; Bayliss & Tipper, 2005; Clark, 

Hughes, Grube, & Stewart, 2013, Fugard, Stewart, & Stenning, 2011; Grinter, et al., 

2009; Grinter, et al., 2009; Stewart & Ota, 2008; Stewart, Watson, Allcock, & Yaqoob, 

2009). In this study we test whether autistic character traits are correlated with 

fundamental aspects of auditory processing.   

Superior performance has been found for a range of perceptual tasks across domains. For 

instance, within the visual domain, enhanced performance has been found across a range 

of tasks with differing task demands and constraints. In an adapted block design task, 

where performance was compared between whole and segmented patterns and those with 

ASC showed reduced interference from the whole picture (Shah & Frith, 1993). 

Similarly, enhanced performance has been found on the embedded figures task, in which 

participants are required to find a design which is ‘hidden’ in a larger picture (Shah & 

Frith, 1983). Tasks such as the block design and the embedded figures require the 

participant to ignore the ‘gestalt’ of the whole and focus on the local detail in complex 

designs. Furthermore, children with autism have been shown to perform better than 

typically developing matched controls on tasks that require the discrimination of highly 

similar stimuli (Plaisted, O'Riordan, & Baron-Cohen, 1998), in other words depend on a 

detailed, accurate representation.  

In the auditory domain, key findings in individuals with ASC have been: i) enhanced 

discrimination of pitch, ii) improved ability to categorise tones on the basis of their pitch, 

and iii) enhanced memory of pitch (Bonnel, et al., 2010; Bonnel, et al., 2003; Heaton & 
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Heaton, 2003, 2005; Jones, et al., 2009; O'Riordan & Plaisted, 2001). Bonnel et al. 

(2003) reported higher sensitivity in children with autism in a pitch discrimination and a 

categorisation task, both using the method of constant stimuli, i.e. fixed levels of 

difficulty. Bonnel et al. (2010) found enhanced pitch discrimination for participants with 

autism, but not with Asperger syndrome, and no discrimination-threshold differences 

were found for intensity. Similarly, O’Riordan and Passetti (2006) found enhanced 

discrimination of pitch in children with ASC compared with controls. Their design was 

an adaptive one: two tones alternated in such a way that one tone stayed at the same 

frequency whilst the other would change until the participant would indicate that the two 

sounded identical. Children with ASC took longer to indicate that the two tones were 

identical; the authors argue that this indicated that the ASC participants were able to 

discriminate between the two tones later in the sequence than controls, and hence to 

discriminate smaller differences in frequency. The design is not criterion-free and cannot 

rule out the possibility of a perceptual bias or difference in response time. Jones et al. 

(2009) compared a group of adolescents with ASC and a typically developing group on 

auditory discrimination tasks of frequency, intensity and duration. They measured 

individual thresholds using reference tones fixed in frequency, intensity or duration. The 

authors found no differences at the group level but that a subset of the ASC group had an 

enhanced ability to discriminate frequency. However, in contrast, Kargas, López, Reddy 

and Morris (2014) report deficits in auditory discrimination on tasks of frequency, 

intensity and duration in adults with ASC compared to age-matched controls. 

Few studies have assessed across modalities or features, however recently Meilleur, 

Berthiaume, Bertone and Mottron (2014) assessed performance across two visual and two 
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auditory tasks. They suggest that a common perceptual factor may drive performance on 

perceptual tasks in individuals on the autism spectrum.  

In the current study we focused on basic perceptual attributes of sounds: an area that 

lacks systematic testing. Stimulus timing is crucial in the auditory modality for speech 

and music (Chi, Gao, Guyton, Ru, & Shamma, 1999; Jusczyk, 1999; Klatt, 1976; 

Liberman, Delattre, Gerstmann, & Cooper, 1956; Rosen, 1992; Scott, 1982). Most 

relevant is the inter-onset-timing between one event and the next: the perception of the 

timing of auditory events relies on determining the time between events rather than the 

duration of an event (Grube & Griffiths, 2009; London, 2004; McAdams & Drake, 2002; 

Monahan & Hirsh, 1990; Povel & Essens, 1985). Another example of rhythmic sounds in 

our daily environment is footsteps along the corridor. In order to test the enhanced low-

level processing model in the auditory domain in relation to everyday relevance, we 

tested the perception of pitch and inter-onset-interval timing.  

We aimed firstly to demonstrate a significant relationship for the processing of pitch 

based on previous findings of group differences in ASC, and secondly to show a similar 

relationship for stimulus timing. We administered one pitch task using a fixed reference, 

and two timing tasks, using a fixed and a variable reference. We opted to use a fixed 

reference condition as this method had been used in previous studies on pitch processing 

(Bonnel, et al., 2010; Jones, et al., 2009). However, for timing we used both a fixed and a 

variable reference task as we were particularly interested in assessing the discrimination 

of time, a sound feature, which has been relatively unstudied in this field. 
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In addition, we administered an intensity discrimination task with a fixed reference. To 

date there have been no reports of enhanced intensity discrimination either in individuals 

with ASC or in relation to autistic traits. Intensity does not seem to show similar patterns 

of neural encoding as pitch and timing, i.e. it is not processed by specific areas or 

neurons. Intensity is encoded by an increase in neural activity, both firing rate and 

number of neurons firing, and is context-dependent.  In addition, our sensitivity is 

controlled to a large extent by the ambient sound pressure. Correspondingly, the 

subjective percept of loudness is less directly related to the physical stimulus and 

represented in a less “absolute” manner than pitch or time.  

The approach is a correlational one in order to show the relationship between autistic 

character traits and auditory processing. Perceptual ability is strongly related to nonverbal 

or performance IQ (r=.92; Deary, Bell, Bell, Campbell, & Fazal, 2004), therefore a 

student sample was selected as this group is likely to be more homogeneous for IQ. The 

auditory discrimination tasks used an adaptive tracking algorithm in order to measure 

thresholds at the individual level. Autistic character traits were evaluated by means of the 

AQ. 
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2. Methods 

2.1. Participants 

University students were recruited who all had English as their first language (n=24; 

mean age=22.3, s.d.=3.9; 12 males, 12 females). Questionnaires were distributed in either 

a classroom or a laboratory setting; the remaining tests were administered in a quiet 

laboratory room on a one-to-one basis with the experimenter, these took approximately 

two hours to complete.  

All participants gave informed consent, and ethical approval was obtained from the 

University Ethics Committee. 

2.2. Auditory Tests 

Stimuli were created and delivered using Matlab 6.5 (The Mathworks), with 44.1 kHz 

sampling rate and 16 bit resolution. The stimuli were presented at 70 dB rms Sound 

Pressure Level (except where paradigm required intensity variation) via an external 

soundcard and closed headphones (Edirol Audio Capture UA-3FX; Sennheiser HD 265). 

All stimuli were based on 200 Hz pure tones (except where the paradigm required 

frequency variation) of 100 msec in duration with 20 msec gating times. 

Each test included a minimum of 3 practice trials for familiarisation of the participant 

with the task before starting the 60 test trials. Each trial contained one reference and one 

target stimulus. The position of the target was randomized with equal probability (50%) 

across trials, using a pseudo-randomised order that was fixed across subjects. Participants 

had to indicate which of the two stimuli they perceived as target and responded by 
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pressing the appropriate number key on the keyboard. Each test started with a clear 

difference between target and reference, and all of them used an adaptive two-down, one-

up staircase procedure, with the difference being decreased or increased after 2 

consecutive responses correct or 1 incorrect, respectively. A larger step size was used up 

to the fourth reversal (change from decrease to increase or vice versa), after which a 

smaller step size was used. Interstimulus and intertrial intervals were 1500 ms each 

(measured from the end of the first stimulus and the subject’s response, respectively). 

Response time was not limited. The discrimination threshold was calculated as the 

arithmetic mean of the final six reversals, equivalent to the 70.9% correct point of the 

psychometrical function (Levitt, 1971). The four tests were run in the order described 

below. In order to reduce the effects of fatigue, following each task the participant was 

asked to take a break, stretch, take the headphones off and move around the room. 

Participants were invited to have a drink or a snack, go for a short walk or use the 

restroom if required. Fatigue within each task would be observable in the adaptive tracks, 

and the tracks obtained in the present study demonstrate overall reliable results. Figure 1 

illustrates the stimuli and tasks. 

2.2.1. Fixed reference frequency discrimination: Participants were asked to discriminate 

between a 200 Hz reference tone and a target tone with a higher frequency. The task was 

to indicate which tone sounded higher in pitch. The initial difference was 3.2 semitones; 

step sizes were 0.3 and 0.75 semitones. 

2.2.2. Fixed reference intensity discrimination: Participants were asked to discriminate 

between a softer reference tone and a louder target tone. The task was to indicate which 
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tone sounded louder. The initial difference in intensity was 7 dB; step sizes were 0.75 and 

0.25 dB. 

2.2.3. Variable reference interval timing: Participants were asked to discriminate 

between a shorter reference interval and a longer target interval. Intervals were marked 

by pairs of tones of 100 ms in duration and 200 Hz in frequency. The task was to indicate 

which pair of tones had the longer gap between them. Reference stimuli had inter-onset-

intervals of 300, 360, 420, 480, 560 or 600 ms, presented at equal probabilities in a 

pseudo-randomised order that was fixed across subjects. Target stimuli were longer by 

90% of the duration of the silent reference interval initially; step sizes were 12% and 6%. 

2.2.4. Fixed reference interval timing: This task was the same as the variable interval 

timing task, except that reference stimuli were of fixed durations. Reference stimuli had 

inter-onset-intervals of 300 ms. Target stimuli were longer by 30% of the duration of the 

silent reference interval initially; step sizes were 4% and 1.33%. 

2.3. Autism-Spectrum Quotient (AQ; (Baron-Cohen, et al., 2001)): The test consists of 50 

items and includes five subscales of 10 questions each: social skill (e.g. “I would rather 

go to a library than a party”), communication (e.g. “I frequently find that I don’t know 

how to keep a conversation going”), imagination (e.g. “When I’m reading a story, I find 

it difficult to work out the characters’ intentions”), attention to detail (e.g. “I usually 

notice car number plates or similar strings of information”), and attention-switching (e.g. 

“I frequently get so absorbed in one thing that I lose sight of other things”). Half the 

questions are worded to elicit an ‘agree’ response and the other half, a ‘disagree’ 

response. 
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The test was administered as a pen-and-paper task. Participants were asked to answer the 

question as quickly as possible by circling their response on a 4-point scale (‘strongly 

disagree’, ‘disagree’, ‘agree’, ‘strongly agree’). The items were scored on a continuous 

(Likert) scale (1-4). The total AQ score is calculated by summing the scores for all of the 

50 items, and total scores can range from 50-200. Baron-Cohen et al. (2001) scored the 

AQ using the alternative, binary scoring, that is, the collapsing of the 4-point scale to 0 0 

1 1. However, the use of binary scoring removes information about individual 

differences, whereas the Likert scoring preserves the available detail and can increase 

reliability and validity (Muniz, Garcia-Cueto, & Lozano, 2005). The Likert scoring 

system for the AQ is therefore the preferred measure here, similarly as in previous studies 

on the relationship with performance on cognitive and language tasks (Fugard, et al., 

2011; Stewart & Ota, 2008; Stewart, et al., 2009). 

2.4. Non-Verbal Intelligence: We used a shortened version of Raven’s Advanced 

Progressive Matrices (RAPM) (Raven, Raven, & Court, 1998) set II) in order to be able 

to control for a possible relationship of non-verbal IQ and auditory performance or AQ. 

In each test item, the participant identifies the missing design which completes a pattern. 

This version consists of 36 items, which progressively increase in difficulty and where 

each correct response gives a score of 1, and an incorrect response a score of 0, and the 

range of possible scores is 0–36. We used a 20-minute time limit rather than select 

particular items, in order to preserve the progressive nature of the task, using this method 

shows a high correlation with the full test score; r=0.74 (Hamel & Schmittmann, 2006)). 

The items were presented by computer using the platform of E-prime (Psychological 

Software Tools, Pittsburgh, PA).  
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3. Results 

Descriptive statistics for the thresholds for the auditory discrimination tasks, AQ and 

RAPM are shown in Table 1. Spearman's rank correlation test was carried out to seek 

relationships between those measures. AQ scores correlated significantly with the 

auditory discrimination thresholds for the fixed reference frequency discrimination task (r 

= -0.51, p<0.05), and the fixed reference interval timing task (r = -0.45, p<0.05) (Fig. 2). 

These are medium to large effects, explaining 26% and 20% of the variance, respectively 

(Cohen, 1988). In both cases, auditory thresholds decreased with increasing AQ, 

suggesting that autistic character traits predict enhanced perception of pitch and time. 

There was no significant correlation between AQ scores and the auditory discrimination 

thresholds for the variable reference timing task (r = -0.22, n.s.) or the fixed reference 

intensity task (r = -0.01, n.s.). Furthermore, there was no relationship between AQ and 

non-verbal IQ scores (r = 0.24, n.s.) as measured by the Raven’s task, nor was there any 

relationship between any of the auditory discrimination tasks and the Raven’s task (fixed 

timing r = -0.14, n.s.; variable timing r = -0.16, n.s.; frequency r = -0.20, n.s.; intensity r = 

0.07, n.s.). Therefore, there was no need to control for an effect of IQ in the relationship 

between AQ and auditory thresholds. For the two significant correlations of AQ with 

frequency and timing thresholds, we tested whether the correlation was a reliable finding 

by assessing its validity throughout the sample in an additional analysis using 

bootstrapping. For all possible (134.596) random combinations of n=18 (out of 24), the 

mean Spearman’s rho correlation coefficient with AQ was -0.45 (SD, 0.11) for the fixed-

reference time interval and -0.50 (SD, 0.09) for the frequency discrimination. The mean 

correlation coefficients in this bootstrapping analysis demonstrate the robustness of the 
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correlations and their validity across the sample, in other words that they are not driven 

by a few values at either end.  

Table 1 

Figure 1 

Figure 2 

4. Discussion 

This study set out to assess whether autistic character traits in typically developing 

individuals would correlate with basic auditory discrimination thresholds for pitch and 

time and intensity. Autistic traits were assessed using the Autism-Spectrum Quotient 

(Baron-Cohen, et al., 2001), allowing the evaluation of each individual’s degree of 

autistic character traits. Auditory performance was measured adaptively at the individual 

level for the basic discrimination for each of the three perceptual features of pitch, time 

and loudness. The data demonstrate correlations between autistic character traits and the 

ability to discriminate pitch and time but not intensity. The dissociation suggests that the 

correlations observed are not a function of a general sensory or auditory enhancement, 

but that the demonstrated relationship with AQ is specific to certain perceptual features.  

Non-verbal intelligence did not correlate with any of the auditory measures or with 

autistic character traits, which further supports the specificity of the demonstrated 

relationships.  
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From first principles, the correlations between autistic traits and time and frequency 

discrimination might reflect a neural basis at a number of levels of sound analysis: i) 

sensory encoding of the stimuli, ii) the encoding of the corresponding percept,  iii) the 

encoding into and retrieval from working memory.  Interestingly, the relationship with 

thresholds for time-interval discrimination was demonstrated only for a fixed but not a 

variable reference stimulus. The frequency discrimination task for which a correlation 

was also observed had a fixed reference stimulus as well, suggesting the possibility that 

autistic characteristics may enhance specifically the ability to form a more stable 

representation (of the reference). It must be noted at this point, that the study is limited in 

its interpretation for two main factors, i) only timing included both a fixed and a variable 

reference task; ii) the tasks were run in a set order which may have resulted in fatigue or 

practice effects, which may in theory affect individuals with different levels of autistic 

traits differently. However, given that correlations were found for the first and fourth task 

but not for the second and third, order or fatigue are unlikely to have played a significant 

role in evoking those. We recommend that future work address these limitations by 

assessing larger cohorts and including additional tasks to assess the differential effect 

between a fixed and a variable reference described in the current study. 

The fact that we find an AQ-related, enhanced discrimination for both a pitch 

discrimination and a timing task provides some support for the model of Enhanced 

Perceptual Functioning (EPF) in ASC (Mottron & Burack, 2001; Mottron, et al., 2006), 

extends this model across the broader autism phenotype, and suggests the existence of a 

functional correlate within one or more neural mechanisms in more than one domain. The 

work is congruent with previous behavioural studies showing augmented pitch processing 
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in individuals with ASC (Bonnel, et al., 2003; Jones, et al., 2009; Mottron, et al., 2006).  

The work further supports the previously suggested absence for an effect for loudness 

perception; no correlation between autistic traits and threshold for discrimination of 

intensity was found here and no effect has been found for individuals diagnosed on the 

autism spectrum (Bonnel, et al., 2010; Jones, et al., 2009). However, the findings 

contradict the work by Kargas et al. (2015) who find a deficit in discrimination of 

frequency, intensity and duration. Kargas et al. (2015) suggest that the differences in their 

study may be explained by IQ and indeed our participants were matched on performance 

using the Raven’s Matrices however, the participants in the Kargas et al. (2015) study 

were matched on performance on the Wechsler Adult Intelligence Scale (Wechsler, 

1999). Individuals with ASC tend to perform better on the Raven’s therefore the 

difference between the studies may be in part due to the matching criteria. 

One novel finding is that of a correlation between AQ and discrimination thresholds for 

time interval processing. The finding of this effect does not necessarily contradict the 

absence of enhancement in duration discrimination in individuals with autism found in a 

previous study (Jones, et al., 2009) or the deficit shown by Kargas et al. (2015). Jones et 

al. (2009) and Kargas et al. (2015) looked at tone duration discrimination, which may or 

may not be mediated by the same underlying mechanisms as time interval discrimination 

(Merchant, Zarco, Bartolo, & Prado, 2008; Rammsayer & Brandler, 2004). Duration 

discrimination for a filled interval (e.g. a constant tone) as used by Jones et al. (2009) 

could in theory also be achieved by integration of energy (sound intensity) over time, for 

which an effect would not necessarily be expected. In the discrimination of empty time 

intervals as used here, which are, defined by the onsets of consecutive events rather than 
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the on-off duration of individual events this is not possible: the task can only be solved 

based on the timing. The timing of event onsets as tested here provides salient 

information in temporal pattern (rhythm) perception with or without a beat (Grube & 

Griffiths, 2009; McAdams & Drake, 2002; Monahan & Hirsh, 1990; Povel & Essens, 

1985), and is relevant in the perception of speech (Rosen, 1992) (Scott et al., 1982) and 

music (London, 2004). 

The absence of an effect in the variable reference task suggests that the locus of the 

enhancement may lie in the formation of a stable and accurate representation of a 

repeatedly presented stimulus, rather than the immediate sensory processing. Further 

support for the proposed formation of a stable representation can be seen in previous 

work showing related effects but not explicitly addressing this point. Bonnel et al. (2003) 

for instance looked at pitch perception and reported high sensitivity of the group with 

ASC in a discrimination (same-different) and a categorization (low-high) task. The 

categorization task depends highly on an accurate, memorised representation of the 

reference pitches, which in the comparison group led to a characteristic drop in 

performance and sensitivity index in comparison with the discrimination task. The 

identical level of performance between the two tasks in the ASC group is discussed by 

the authors as a lower sensitivity to difference in task requirements and a more robust 

sensory memory trace. Possibly and in line with our present conclusion, the absence of a 

drop in performance for the categorization task in the ASC group could be related to an 

enhanced ability to form an accurate and stable representation of a repeated reference 

stimulus, which could also be the basis for a more accurate memory trace. The notion of 

such an enhancement would include memorised traces of a particular “value” of a 
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sensory feature, e.g. pitch or time. This is further supported by electrophysiological data 

such as enhanced mismatch negativity (Gomot, Belmonte, Bullmore, Bernard, & Baron-

Cohen, 2008; Gomot, Giard, Adrien, Barthelemy, & Bruneau, 2002), an auditory event-

related potential in the EEG (electroelencephalogram) that reflects the processing of a 

mismatch to a memory trace of a physical stimulus feature or some kind of violation of 

regularity (Naatanen, 2007). The recently emerging pattern of enhanced brain activations 

in primary areas in individuals with ASC compared with typically developing individuals 

(in conjunction with the opposite pattern for associative areas) (e.g. Just, Cherkassky, 

Keller, & Minshew, 2004) fits well with the idea of enhanced low level processing (see 

Mottron et al., 2006: Principles 4 and 8). Increased activity in sensory and associative 

cortical areas has been reported in the auditory modality (Samson et al., 2011), whilst in 

the visual domain increased activity has also been reported in higher-order order areas 

(Samson et al., 2012). Differences in effects in higher-order areas may in part be due to 

differences between sensory modalities (auditory versus visual) and in part due to task 

demands (e.g. low-level sound discrimination vs. sentence comprehension). In the current 

study, the significant correlation between AQ and fixed reference pitch and fixed 

reference time discrimination, together with the lack of a significant correlation for a 

variable reference time discrimination, suggests that the locus of enhancement is the 

formation of a stable perceptual representation, possibly based on early cortical 

processes. 

There are a number of possible brain bases for the ability to form an enhanced perceptual 

representation of pitch and time with increasing AQ. Previously suggested possibilities 

include an augmented sensory representation in the ascending pathway and auditory 
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cortex in autism (Plaisted, et al., 2003). Candidate neural bases for the perceptual 

representation of pitch are currently debated but are likely to exist in auditory cortex (see 

Bendor & Wang, 2005 for non-human primate studies; see Griffiths, et al., 2010 for 

discussion of human studies), whilst the perceptual encoding of single or multiple time 

intervals as assessed here involves analysis beyond the auditory cortex, including the 

cerebellum, basal ganglia and pre-frontal cortex (Grube, Cooper, Chinnery, & Griffiths, 

2010; Lewis & Miall, 2003; Penhune, Zattore, & Evans, 1998; Teki, Grube, Kumar, & 

Griffiths, 2011; Xu, Liu, Ashe, & Bushara, 2006). Both pitch and time are highly salient 

perceptually and can, to a certain extent be encoded in an absolute fashion, i.e. in a way 

that allows us to remember and judge the pitch and the timing of events based on one (or 

more) fixed reference points -implicitly or explicitly. The skill of absolute pitch for 

instance (Griffiths, 2003; Plack, Oxenham, Fay, & Popper, 2005; Schonwiesner, von 

Cramon, & Rubsamen, 2002) is an example of the absolute encoding of pitch value, 

coupled with a specific type of verbal labelling (Zatorre, 2003; Zatorre, Perry, Beckett, 

Westbury, & Evans, 1998). The categorical perception of phoneme-to-phoneme timing of 

speech sounds, e.g. of voice-onset-time, a common one (Lisker & Abramson, 1964, 1967; 

Rosen, 1992). Recent data suggest a mechanism for absolute duration encoding based on 

neuronal “channels” of preferred duration (Becker & Rasmussen, 2007; Heron, et al., 

2011; Ivry, 1996).  Mechanisms for the representation of stimulus intensity or the 

corresponding percept of loudness however do not allow such an absolute encoding 

perceptually. They have been investigated using electroencephalography and brain 

imaging methods (Jancke, Shah, Posse, Grosse-Ryuken, & Muller-Gartner, 1998; Tanji, 

et al., 2010; Neuner, Kawohl, Arrubla, Warbrick, Hitz, Wyss, Boers, & Shah, 2014), but 
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the existence of a dedicated encoding of intensity as the basis for an absolute and stable 

representation of the percept is uncertain. The absence of a correlation with loudness 

perception in contrast to the presence for those with pitch and time supports the notion 

that autistic traits relate to the ability to form a stable perceptual representation.  

The study is clearly limited in that it assesses a group of university students. The 

advantage of this participant group is that IQ is relatively homogeneous, and in an study 

such as this where IQ may correlate with discrimination ability it is important to control 

as much as possible for IQ. Indeed, we did not find a correlation between IQ and 

discrimination thresholds. In addition, although we have a good range of AQ scores, and 

bootstrapping analysis has shown the effect to be robust the sample is not large. 

However, any findings are limited to this group, and it would be useful to test a larger 

group, including members from the general population, and to test whether the findings 

hold in a group with ASC. 

The present data demonstrate improved perceptual processing for the two auditory 

perceptual features of pitch and time. The findings are consistent with the augmented 

encoding of the corresponding stimulus features and moreover suggest as the locus of 

enhancement not the immediate sensory processing but the formation of a stabilised 

percept of pitch and also of time at or beyond early cortex levels in participants with 

autistic traits. The identification of the neural substrates for the effects of increased AQ 

and enhanced perceptual representation observed here will require further investigation. 
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Table 1: Descriptive statistics on autistic traits measures, Raven’s matrices (RAPM) and 

auditory discrimination performance. 

 

 

 

 

 

 Mean SD Min Max 

Pitch (in semitones) 0.79 0.53 0.13 1.81 

Fixed Time-interval (threshold in ms) 13.88 5.66 4.67 23.11 

Variable Time-interval (threshold in %) 18.78 9.04 7.00 40.00 

Intensity (threshold in dB) 1.37 0.68 0.25 3.08 

AQ total 114.0 20.3 77 150 

Social Skill 22.1 6.2 11 33 

Attention Switching 25.8 5.4 14 36 

Attention to Detail 23.5 5.5 15 39 

Communication 21.6 5.1 13 33 

Imagination 21.0 4.0 16 30 

RAPM score (20min) 21.0 4.7 13 28 
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Figure 1. Auditory discrimination tasks. (a) Time. (b) Frequency. (c) Intensity. Stimuli 

were presented using Matlab 6.5 (The Mathworks), 44.1 kHz sampling rate and 16-bit 

resolution, an external soundcard (Edirol UA-3FX) and closed headphones (Sennheiser 

HD 265). All stimuli were based on pure tones with a frequency of 200 Hz in (plus 

difference in b), a duration of 100 msec , and an intensity of 80 dB SPL rms (plus 

difference in c).  Inter-onset intervals (in a) were 300 ms and 300-600 ms in the fixed and 

the variable condition, respectively (plus difference). 
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Figure 2. Correlation between AQ scores and auditory discrimination thresholds for 

fixed-reference stimuli: (a) Time: correlation coefficient r = -0.45 (p<0.05). (b) Pitch: 

correlation coefficient r = -0.51; both significant at the level of p<0.05 (Spearman’s rho). 

 

 


