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Accelerating Monte Carlo Markov chains with proxy and error models1

Laureline Josseta,∗, Vasily Demyanovb, Ahmed H. Elsheikhb, Ivan Lunatia2

aISTE, University of Lausanne, Switzerland3

bIPE, Heriot-Watt University, Edinburgh (UK)4

Abstract5

In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate

aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration).

However, this approach requires a large number of flow simulations and incurs high computational cost,

which prevents a systematic evaluation of the uncertainty in presence of complex physical processes. To

avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response

of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect

to the detailed physics described by the “exact” model. The error model accounts for the simplification of

the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact

responses are computed. First, the key features of the set of curves are extracted using functional principal

component analysis; then, a regression model is built to characterize the relationship between the curves.

The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that

the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up

allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are

avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response.

The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the

exact response and guide the chains to the low misfit regions. The proposed methodology can be extended

to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the

specific presented application and offers a general framework to build error models.
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1. Introduction8

Simulations of subsurface flow is important in many applications, such as groundwater protection and9

remediation, water prospection, exploration of hydrocarbon resources, and nuclear waste disposal. One of10

the main challenges is to estimate a continuous distribution of the underground model parameters from11

a sparse set of observational sites. This lack of information on model input propagates to the quantities12

of interest (for instance, the concentration of a pollutant in a drinking well), whose exact values remain13

uncertain. Model calibration using historical integrated data (for example, time series of concentration14

or pressure at observation wells) is often used to reduce the uncertainty on model parameters by relying15

on Bayes theorem. A widespread approach for numerical application of Bayes rule is to use Monte-Carlo16

Markov-Chain (MCMC) simulations (Robert and Casella, 2004) to sample the posterior probability density17

function. While MCMC is theoretically robust and ensures convergence to the true posterior distribution18

under mild constraints, in practice it is subject to several limitations due to the cost of the large number19

of required flow simulations, which can become prohibited in presence of limited computational resources.20

Indeed, the finite length chains should be able to explore all areas of the prior space in order to provide21

samples from the posterior distribution. To achieve this goal, it is tempting to increase the step length22

of the chains, but this would result in a drastic reduction of the acceptance rate (which should ideally re-23

main around 20-50% in multidimensional space) and subsequently in a high number of wasted simulations24

(Roberts et al., 1997).25

26

To avoid these issues, Efendiev et al. (2005, 2006) and Christen and Fox (2005) have introduced a two-27

stage MCMC, which employs a less computationally expensive solver to obtain a first evaluation of the28

proposal and decide whether it is useful to run the exact solver. This allows them to reduce the number29

of exact simulations that will be rejected and thus increase the acceptance rate. This methodology has30

been first explored by Christen and Fox (2005) to recover resistor values of an electrical network from mea-31

surements performed at the network boundary. They have obtained an increase in acceptance rate (the32

number of exact simulations accepted over the number of exact simulations run; first-stage simulations are33

not taken into account as their cost is assumed to be negligible). Both Efendiev et al. (2006) and Christen34

and Fox (2005) have shown that, under certain hypotheses, the solution converges to the posterior distribu-35

tion. Efendiev et al. (2005, 2006); Dostert et al. (2008) have applied this methodology in the context of flow36

in porous media. As first-stage solver they have used a multiscale method, which combines a global coarse37

solution with a number of local fine solutions. If the coarse solution is accepted, local solutions are employed38

to reconstruct a finer solution on the original grid, based on which the second-stage evaluation is performed.39

While this allows for the necessary convergence assumptions to be satisfied (namely, smoothness and strong40

correlation), the computational gain of the two-stage set-up is limited. Indeed, the reconstruction step41
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(necessary for the second-stage evaluation) is cheap with respect to the cost of constructing and solving the42

coarse problem used at the first-stage. Other applications of two-stage MCMC have used polynomial chaos43

response surfaces (Zeng, 2012; Elsheikh et al., 2014; Laloy, 2013) as first-stage model. The computational44

gain is much higher, despite some additional cost required to set up the polynomial chaos model.45

46

The use of inexact solvers requires designing error models to account for the discrepancy between ap-47

proximate and exact responses. In the context of multiscale approaches, Kennedy and O’Hagan (2001)48

used a Gaussian-process method to represent model inadequacy. O’Sullivan and Christie (2005, 2006) em-49

ployed error modeling to reduce the bias in history matching resulting from the use of upscaled reservoir50

models. Efendiev et al. (2009) proposed non-linear error models in the context of ensemble-level upscaling.51

Scheidt et al. (2010), for instance, used a distance metric to account for upscaling errors in ensemble history52

matching. More specifically to two-stage MCMC, Cui et al. (2011) proposed to adapt the error model at53

each iteration: they used information on the discrepancy between the exact and approximate models at54

the previous iteration to correct the result of the successive iteration. However, this approach works and55

provides a good correction only for problems that are smooth enough.56

57

Here, we propose a different strategy that combines a two-stage MCMC set-up with a methodology58

recently presented by Josset et al. (2015). We use an approximate model (proxy) that assumes a very sim-59

plified physics with respect to the problem under consideration, and we construct an error model to account60

for the approximation errors. The error model is purpose oriented as it is tailored directly for the quantities61

of interest following an approach typical of machine learning. For a subset of realizations, the responses of62

both the proxy and the exact models are evaluated and the mapping between the two is learned by means63

of tools from functional data analysis (Ramsay, 2006; Ramsay et al., 2009). Josset et al. (2015) applied this64

methodology to propagate the uncertainty on the permeability field to the concentration of a pollutant in65

the observational well. Here, the methodology is tested on a complex problem of Bayesian inference, the66

Imperial College Fault (ICF) test case, which is a benchmark problem first published by Tavassoli et al.67

(2004) and repeatedly explored in many studies (e.g., Demyanov et al. 2010; Mohamed et al. 2011, 2012).68

69

The paper is structured as follows: we first describe the ICF test case and review the literature about the70

calibration of this model (Section 2). Next, we present the novel methodology, which uses a purpose-oriented71

error model within a two-stage MCMC set-up (Section 3). Then, we specifically construct and evaluate the72

error-model approach for the ICF problem (Section 4.1). Finally, we compare and discuss the results of the73

two-stage MCMC with the classic Metropolis-Hastings algorithm (Section 4.2).74
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Figure 1: The permeability map of the ICF test case and the observed data used for the history matching. As prior, a

uniform distribution is attributed to each parameter, i.e., P (h) = U[0,60] for the fault throw h, P (Khigh) = U[100,200] for the

permeability of the most permeable facies Khigh, and P (Klow) = U[0,50] for the permeability of the least permeable facies

Klow.

2. The Imperial College Fault (ICF) test case75

The ICF test case was first published by Tavassoli et al. (2004, 2005) as a simple yet challenging76

example of history matching in petroleum engineering applications. Since then, ICF has proved a difficult77

test for optimization techniques due to numerous local minima. The ICF model consists of a layered reservoir78

disrupted by a fault (figure 1), in which water is injected at the left-hand boundary while the displaced fluids79

are recovered at the right-hand boundary. The layer-cake model of the reservoir permeability is described80

by three parameters: the conductivity of the high permeability facies, Khigh, the conductivity of the low81

permeability facies, Klow, and the fault throw, h. The true parameters are Khigh = 131.6 md, Klow = 1.382

md and h = 10.4 ft. A uniform distribution U[a,b] (where a and b are the bounds of the distribution) is83

attributed to each parameter as prior.84

The calibration of the parameters to the observational data (oil and water production rates) appeared to85

be a challenging history matching problem. Due to the nature of the permeability field, several parameter86

combinations, corresponding to narrow regions of the parameter space, can reproduce the observational data87

with satisfactory accuracy. Between these regions of good quality, the misfit is very high due to the very88

irregular response surface that results from the strong fluctuations of the connectivity across the fault when89

h is varied. We refer to figure 9 for a 1D cross-section cut of the complex misfit surface that characterizes90
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this problem.91

92

Many optimizations and inference techniques have been applied to the ICF problem over the years. The93

first studies of this test case (Tavassoli et al., 2004, 2005; Carter et al., 2006) have employed a pure Monte94

Carlo approach, which required nearly 160’000 samples of the parameter space. Christie et al. (2006) demon-95

strated that a good representation of the uncertainty can be inferred from a few thousand samples using96

Genetic Algorithm Important Sampling with artificial neural network proxy. More recently, Demyanov et al.97

(2010) have used Support Vector Machines (SVM) with a small number of flow simulations (about 700); and98

Mohamed et al. (2011) have employed Particle Swarm Optimization (PSO) using 2050 flow simulations. A99

Bayesian inference approach close to two-stage MCMC has been presented by Mohamed et al. (2012), who100

used a population MCMC method with 45’000 simulations. We refer to Mohamed et al. (2011) for a more101

detailed review of the literature on the ICF problem.102

103

3. Methodology104

Our objective is to sample the geostatistical parameter space conditioned on some flow observations.105

Using Bayes theorem, this can be written as106

P (k|d) ∝ P (d|k)P (k) (1)

where P (k|d) the is probability of the realization with the parameters, k, conditioned on the data, d, and107

P (d|k) the likelihood distribution. The most common technique to tackle this problem uses the Metropolis-108

Hasting (MH) algorithm (Robert and Casella, 2004), which is very demanding in terms of CPU time. We109

propose to employ a two-stage MCMC algorithm in which the first stage allows us to reject samples from110

low likelihood regions of the parameter space based only on the responses of an approximate model. The111

latter is constructed by combining a proxy model with an error model that permits the reduction of the112

proxy bias. This approach is illustrated in figure 2.113

3.1. Error modeling based on Functional Principal Component Analysis (FPCA)114

The number of flow simulations required for MCMC or two-stage MCMC can become prohibitive in115

case of very complex physical processes that requires performing computationally expensive simulations. An116

inexpensive proxy that relies on a very simplified physical description can be used to reduce the computation117

cost. However, direct inference from the proxy response is extremely dangerous, because the proxy model118

neglects important physical couplings inherent to the system, which likely bias the predictions. However, if119

we are able to devise an effective model of the errors arising from the use of the proxy, we can account for120

the neglected complexity and correct the bias of the prediction.121
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Figure 3: Flowchart of the two-stage MCMC algorithm.
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A purpose-oriented error model can be constructed directly on the quantity of interests by training a122

regression model on a subset of response pairs obtained by evaluating the proxy and the exact model for123

a selected subset of realizations (Josset et al., 2015). The flowchart of the regression-model construction is124

detailed hereafter and illustrated in figure 2.125

3.1.1. Construction of the learning set of curves126

The first step consists in constructing the learning set from pairs of proxy and exact response curves127

corresponding to the same realizations. To obtain a learning sample of N realizations, which is assumed128

representative of most plausible solutions, we use the Latin Hypercube Sampling (Carnell, 2009). Other129

sampling methods (e.g., basic random sampling of the prior or stratified sampling) could be successfully130

employed as long as the various regions of the prior are sampled.131

132

Once the learning realizations are identified, the proxy and the exact solutions are computed to get the133

time-dependent response curves. The functional proxy curves, {xi(t)}i=1,...,N , and functional exact curves,134

{yi(t)}i=1,...,N , are obtained by interpolating the responses produced by the numerical models, which are135

discrete in time, by means of a basis of spline functions.136

137

Notice that a functional representation of the curves is necessary to deal with data acquired with different138

time resolution, as it is always the case when the numerical solvers employ adaptive time stepping techniques.139

The drawback is that a functional full-regression model between continuous curves is difficult to implement140

and requires introducing and fine-tuning additional parameters. To avoid these problems we proceed to a141

functional reduction of the problem dimensionality.142

3.1.2. Functional reduction of the dimensionality143

We reduce the dimension of the response spaces by means of Functional Principal Component Analysis144

(FPCA, Henderson 2006), which is a rather straightforward functional extension of standard PCA. Beside145

the indubitable computational advantages, low-dimensional spaces allow us to visualize the most relevant146

modes that describe data variability and help us to evaluate the suitability of the proxy model for the quanti-147

ties of interest. FPCA is applied separately to the two sets of exact and proxy responses. The dimensionality148

of the response spaces is reduced considering only the first D harmonics, where D is chosen to achieve the149

desired degree of accuracy.150

151

Although FPCA offers an optimal dimensionality reduction with respect to the total mean squared error,152

any rotation of the basis preserves the accuracy. The choice of a proper rotation of the basis might allow153

a better interpretation of the data (Richman, 1986; Ramsay et al., 2009). Therefore, we use the varimax154
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algorithm (Kaiser, 1958) to find an appropriate rotation. As a results, each proxy response is approximated155

by projection on the rotated FPCA basis as156

xi(t) ≈ x̃i(t) = x̄(t) +

D∑
j

bijζj(t), (2)

where x̄(t) is the mean curve, and157

bij =

∫
[x̄(t)− xi(t)]ζj(t)dt (3)

is the projection of the deviation from the mean of the ith proxy curve on the jth rotated harmonic ζj(t).158

Following the same procedure, the N exact responses in the learning set are approximated as159

yi(t) ≈ ỹi(t) = ȳ(t) +

D∑
j

cijηj(t), (4)

where ȳ(t) is the mean exact response, ηj(t) the jth harmonic of the (varimax) rotated orthonormal basis160

{ηj(t)}j=1,...,D, and161

cij =

∫
[yi(t)− ȳ(t)]ηj(t)dt (5)

the score with respect to ηj(t).162

3.1.3. Regression and error model163

The relationships between the two sets of curves in the learning set approximated is investigated by164

considering the first D harmonics, {x̃i(t), ỹi(t)}i=1,...,N . As sketched in figure 4, the goal is to find a165

mapping from the space of proxy responses onto the space of exact responses that allows us to predict the166

exact responses for the realizations that do not belong to the learning set (hence, without actually solving167

the exact model). This is commonly referred to the model’s predictive ability.168

Here, we restrict ourselves to functional linear regression models that minimize the l2-norm of the resid-169

uals170

εi = yi − T̂ (xi) i ∈ [1, . . . , N ], (6)

where T̂ is the estimator on the learning set. Training such a functional linear model in full generality is not171

straightforward, but we can take advantage of the FPCA basis to define a multivariate multiple regression172

problem of the form (Hastie et al., 2009; Fox and Weisberg, 2010; Weisberg, 2014)173

cij = β0j +

D∑
l=1

bilβlj + eij (i, j) ∈ [1, N ]× [1, D], (7)

where βlj are the coefficients of the regression, and eij are the errors, which we assume to be Gaussian with174

variance σ2
j .175
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a) Proxy space b) Exact space 

error model 

Training set 
Proxy responses 
Exact responses 

Figure 4: A statistical model is built on the learning set to relate the coefficients of the elements xi(t) in the proxy space to

the coefficients of the elements yi(t) in the exact-model space. It is used as an error model to predict the exact response from

the proxy response.

A further simplification is obtained by splitting the regression model into D independent problems of176

the form177

c
(j)
i = β

(j)
0 +

D∑
l=1

bilβ
(j)
l + e

(j)
i . (8)

This simplification does not affect the operator estimators, which are identical for the problems in Eqs. 7178

and 8, i.e., β̂jl = β̂
(j)
l . However, confidence bands of the multivariate regression model cannot be directly179

derived from those obtained for the regressions in equation 8, which complicates their derivation (Josset180

et al., 2015).181

3.1.4. Prediction of exact response from the proxy response182

The regression model can be used to predict the exact response of any new realization r for which the183

proxy response x̃r(t) is known. Indeed, the estimator of the linear regression model allows us to predict the184

scores of exact response curve, ĉrj , without solving the exact model. Therefore, solely on the basis of the185

scores of the proxy responses, brl, we can estimate the exact response as186

ŷr(t) = ȳ(t) +

D∑
j=1

ĉrjηj(t), (9)

where187

ĉrj = β̂0j +

D∑
�=1

β̂j�br�, (10)

are the estimates of the exact scores predicted by the error model.188

3.2. Two-stage MCMC189

Two-stage MCMC has been introduced by (Christen and Fox, 2005; Efendiev et al., 2005, 2006) to190

improve the acceptance rate of the Metropolis-Hastings algorithm (MH). For optimal convergence conditions191
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of standard MCMC algorithms it is necessary to tune the random-walk step of the chain in order to obtain192

an acceptance rate between 20% and 50%. As flow simulations are performed at each step to compute193

the likelihood L of the proposed sample φ, the low acceptance rate implies that 50% to 80% of the flow194

simulations are performed on rejected samples and do not contribute to the posterior distribution.195

Moreover, in order to satisfactorily explore the prior space under the constraint of limited computer196

resources, the length of the random-walk step is often increased with the result that the acceptance rate is197

drastically reduced (for instance, an acceptance rate around 10−5 is reported by Efendiev et al. (2005)).198

The goal of two-stage MCMC is to decrease the computational cost by reducing the number of full-physics199

flow simulations that are performed on rejected samples. This is achieved by employing an approximate200

model to identify samples in low likelihood regions that might be rejected and avoid running the exact201

simulator on these samples and at the same time to identify the samples that are more likely to be accepted202

by the exact model. Proposing samples that are more likely to be accepted at the second stage will eventually203

boost the acceptance rate. In other words, the approximate likelihood L̃ of the proposed sample φ is204

estimated by using the approximate model response, ŷφ(t), from which the first-stage acceptance,205

α̃ = min

{
1,

L̃(ŷφ(t))
L̃(ŷθ(t))

}
, (11)

is computed. If the sample is accepted, the response of the exact model, yφ(t), is calculated to compute the206

exact likelihood L(yφ(t)) and the proposal is tested again using a modified acceptance/rejection condition207

α̃ = min

{
1,

L(yφ(t))
L(yθ(t))

L̃(ŷθ(t))
L̃(ŷφ(t))

}
. (12)

A schematic diagram of the two-stage MCMC algorithm is depicted in Figure 3.208

Efendiev et al. (2006) demonstrated that the two-stage MCMC converges to the true posterior distribu-209

tion under two mild assumptions: first, the proposal distribution has to satisfy q(φ, ψ) > 0 for any (φ, ψ) in210

the posterior distribution; second, the support of the exact posterior distribution belongs to the support of211

the approximate distribution (see theorem 3.2 in (Efendiev et al., 2006)).212

The first condition is easily satisfied when a Gaussian random walk is used as proposal distribution:213

a step size sampled from a normal distribution guaranties that q(φ, ψ) > 0 for any (φ, ψ). The second214

condition is met assuming a Gaussian error model for the likelihoods for both proxy, ŷφ, and exact, yφ,215

solutions, i.e.,216

L̃ ∝ exp(−||yobs − ŷφ||2
σ2
app

) and L ∝ exp(−||yobs − yφ||2
σ2
ex

), (13)

respectively. The likelihoods distributions are non-compact, and thus the supports of both posterior distri-217

butions are identical to the one of the prior distribution.218

Numerically, it is probable that the likelihood values are very close to zero, which prevents the chain219

to reach all regions of the parameter space. However, under the condition that the exact and approximate220
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misfits are correlated, Efendiev et al. (2006) have shown that it is possible to choose σapp such that the221

second assumption is verified and that the optimal acceptance rate can be obtained by setting σ2
app to222

σ2
ex/αo, if the correlation can be described by a linear relationship223

||yobs − yφ||2 ≈ α0 · ||yobs − ŷφ||2 + α1. (14)

4. Application to the IC Fault test case224

In this section, we first assess the performance of the functional error model to satisfactorily describe225

the misfit between the proxy and the exact models for the ICF test case. Then, the proxy (corrected by226

the error model) is used as first-stage solver in two-stage MCMC, and the results are compared with a pure227

Metropolis-Hastings approach in order to illustrate the potential of error modeling in the context of Bayesian228

inference.229

4.1. Error model230

The objective of functional error modeling is to correct the proxy response to estimate an unbiased exact231

response. The first step is to choose an appropriate proxy that is sufficiently informative of the behavior of232

the exact model but considerably cheaper in terms of computational cost.233

4.1.1. Choice of proxy model234

Here, we are interested in sampling the space of the parameters that describe the permeability field, while235

the properties of the fluids and the physical processes are known. We consider the simultaneous flow of two236

immiscible liquids that form two separate phases (oil and water) and we are interested in the production237

rates of both fluids. Under these conditions, the fluid transport is governed by a set of coupled nonlinear238

equations, which complicates the numerical solution of the equations. The high degree of coupling between239

the pressure and the saturation equations renders the transport problem computationally expensive.240

A natural choice of proxy is to neglect the nonlinearity of the permeabilities and the two-way coupling241

between the equations by solving a simple tracer transport problem. This means using a single phase solver242

as a proxy for a two-phase solver. Further simplifications are introduced by neglecting capillarity and gravity,243

so that the pressure equation has to be solved only once per proxy simulation.244

4.1.2. Construction of the learning set245

The construction of the learning set requires making choices on the method of selection and on the246

size of the set. Here, we train the error model on a subset of 100 realizations selected by performing a247

Latin hypercube sampling in the 3D parameter space. The learning set consists of two pairs of curves par248

realization: water and oil production rates obtained with the proxy and the exact models. Comparison with249

other sampling techniques and learning-set sizes has indicated that the effects of these variables on the error250
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model is limited. Additional tests (not reported here) have suggested that 20 realizations might be sufficient251

to obtain a satisfactory error model, but with such few realizations the performances would vary greatly252

from one learning set to another. The choice of a subset of 100 realizations has been made for the sake of253

robustness. The proxy and exact curves in the learning set are plotted in figure 5.a.254
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Figure 5: a) The learning set of curves is constructed by running both proxy (top) and exact (bottom) models on the sampled

geostatistical realizations. The production rates of oil (full lines) and water (dashed lines) are plotted in bbl/day in function of

time. b) The three first rotated functional principal components (harmonics) extracted from the learning set are represented

here for the two sets of pairs of production rate curves. The solid lines are the mean curves and the dotted lines represent

the variability around the mean described by the corresponding harmonic. The legends report the percentage of the total

variability, which is explained by each harmonic.

4.1.3. Dimensionality reduction and interpretation of the information255

For each realization in the learning set we have four subspaces of response curves: the spaces of the proxy256

and exact production rates of water and oil. For each subspace, we subtract the average response from each257

response curve and then apply FPCA to obtain a basis of the subspace. To reduce the dimensionality of the258

problem we truncate the basis by considering only the first three functional principal components, which259

capture more than 96% of the variability within the learning set.260
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By close inspection of the rotated harmonics (figure 5.b), we notice that the first principal component261

captures the variability of the initial plateau of oil production rate (i.e. prior to the water breakthrough,262

figure 5.a bottom). The second harmonic of the proxy and the third harmonic of the exact model describe263

the production drop after water breakthrough. The third harmonic of the proxy and the second harmonic of264

the exact model capture the remaining late-time variability. A similar analysis can be done for the harmonics265

of the water production rate curves. The first harmonics (both of the exact and proxy models) explain the266

variability at the end of the simulation time, the second harmonics capture small variabilities at the water267

breakthrough time, and the third harmonics describe most of the variabilities occurring at intermediate time268

between the water breakthrough and the end of the simulation.269

4.1.4. Evaluation of the informativeness of the proxy and self-consistency of the error model270

After the dimensionality reduction, each functional space has a six-dimensional basis (three harmonics271

for the water production and three harmonics for the oil production). In addition to decreasing the compu-272

tational cost of constructing the error model, the reduction to six dimensions facilitates a visual inspection273

of the relationships between proxy and exact curves, providing insight into whether the proxy response is274

informative of the full-physics response.275

Figure 6.a) plots the one-to-one relationship between the scores (i.e., the projections on the harmonics)276

in the proxy space versus the scores in the exact space. A clear linear relationship can be observed in the277

upper-left plot, which illustrates the relationship between the first harmonics of the oil production. This278

indicates that the height of the plateau of the exact oil-production curves is well explained by the proxy279

plateau. On the other hand, the second harmonic of the proxy oil curves (plots in the second column)280

does not display a simple relationship with any harmonic of the exact curves. Also, the second and third281

harmonics of the exact oil-production curves do not display a simple relationship with any of the proxy282

harmonics (second and third rows). This indicates that the proxy is not very informative of the features283

described by the second and third harmonics of the exact oil curves and one can expect that the error model284

will be less accurate in predicting those harmonics.285

The error model maps the space of the proxy responses onto the space of the exact responses and it is286

constructed by solving six independent linear regression models as explained in section 3.1.3. Figure 6.b)287

shows the correlation between exact scores and the scores predicted by the error model (in the space of288

the exact curves) for all the 100 realizations of the learning set. As expected, the projection on the first289

oil-production harmonic, which describes the plateau at early time, is well predicted with an R2 value of290

0.91. The projections on the second and third harmonics are predicted with lower accuracy (R2 = 0.77 and291

0.79, respectively). The water-production scores are rather well predicted with R2 values around 0.9. The292

underestimation of the largest score values for the first and the second harmonics of the water production293

rates (figure 6.b) demonstrates the limitation of the linear model. Indeed, as the proxy curves are always294
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Figure 6: a) Dependency between exact and proxy scores. The scores of the first three harmonics of the exact oil production

rate {ηoi (t)}i=1,2,3 and water production rate {ηwi (t)}i=1,2,3, are plotted as function of the scores of the proxy curves with

respect to the harmonics {ζoi (t)}i=1,2,3 and {ζwi (t)}i=1,2,3. b) Results of the linear model: the exact scores are plotted as

function of the predicted scores; also shown is the identity line. Both plots are helpful to assess whether the linear regression

model is appropriate to describe the relationship between proxy and exact scores, thus the level of informativeness of the

learning set.

positive, not all scores values are possible. In particular, for the second water harmonic (figure 6.a), a clear295

lower bound in the exact scores is displayed and biases the linear regression.296

4.1.5. Evaluation of predictive power of the error model297

For a new point in the parameter space, the corresponding realization is built and the proxy model is run.298

Then, from the output of the proxy model (i.e., the time-discrete recovery rates resulting from the numerical299

simulations), continuous oil and water production rates are reconstructed and projected on the harmonics.300

The proxy scores are used as input of the error model, which allows prediction of the corresponding exact301

scores that are used to reconstruct the two-phase response curves.302

In order to evaluate the performance of the error model, proxy and exact simulations were run for a test303

set of 1000 realizations sampled in the entire parameter space by means of Latin Hyper Cube sampling.304

Figure 7 compares the exact responses with the predicted responses for four points sampled in the parameter305

space. Figure 8.a) plots the error of the prediction as a function of time. The error of the mean of the306

predicted curves is very close to zero for both the oil and the water production rates, which indicates that307

the predicted mean is not biased. The histograms in figure 8.b) show the distribution of the l2 and l∞308

error norms. On average, the maximum error made is around 80bbl/day for oil and 180bbl/day for water,309

respectively.310
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Figure 7: Four predictions that are representative in term of l2 error norms: a) and b) have errors close to the median, c) to

the 25% percentile, and d) to the 75% percentile. The continuous lines are the oil production rates, the dashed lines the water

production rate. The proxy curves (blue) are effectively corrected by the error model and the predicted curves (green) match

well the exact curves (black).
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In the context of Bayesian inference, a correct prediction of the misfit to the observed data is crucial.311

Figure 8.c) illustrates the correlation between the misfit computed from the predicted curves and the misfit312

computed from the exact curves for the observational data shown in figure 1. The overall correlation between313

the exact and predicted misfits is good as indicated by the high correlation coefficients in R2. Therefore,314

the prediction model is expected to be efficient at rejecting realizations. However, for small misfits (i.e., for315

realizations whose responses deviate less from data) the error model is less accurate and tends to overestimate316

the misfit. This explains the lower Kendall correlation coefficient (a measure of rank correlation) with respect317

to the Pearson coefficient (a measure of the degree of linear dependence).318
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Figure 8: The quality of the error model is evaluated on a test set of 1000 new realizations. a) Difference between production

rates predicted with the error model and the exact production rates (grey curves) for the oil (top) and the water (bottom). b)

Histograms of the l2 and l∞ error. c) Exact misfit versus predicted misfit with respect to the observations (the identity line is

plotted in red); the R2, Pearson and Kendall correlation coefficients are reported to indicate the quality of the prediction.

4.2. Two-stage MCMC319

In this section, we first introduce the definition of the misfit necessary to compute the likelihoods in Eq.320

13; then we investigate the fidelity of the response surface predicted by the error model; and finally we show321

that a two-stage MCMC set-up is able to explore a larger portion of the parameter space than MH at the322

same computational cost, which can be a substantial advantage for challenging problems as the ICF test323

case.324
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4.2.1. Definition of the misfit and response surfaces325

Here we employ the definition of the misfit that is commonly used to investigate the ICF test case, i.e.,326

Mj =

36∑
i=1

(Cj
o(ti)− Cref

o (ti))
2

σ2
o(i)

+

36∑
i=27

(Cj
w(t)− Cref

w (t))2

σ2
w(i)

(15)

where σo(i) = 0.03 ·Cref
o (ti) and σw(i) = 0.03 ·Cref

w (ti). The likelihood is then obtained from the misfit as327

L = exp(Mj). Notice that only the water production rate at later time (i ≥ 27) contributes to the misfit.328

The three first original papers on ICF (Tavassoli et al., 2004, 2005; Carter et al., 2006) have employed329

a slightly different definition of the misfit, which considers the contribution of the water production rate at330

any time (i.e., with i = 1 instead of i = 27 in the second summation in Eq. 15). However, this choice leads331

to a very discontinuous response surface, for which hardly any method beside classical Monte Carlo would332

be able to provide a reasonable solution. The modified misfit function defined in equation 15 has been in-333

troduced to make the problem more tractable and is commonly used in all investigations of the ICF test case.334

335

4.2.2. Comparison of the response surfaces336

To further assess the performance of the error model, figure 9 compares the 1D response surface of the337

misfit of both the exact model and the prediction given by the error model, as a function of the fault-throw338

value. The response surface of the exact model exhibits several local minima separated by large misfit339

regions. This situation is particularly challenging for any MCMC approach because many realizations are340

required to cross large misfit regions with small random-walk steps.341

The predicted response surface (which provides the basis of the first-stage rejection decision) is in ex-342

cellent agreement with the exact response surface for h > 48ft. For a fault throw between 8 and 48ft, the343

discrepancies between the two curves are more important, but the main features of the curves are repro-344

duced. We can expect that the low misfit values of the predicted response curve will be able to guide the345

chain into this region. For values between 0 and 8 feet, the misfit is greatly overestimated but the shape of346

the curve is reproduced. If inference is made only based on the prediction model, the minimum around 7ft347

would not be identified. However, in a two-stage set-up the relative values of the misfit are more relevant348

than the absolute values.349

An error model that predicts a response surface that roughly preserves the shape of the exact surface350

may be sufficient to drive the chain to minimum misfit regions at a lower computational cost than it would351

be possible with the exact model alone. Sharp misfit contrasts, as the one observed around 8ft, might impair352

the mobility of the chain, preventing the exploration of the entire parameter space. Note, however, that in353

multidimensional spaces (e.g., in the full 3D parameter space of the ICF test case) sharp contrast might be354

less problematic than in 1D, because the higher dimension might allow the chain to bypass the misfit peak.355
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Figure 9: The 1D response surface of the ICF problem for the misfit definition given in equation 15. Khigh and Klow are set

to the reference values, while the fault throw varies between 0 and 60 feet. Shown are the response surfaces obtained from the

exact model (black), from the responses predicted by the error model (green), and from the proxy curves alone (blue).

4.2.3. MCMC results356

In a MCMC set-up the choice of proposal distribution is crucial. To obtain optimal convergence of the357

chain, the acceptance rate should be in the range between 20% and 50% (see Sec. 3.2). This is achieved by358

tuning the standard deviation of the random walk, which is defined as359

h(i+1) = h(i) + sh · δh(i), δh ∼ N (0, σ2)

K
(i+1)
h = K

(i)
h + sKh

· δKh

(i), δKh
∼ N (0, σ2)

K
(i+1)
l = K

(i)
l + sKl

· δKl

(i), δKl
∼ N (0, σ2) (16)

where σ is the standard deviation of the random walk; and sh, sKh
, and sKl

are the scaling factors ensuring360

that each prior is visited at the same rate. To determine the standard deviation that corresponds to the361

optimal acceptance rate for Metropolis-Hastings algorithm we have launched several chains of 1’000 iterations362

with different standard deviations, and found an optimal value σ = 5 · 10−3.363

First, we compare three MH chains with three two-stage MCMC chains. All chains are launched with the364

optimal value σ = 5 · 10−3 and have a length of 10’000 iterations. The statistics of the chains are reported365

in table 1. A representative example of chain is plotted for each of the two methods in figure 10 (first and366

fourth columns). The acceptance rate of MH is approximately in the optimal interval, ranging from 14%367

to 36%, whereas for two-stage MCMC we obtain a slightly suboptimal acceptance rate, which ranges from368

8% to 23%. In all cases the chains have been able to explore only a limited portion of the parameter space,369

despite a length of 10’000 iterations.370

In order to enlarge the portion of the parameter space that is explored, we multiply the standard deviation371
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of the random walk by a factor 5 (σ = 1 · 10−2) and 10 (σ = 5 · 10−2), we launch again three chains for372

both values of σ. The length of the MH chains remains fixed to 10’000 iterations, whereas the length of the373

two-stage MCMC chains is chosen to approximately match the computational cost of the MH chains. (This374

is done assuming that the computational gain of the proxy with respect to the exact model is equal to the375

number of time steps per simulation, which is about 43). The statistics of MH and two-stage MCMC chains376

with the modified parameters are reported in table 1, and two examples of chains are shown in figure 10.377

The MH chains acceptance rate drops from an average 23% for σ = 5 · 10−3 to 11% and 1% for σ = 1 · 10−2
378

and σ = 5 · 10−2, respectively.379

In addition to the fact that these values are not optimal for convergence, the low acceptance rate implies380

that many of the full-physics simulations are run without providing any information gain, thus wasting com-381

putational resources. One of the main results of the work is that, at approximately the same computational382

cost, the two-stage MCMC set-up allows us to increase the acceptance rate by a factor 1.5 to 4 (the average383

acceptance is 16% and 4.5% for σ = 1 · 10−2 and σ = 5 · 10−2, respectively, see table 1). Moreover, as the384

proxy model is much cheaper than the exact model, two-stage MCMC chains reach lenghts of about 15’000385

and 30’000 iterations (which corresponds to an increase in length of a factor 1.5 to 3) and allows a larger386

portion of the parameter space to be sampled.387

388

While those results are very promising, none of the two-stage MCMC chains visited the reference point.389

The reference point was visited only by one of the MH chains, which was randomly initialized very close.390

Overall, this test case remains very challenging for single chain MCMC set-up and multiple chains solutions391

(Mohamed et al., 2012) should be considered.392

random number of number of accepted simulations acceptance

walk iterations 1st stage 2nd stage rate

σ C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 mean

Metropolis-Hasting

5 · 10−3 10’000 10’000 10’000 1’631 3’247 1’291 18.1% 36.1% 14.3% 22.8%

1 · 10−2 10’000 10’000 10’000 1’683 755 628 18.7% 8.4% 7.0% 11.4%

5 · 10−2 10’000 10’000 10’000 179 65 48 2.0% 0.7% 0.5% 1.1%

Two-stage MCMC

5 · 10−3 10’000 10’000 10’000 4’760 5’299 176 367 789 41 7.7% 14.9% 23.3% 15.3%

1 · 10−2 14’372 14’815 31’738 9’666 9’656 7’820 2’060 2’075 331 23.3% 21.5% 4.2% 16.3%

5 · 10−2 28’337 31’777 27’108 9’341 9’261 9’370 393 518 337 4.2% 5.6% 3.6% 4.5%

Table 1: Results of Metropolis-Hasting and two-stage MCMC algorithms for three chains (C1, C2, and C3): the standard

deviation of the random walk, σ; number of iterations (i.e. total length of the chain); the number of accepted simulations at

the first-stage; the number of accepted simulations at the second-stage; and the acceptance rate (i.e., the ratio of accepted

exact simulations to the number of exact simulations that have been performed).
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Figure 10: The chains are represented by their movements in the parameter space (vertically h, Khigh and Klow) in function

of iterations. For each of the three values of the random walk step length σ, one Metropolis-Hasting chain and one two-stage

MCMC are plotted. The acceptance rates indicated in the legends are improved for the two-stage MCMC chains when σ is

increased, allowing for much longer chains at the same computational cost.

5. Conclusions393

We have investigated the potential of using error models in the context of Bayesian inference. The error394

model is used to map a proxy model response into the response of the exact model, which can be predicted395

without actually solving the exact model, thus reducing the computational costs. This methodology was396

applied to the ICF benchmark test case, which is geometrically simple yet very challenging. The ICF prob-397

lem is particularly arduous for MCMC methods, because the very intricate surface response, characterized398

by sharp misfit contrasts, makes it very difficult, if not impossible, to explore the whole space by a single399

chain at tractable computational costs.400

401

We have compared the performance of classic Metropolis-Hasting chains with a method that couples our402

error model with a two-stage MCMC algorithm. The use of the error model has increased the acceptance403

rate of the realizations for which the exact model was run (from 11% to 16% and 1% to 4% for σ = 1 · 10−2
404

and σ = 5 · 10−2, respectively). This has allowed the chain length to be increased up to a factor three with405

respect to MH at comparable computational costs, potentially permitting us to explore a larger portion of406

the response space. Based on the results of the few chains reported, it remains unclear whether the decreased407

computational costs might be sufficient to guide the chain out of areas of local minima, in which MCMC408

chains remain systematically trapped regardless of the random walk standard deviation σ that is employed.409

Most likely, this problem will not be solved for irregular response surfaces as the one of the ICF test case.410
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However, the use of an error model can be greatly beneficial also for multiple-chain algorithms that can be411

set up to overcome this issue.412

413

We have demonstrated that the relationship trained on the learning set is quite effective in predicting414

the exact responses, as it is indicated by the correlation indices and by the linear relationships between the415

exact and predicted misfits. The error model has been very successful to reject bad samples, but slightly416

less informative to predict the response of the best samples (i.e., for realizations in regions of low misfit).417

Notice that the use of the proxy without error model would be very inefficient as first-stage selection418

criterion. This is evident from simple inspection of the proxy misfit in figure 9: the regions of good-quality419

parameters cannot be identified on the basis of the proxy misfit alone. The error model is thus critical to guide420

the simulations in the correct regions of the parameter space, avoiding that the two-stage MCMC approach421

results in a counter-productive increase of simulations in poor quality regions, thus heavily increasing the422

computational effort.423

The question that arises naturally is whether the quality of the proxy is relevant in presence of such an424

effective error model. To investigate this, we used the input parameters of the model (i.e., the permeabilities425

of the two facies and the fault throw) as proxy, that is, we directly constructed a regression model between426

the input parameters and the scores of the exact responses on a learning set. In this case, we have observed a427

total absence of relationship. This demonstrates that, despite its simplicity, the single-phase proxy provides428

important information on the connectivity that results from the combined effect of the parameters.429

430

Several improvements can be devised within the framework proposed here. In particular, more complex431

(nonlinear) regression models could be considered (e.g., by using of kernels) and appropriate data transfor-432

mations could be employed to avoid unphysical results after correction of the proxy responses, as proposed in433

Josset and Lunati (2013). In terms of computational cost, a major improvement could be achieved by taking434

advantage of all the simulations performed along the MCMC chains and iteratively updating the error model435

as soon as new samples are evaluated (Cui et al., 2011). This option, however, would require overcoming the436

problem that the likelihood is modified and convergence is not guaranteed. Several alternative approaches437

to MCMC could also be considered jointly with the error model, e.g., the Nested Sampling (Skilling, 2006;438

Elsheikh et al., 2014) in which resampling is performed at the prior level. In such approaches, the error439

model would be useful to reject sampled points and the Nested Sampling would avoid entrapments in the440

inherent structure of the ICF while allowing an iterative update of the regression model.441

21



Acknowledgments442

Many thanks are due to Pavel Tomin for his help with the flow solver, and to Imperial College and prof.443

J. Carter for providing the ICF data set. This project is supported by the Swiss National Science Foundation444

as a part of the ENSEMBLE project (Sinergia Grant No. CRSI22-132249/1) and partly by Uncertainty JIP445

at Heriot-Watt. The authors would like to thank the Herbette Foundation, who supported V. Demyanov’s446

exchange with the University of Lausanne. Ivan Lunati is Swiss National Science Foundation (SNSF)447

Professor at the University of Lausanne (SNSF grant numbers PP00P2-123419/1 and PP00P2-144922/1).448

References449

Carnell R. lhs: Latin hypercube samples. R package version 0.5, 2009.450

Carter J.N., P.J. Ballester, Z. Tavassoli, and P.R. King. Our calibrated model has poor predictive value: An example from the451

petroleum industry. Reliability Engineering & System Safety, 91(10):1373–1381, 2006.452

Christen J.A., and C. Fox. MCMC using an approximation. Journal of Computational and Graphical statistics, 14(4):795–810,453

2005.454

Christie M., V. Demyanov, and D. Erbas. Uncertainty quantification for porous media flows. Journal of Computational Physics455

217.1: 143-158, 2006.456

Cui T., C. Fox, and M.J. O’Sullivan. Adaptive Error Modelling in MCMC Sampling for Large Scale Inverse Problems. Report,457

Univeristy of Auckland, Faculty of Engineering, 2011.458

Demyanov V., A. Pozdnoukhov, M. Christie, and M. Kanevski. Detection of optimal models in parameter space with support459

vector machines. geoENV VII–Geostatistics for Environmental Applications, pages 345–358. Springer, 2010.460

Dostert P., Y. Efendiev, and T.Y. Hou. Multiscale finite element methods for stochastic porous media flow equations and461

application to uncertainty quantification. Computer Methods in Applied Mechanics and Engineering, 197(43):3445–3455,462

2008.463

Efendiev Y., A. Datta-Gupta, V. Ginting, X. Ma, and B. Mallick. An efficient two-stage Markov chain Monte Carlo method464

for dynamic data integration. Water Resources Research, 41(12), 2005.465

Efendiev Y., T. Hou, and W. Luo. Preconditioning Markov chain Monte Carlo simulations using coarse-scale models. SIAM466

Journal on Scientific Computing, 28(2):776–803, 2006.467

Efendiev Y., A. Datta-Gupta, X. Ma and B. Mallick. Efficient sampling techniques for uncertainty quantification in history468

matching using nonlinear error models and ensemble level upscaling techniques. Water Resources Research 45.11, 2009.469

Elsheikh A.H., M.D. Jackson, and T.C. Laforce. Bayesian reservoir history matching considering model and parameter uncer-470

tainties. Mathematical Geosciences, 44(5):515–543, 2012.471

Elsheikh A.H., I. Hoteit, and M.F. Wheeler. Efficient Bayesian inference of subsurface flow models using nested sampling and472

sparse polynomial chaos surrogates. Computer Methods in Applied Mechanics and Engineering, 269:515–537, 2014.473

Fox J., and H.S. Weisberg. An R companion to applied regression. Sage Publications, 2010.474

Hastie T., R. Tibshirani, and J. Friedman. The elements of statistical learning, 2009.475

Henderson B. Exploring between site differences in water quality trends: a functional data analysis approach. Environmetrics,476

17(1):65–80, 2006.477

Jenny P., S.H. Lee, and H. Tchelepi. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J.478

Comp. Phys, 187(1):47–67, 2003.479

Josset L., and I. Lunati. Local and global error models to improve uncertainty quantification Mathematical Geosciences, pp.480

1–20, 2013.481

22



Josset L., D. Ginsbourger and I. Lunati. Functional error modeling for uncertainty quantification in hydrogeology. Water482

Resour. Res., 51, 10501068, 2015.483

Kaiser H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3):187–200, 1958.484

Kennedy M.C., and A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B485

(Statistical Methodology) 63.3: 425-464, 2001.486

Laloy E., B. Rogiers, J.A. Vrugt, D. Mallants, and D. Jacques. Efficient posterior exploration of a high-dimensional groundwater487

model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion. Water Resources Research,488

49(5):2664–2682, 2013.489

Mohamed L., M.A. Christie, V. Demyanov, et al. History matching and uncertainty quantification: multiobjective particle490

swarm optimisation approach. SPE EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum Engineers,491

2011.492

Mohamed L., B. Calderhead, M. Filippone, M. Christie, and M. Girolami. Population MCMC methods for history matching493

and uncertainty quantification. Computational Geosciences, 16(2):423–436, 2012.494

OSullivan A.E., and M.A. Christie. Solution error models: a new approach for coarse grid history matching. Paper SPE,495

2005.496

OSullivan A.E., and M.A. Christie. Error models for reducing history match bias. Computational Geosciences 10.4: 405-405,497

2006.498

Ramsay J.O., G. Hooker, and S. Graves. Functional data analysis with R and MATLAB. Springer, 2009.499

Ramsay J.O. Functional data analysis. Wiley Online Library, 2006.500

Richman M.B. Rotation of principal components. Journal of climatology, 6(3):293–335, 1986.501

Robert C.P., and G. Casella. Monte Carlo statistical methods. Citeseer volume 319, 2004.502

Roberts G.O., A. Gelman and W.R. Gilks. Weak convergence and optimal scaling of random walk Metropolis algorithms The503

annals of applied probability, 1997.504

Scheidt C., J. Caers, Y. Chen and L. Durlofsky. Rapid Construction of Ensembles of High-resolution Reservoir Models505

Constrained to Production Data 12th European Conference on the Mathematics of Oil Recovery, 2010.506

Skilling, J. Nested sampling for general Bayesian computation Bayesian Analysis 1.4, 833-859, 2006.507

Tavassoli Z., J.N. Carter, and P.R. King. An analysis of history matching errors. Computational Geosciences, 9(2-3):99–123,508

2005.509

Tavassoli Z., J.N. Carter, P.R. King, et al. Errors in history matching. SPE Journal, 9(03):352–361, 2004.510

Weisberg S. Applied linear regression. John Wiley & Sons, 2014.511

Zeng L., L. Shi, D. Zhang, and L. Wu. A sparse grid based Bayesian method for contaminant source identification. Advances512

in Water Resources, 37:1–9, 2012.513

23




