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A polyatomic scattering kernel phenomenologically presented in a previous paper is
derived from an integral operator formulation. The five parameters involved in the
scattering kernel expression are shown to be equal to the accommodation coeffi-
cients of various fluxes at the wall, namely, the fluxes of the three components of
the momentum and the fluxes of the rotational and vibrational energies of mol-
ecules. Under its present form the model is especially convenient for the diatomic
molecules. ©2005 American Institute of Physics.fDOI: 10.1063/1.1904703g

I. INTRODUCTION

During the last 20 years a need of new knowledge appeared concerning the interaction of
gases with solid surfaces in order to formulate realistic boundary conditions in rarefied gas
dynamics.1–4 In spatial research the challenge was especially to predict correct heat fluxes and
drag forces on engines reentering in planetary atmospheres. With the recent developments of the
gaseous microflows, where the flow fields are characterized by moderately high Knudsen numbers,
this topic acquired still more interest. This paper is devoted to the derivation of realistic laws
linking the distribution functions of the reflected and the incoming particles at the wall. As it is
well known such laws may be used as boundary conditions in order to resolve the Boltzmann
equation. Moreover, in the slip regime, these laws also allow us to obtain more accurate velocity
slip and temperature jumps at the wall, so the validity domain of the continuum equations is
extended up to higher Knudsen numbers when these equations are associated to the correct bound-
ary conditions.

In a previous paper5 we developed a model of a scattering kernel for unstructured molecules
using an integral operator formulation as illustrated by Cercignani.6,7 At the end of this previous
work the proposed scattering kernel was extended to the case of molecules with internal structure
on the basis of brief phenomenological arguments. In the present paper, the integral operator
formulation is generalized to a polyatomic gas, then the polyatomic scattering kernel is method-
ologically derived from the study of an eigenvalue equation and the meaning of the five param-
eters introduced in the kernel is clarified.

In Sec. II we deduced the polyatomic scattering kernel, investigating the associated integral
operator. In its fully developed form the scattering kernel appears as a linear combination of 32
partial kernels declining all the possible associations of, respectively, diffusive and specular pro-
cessessaccording to three directionsd and elastic or inelastic processessfor the internal modesd.
The 32 coefficients of this combination are the weight of the various accommodation processes
and they depend on five basic parameters. These five parameters are shown to be, respectively,
equal to the accommodation coefficients of the momentum components and of the internal ener-
gies. In Sec. III, we present a general comment on this method of integral operator in the frame-
work of scattering kernel derivation.
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II. POLYATOMIC SCATTERING KERNEL DERIVATION

We consider the problem of finding the scattering kernel,

BsV8,Eir8,Eiv8,gir8,V,Eir ,Eiv,gird,

governing the reflection of polyatomic molecules at the wall.V8 is the velocity of the impinging
gas particle referred to the wall,V8=sVx8 ,Vy8 ,Vz8dP hV8=Vx8ÃVy8ÃVz8=R−ÃRÃRj and V the
velocity of the reflected one referred to the wall,V=sVx,Vy,VzdP hV=VxÃVyÃVz

=R+ÃRÃRj. These velocities reduce to the peculiar velocities when the slip velocity at the wall
is neglected.VR is defined asVR=s−Vx,Vy,Vzd, andsx,y,zd are the three spatial coordinates with
x the normal axis to the wall oriented from the wall towards the gas.Eir8 andEiv8 are, respectively,
the rotational energy and the vibrational energy of an incident particle at the wall. SimilarlyEir

andEiv are, respectively, the rotational energy and the vibrational energy of a reflected particle at
the wall. Then the subscriptsir and iv are the quantum numbers related to the internal energy of
a particle, hence they are integers;gir is the weight of the rotational degeneracy and will be taken
here equal tos2ir +1d. The kernelB, which is the density of probability that a molecule in a state
sV8 ,Eir8 ,Eiv8d hitting the wall at any pointX of the wall is reflected at the same point in a state
sV,Eir ,Eivd, must satisfy the following conditions detailed in Ref. 5:1–3 the non-negativity,

BsV8,Eir8,Eiv8,gir8,V,Eir ,Eiv,gird ù 0, s1d

the normalization,

o
ir ,iv

E
V

BsV8,Eir8,Eiv8,gir8,V,Eir ,Eiv,girddV = 1, s2d

and the reciprocity relation,

uVx8ue
−iV8i2/Cw

2
e−«ir 8e−«iv8gir8BsV8,Eir8,Eiv8,V,Eir ,Eivd

= Vxe
−iVi2/Cw

2
e−«ire−«ivgirBs− V,Eir ,Eiv,− V8,Eir8,Eiv8d, s3d

where

«ir =
Eir

kTw
, «iv =

Eiv

kTw
s4d

with k the Boltzmann constant andTw the wall temperature.

A. Analytical derivation from integral operator

Let us write the transformation

KsV,Eir ,Eiv,gir ,V8,Eir8,Eiv8,gir8d = fuVx8uf0sV8,Eir8,Eiv8dg
1/2fuVxuf0sV,Eir ,Eivdg−1/2

3BsVR8,Eir8,Eiv8,gir8,V,Eir ,Eiv,gird, s5d

wheref0sV,Eir ,Eivd is the local equilibrium distribution function at the temperatureTw of the wall,
defined by

f0sV,Eir ,Eivd =
n

sCw
Îpd3

e−iVi2/Cw
2 gire

−«ire−«iv

QrQv
s6d

with
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Qr = o
ir

gire
−«ir, Qv = o

iv
e−«iv, Cw

2 =
2kTw

m
. s7d

Since f0 is a known function the problem of findingB is equivalent to findingK. The normaliza-
tion condition and the non-negativity conditions onB imply obviously the same conditions onK.

Note Fr the set of the rotational energy statesEir , andFv the set of the vibrational energy
statesEiv. Consider the five elementary Hilbert spaces of statesL2sVkdk=x,y,z, L2sFrd, andL2sFvd of
square summable functions with their corresponding usual scalar product

kwk1,wk2lk =E
Vk

wk1sVdwk2sVddV for all wk1,wk2 P L2sVkd, k = x,y,z,

kwr1,wr2lr = o
ir

wr1sEirdwr2sEird for all wr1,wr2 P L2sFrd,

kwv1,wv2lv = o
iv

wv1sEivdwv2sEivd for all wv1,wv2 P L2sFvd.

Consider the tensor product£=L2sVxd ^ L2sVyd ^ L2sVzd ^ L2sFrd ^ L2sFvd of the five Hilbert
spaces of states. Let us remark that this tensor product of Hilbert space£ is dense in the Hilbert
spaceH=L2sVd ^ L2sFrd ^ L2sFvd where the scalar product is defined by

kw1,w2l = o
ir ,iv

E
V

w1sV,Eir ,Eivdw2sV,Eir ,EivddV for all w1,w2 P H. s8d

Instead of studying the problem of the kernelK, we study the linear integral associated
operatorA defined onH by

Ascd = o
ir8,iv8

E
V8

KsV,Eir ,Eiv,gir ,V8,Eir8,Eiv8,gir8dcsV8,Eir8,Eiv8,gir8ddV8. s9d

Assume that the operatorA has a purely discrete spectrum, and assume that its eigenfunctions are
all in the Hilbert space£. The kernelK can be written in the form

K = o
jx,jy,jz,j r,jv=0

`

l jx,jy,jz,j r,jv
c jx

sVxdc jy
sVydc jz

sVzdc j r
sEirdc jv

sEivd

3c jx
sVx8dc jy

sVy8dc jz
sVz8dc j r

sEir8dc jv
sEiv8d, s10d

where the functionsc jx
sVxdc jy

sVydc jz
sVzdc j r

sEirdc jv
sEivd are the eigenfunctions ofA with their

corresponding eigenvaluesl jx,jy,jz,j r,jv
. According to the non-negativity and the normalization con-

ditions, the eigenvalues must satisfyl jx,jy,jz,j r,jv
P f0,1g for all jx, j y, jz, j r , jvPN. Moreover, one

can see that, in the tensor product space£, the scalar products8d equals the scalar product defined
in this tensor product space£ by the product of the five elementary scalar productss8d. So, we can
suppose that the eigenvalues have the forml jx

l jy
l jz

l j r
l jv

and that the set of functions
c jx

sMxd , jxPN, is a function basis of thex corresponding Hilbert spacex=x,y,z,r ,v. Therefore,
the expressions10d can be written as a product of five infinite sums,

K = p
xPhx,y,z,r,vj

o
j=0

`

l jx
c jx

sMxdc jx
sMx8d, Mx = Vx,Vy,Vz,Eir ,Eiv. s11d

Definec0=c0x
c0y

c0z
c0r

c0v
by
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c0x
sVxd =

Î2

Cw
uVxu1/2e−Vx

2/2Cw
2
, c0y

sVyd = sCw
Îpd−1/2e−Vy

2/2Cw
2
,

c0z
sVzd = sCw

Îpd−1/2e−Vz
2/2Cw

2
, c0r

sEird =Îgir

Qr
e−1/2eir, c0v

sEivd =
e−1/2eiv

ÎQv

.

Let us prove thatc0 is an eigenfunction ofA. Mathematically, the normalization condition can be
also written

o
ir8,iv8

E
V8

Bs− V,Eir ,Eiv,gir ,− VR8,Eir8,Eiv8,gir8ddV8 = 1, s12d

from this relations12d, the reciprocity relations3d leads to

o
ir8,iv8

E
V8

uVx8uf0sV8,Eir8,Eiv8dBsVR8,Eir8,Eiv8,gir8,V,Eir ,Eiv,girddV8 = uVxuf0s− V,Eir ,Eivd.

s13d

Using the relation s13d, the calculation of Asc0d gives Asc0d=c0. Consequently
c0=c0x

c0y
c0z

c0r
c0v

is an eigenfunction of the operatorA associated to the eigenvalue 1.
Now, following the five state parameters, let us introduce five parameters related to the

eigenvalues as follows:l0x
=1, and forj Þ0,l jx

=s1−axd for all x=x,y,z,r ,v. The relations11d
becomes

K = p
xPhx,y,z,r,vj

Fc0x
sMxdc0x

sMx8d + s1 − axdo
j=1

`

c jx
sMxdc jx

sMx8dG
which may be written

K = p
xPhx,y,z,r,vj

Faxc0x
sMxdc0x

sMx8d + s1 − axdo
j=1

`

c jx
sMxdc jx

sMx8dG .

Finally, using the following property,

o
j=0

`

c jx
sMxdc jx

sMx8d = dsMx − Mx8d,

whered is the dirac function, it is obtained

K = haxc0x
sVxdc0x

sVx8d + s1 − axddsVx − Vx8djhayc0y
sVydc0y

sVy8d + s1 − ayddsVy − Vy8dj

3hazc0z
sVzdc0z

sVz8d + s1 − azddsVz − Vz8djharc0r
sVrdc0r

sVr8d + s1 − arddsVr − Vr8dj

3havc0v
sVvdc0v

sVv8d + s1 − avddsVv − Vv8dj. s14d

Applying inversely the transformations5d, the operatorB corresponding to the kernelK above
frelationships14dg is
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BsV8,Eir8,Eiv8,gir8,V,Eir ,Eiv,gird = Hs1 − axddsVx8 + Vxd + ax
2Vx

Cw
2 e−Vx

2/Cw
2J

3Hs1 − ayddsVy8 − Vyd + ay
1

Cw
Îp

e−Vy
2/Cw

2J
3Hs1 − ayddsVz8 − Vzd + az

1

Cw
Îp

e−Vz
2/Cw

2J
3Hs1 − arddsEir8 − Eird + ar

gir

Qr
e−eirJ

3Hs1 − avddsEiv8 − Eivd + av
1

Qv
e−eivJ . s15d

In the further calculations, we will note the scattering kernels15d simply as

B = PxPyPzPrPv,

where Px,Py,Pz,Pr ,Pv correspond, respectively, to the five factors of the expressions15d. It
would be seen that these five factors satisfy

E
0

+`

PxdVx
=E

−`

+`

PydVy
=E

−`

+`

PzdVz
= o

ir

Pr = o
iv

Pv = 1. s16d

On the other hand when developing the expressions15d one obtains the kernelB as combination
of 32 elementary scattering kernels where the coefficients are functions of theax.

B. On the coefficient ax

In this section we prove that the five coefficientsax involved in the scattering kernel equal,
respectively, the accommodation coefficients of the various fluxes of the five microscopic state
parameterssMx=Vx,Vy,Vz,Eir ,Eivd.

The accommodation coefficientbx of a physical propertyMx at the wall is defined through the
relation3,4,8

bx =
Fx

− − Fx
+

Fx
− − Fx

e , s17d

whereFx
− is the incoming flux at the wall of the propertyMx ,Fx

+ is the corresponding reflected
flux, and Fx

e is the reflected flux in the hypothetical situation of perfect accommodation to the
wall. These various fluxes are written

Fx
− = o

ir8,iv8
E

V8
muVx8uMx8 f−sV8,Eir8,Eiv8,gir8ddV8, s18d

Fx
+ = o

ir ,iv
E

V

muVxuMxf+sV,Eir ,Eiv,girddV, s19d

wheref− and f+ are, respectively, the incident and the reflected distribution functions linked by the
relation
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uVxuf i
+sV,Eir ,gir ,Eivd = o

ir8,iv8
E

V8
uVx8uf

−sV8,Eir8,gir8,Eiv8dBsV8,Eir8,gir8,Eiv8,V,Eir ,gir ,EivddV8.

s20d

Accounting fors20d, the reflected fluxFx
+ fexpressions19dg may be rewritten as

Fx
+ = o

ir8,iv8
E

V8
muVx8uf

−sV8,Eir8,gir8,Eiv8dFo
ir ,iv

E
V

MxPxPyPzPrPvdVGdV8 s21d

and the reflected flux in the case of perfect accommodation is written as

Fx
e = o

ir8,iv8
E

V8
muVx8uf

−sV8,Eir8,gir8,Eiv8dFo
ir ,iv

E
V

MxBedVGdV8, s22d

whereBe, the perfect accommodation scattering kernel, is defined by

Be =
2gir

QrQvCw
4p

Vxe
−iVi2/Cw

2
e−eire−eiv. s23d

1. Calculation of by and bz

The tangential accommodation coefficient,by is obtained by substitutingMx=Vy in the defi-
nition relations17d. In this case it is easily seen thatFy

e=0. Then accounting for the propertys16d
the expressions21d leads to

Fy
+ = s1 − ayd o

ir8,iv8
E

V8
mVy8uVx8uf

−sV8,Eir8,gir8,Eiv8ddV8.

It results immediately from expressions17d

by = 1 −
Fy

+

Fy
− = ay.

Similarly it is found,

bz = 1 −
Fz

+

Fz
− = az.

2. Calculation of bx

The normal accommodation coefficient is obtained by substitutingMx= uVxu in the definition
s17d. In this case, accounting for the propertys16d and the expressio of the partial operatorPx, it
is obtained

o
ir ,iv

E
V

uVxuPxPyPzPrPvdV = − s1 − axdVx8 + ax
Cw

Îp

2

then the expressions21d yields.

Fx
+ − Fx

− = ax o
ir8,iv8

E
V8

muVx8uf
−sV8,Eir8,Eiv8,gir8dSVx8 +

Cw
Îp

2
DdV8.

The calculation ofFe leads easily to
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Fx
e − Fx

− = o
ir8,iv8

E
V8

muVx8uf
−sV8,Eir8,Eiv8,gir8dSVx8 +

Cw
Îp

2
DdV8.

Consequently we obtained from the relations17d,

bx = ax.

3. Calculation of br and bv

Now substituteMx=girEir in the relations17d. Accounting for the propertys16d it is obtained

o
ir ,iv

E
V

girEirPxPyPzPrPvdV = o
ir

girEirPr = s1 − ardgir8Eir8 + ar

Qr
*

Qr
,

where we have noted

Qr
* = o

ir

gir
2Eire

−«ir .

Then the expression ofF+ leads to

FEir

− − FEir

e = ar o
ir8,iv8

E
V8

muVx8uf
−sV8,Eir8,Eiv8,gir8dSgir8Eir8 −

Qr
*

Qr
DdV8.

Using the expressions23d of Be, we obtain

o
ir ,iv

E
V

girEirBedV =
Qr

*

Qr

and then

FEir

− − FEir

e = o
ir8,iv8

E
V8

muVx8uf
−sV8,Eir8,Eiv8,gir8dSgir8Eir8 −

Qr
*

Qr
DdV8

consequently,

br = ar .

In the same way, substitutingMx=Eiv, it is found

bv = av.

In conclusion, the five parametersax involved in the scattering kernels15d are the accommodation
coefficients corresponding to the five state parameters, namely the three momentum components
and the two internal energy degrees.

III. COMMENT ON THE METHOD USED IN SCATTERING KERNEL DERIVATION

TheH Hilbert space corresponds generally to the Hilbert space used in the framework of the
modelling of the Boltzmann equation in polyatomic gases. Following the quantum mechanic
concept, the wall and then the boundary conditions can be represented by an operator defined on
this H Hilbert space.4,6,8,9Therefore the problem of boundary condition for the Boltzmann equa-
tion can be basically formulated through the integral operators9d, so this formulation is convenient
for solving the linearized Boltzmann equation. The reciprocity relation assumption globally means
that the local equilibrium distribution function must be invariant by the kernelB.8,9 This last
condition, which contains thermodynamic properties is the most important condition. In addition,
it is the only one condition containing physical meaning. This condition leads to the first eigen-
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function representationc0. The other eigenfunctions remain unknown. At this step of the scatter-
ing kernel construction, one should suggest to choose the set of the other eigenfunctions10 or a
finite number of them. But, such a way would be a purely mathematical construction without real
physical justifications.4,7

Then, another way consists to analyze physically the accommodation process. Let us consider
the couple gas/surface characterized by its macroscopic properties. It seems convenient to assume
that for each microscopic propertyp of the molecules, the solid surface behaves in a way perfectly
defined in the accommodation process. In other worlds, in a gas/surface configuration, physically
and geometrically given, for each microscopic property there is a linear relation between the
amount of thep flux accommodated by the wall and the amount of thep incoming flux. So the
accommodation at the wall of any physical microscopic property provides a physical information
through a corresponding accommodation coefficient. Thus, five elementary accommodation coef-
ficients associated to the five basic parameters defining the molecule statessthe three momentum
components, rotational energy, vibrational energyd are naturally introduced completely describing
the molecules behavior in the reflection process. In this way, the present construction of the
polyatomic scattering kernel is based on five accommodation coefficients, and corresponds to an
integral operator partially degenerated involving 32 different eigenvalues in its expansion: from
our point of view, this construction appears physically founded and completely describing the
reflection process.

IV. CONCLUDING REMARKS

We have established a scattering kernel for structured molecules involving one rotational and
one vibrational energy mode. A convenient integral operator formulation is used assuming a purely
discrete spectrum and assuming eigenvalues depending on five basic parameters in respect to the
five state parameters of the moleculessand then assuming a partial degeneracy of the integral
operatord. These five basic parameters are shown to be the accommodation coefficients of, respec-
tively, the three momentum accommodation coefficients and the accommodation coefficients of
the two internal energy modes.

Under its factorized forms15d, the proposed scattering kernel is easy to use in analytical
calculations or to be implemented in numerical modelling. In order to show its physical meaning,
the expressions15d may be developed. Under its developed form, the scattering kernel appears as
a linear combination of 32 elementary scattering kernelsslisted in the Appendixd. All these el-
ementary kernels correspond to various situations of accommodation at the wall which have been
described in Ref. 5. The linear combination coefficients, which represent the weight of the various
types of accommodation in the reflection process, are combinations of the factorsax and s1
−axd ssee the Appendixd. In each elementary kernel each molecule state accommodates indepen-
dently from the others. So the new kernel allows us to take into account the interplay between the
molecule freedom degrees when interacting at the wall.11 Up to now, the data available concerning
the whole set of accommodation coefficients involved in the proposed scattering kernel are rare;
that makes a complete validation of the model difficult.

Finally, let us add that, in the form presented here, the scattering kernel accounts for a single
rotational and a single vibrational mode. This description is sufficient in any condition for diatoms.
In the case of more complex polyatomic structures, involving various vibrationalsor rotationald
modes, the present form of scattering kernel remains directly usable, as long as the various
vibrational sor rotationald modes remain in the same thermodynamics statesi.e., in local equilib-
rium the ones with the othersd. In a contrary situationsfor example, in strong vibrational nonequi-
librium conditionsd it may be pertinent—depending on the considered time scale—to distinguish
various vibrationalsor rotationald accommodation coefficients to describe the reflection process. In
such a case, the scattering kernel should be written in the same way as previously, but it should
involve more than five state parameters, and thus more than five accommodation coefficients.
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APPENDIX: DIFFERENT WRITING OF THE SCATTERING KERNEL B OF RELATION „15…

Let

P̃0 = dsEir8 − EirddsEiv8 − Eivd, P̃rv =
e−«ir

Qr
gir

e−«iv

Qv
,

P̃v = dsEir8 − Eird
e−«iv

Qv
, P̃r =

e−«ir

Qr
girdsEiv8 − Eivd. sA1d

Develop partially the expressions15d. The scattering kernel can be written in the form presented
in Ref. 5, as follows:

B = So
k

mkBksV8,VdDs1 − ards1 − avdP̃0 + avs1 − ardP̃v + ars1 − avdP̃r + avarP̃rv, sA2d

whereBk the elementary scattering kernels, andmk their corresponding coefficients in the case of
unstructured molecule given in Ref. 5, are recalled below,

B0sV8,Vd = dsVx + Vx8ddsVy − Vy8ddsVz − Vz8d,

ByzsV8,Vd =
1

pCw
2 dsVx + Vx8de

−Vy
2/Cw

2
e−Vz

2/Cw
2
,

BxzsV8,Vd =
2

Cw
3Îp

VxdsVy − Vy8de
−Vx

2/Cw
2
e−Vz

2/Cw
2
,

BxysV8,Vd =
2

Cw
3Îp

VxdsVz − Vz8de
−Vx

2/Cw
2
e−Vy

2/Cw
2
,

BxyzsV8,Vd =
2

pCw
4 Vxe

−Vx
2/Cw

2
e−Vy

2/Cw
2
e−Vz

2/Cw
2
,

BzsV8,Vd =
1

Cw
Îp

dsVx + Vx8ddsVy − Vy8de
−Vz

2/Cw
2
,

BysV8,Vd =
1

Cw
Îp

dsVx + Vx8ddsVz − Vz8de
−Vy

2/Cw
2
,

BxsV8,Vd =
2

Cw
2 VxdsVy − Vy8ddsVz − Vz8de

−Vx
2/Cw

2
,

and

mxz= axazs1 − ayd, mxy = axays1 − azd, myz= ayazs1 − axd, mx = axs1 − ayds1 − azd, mxyz

= axayaz, m0 = s1 − axds1 − ayds1 − azd, my = ays1 − axds1 − azd, mz = azs1 − axds1 − ayd.

A complete development of expressions15d yields the scattering kernel written as a sum of 32

elementary polyatomic scattering kernelsBkP̃in as follows:
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B = o
k,in

mkminBkP̃in,

whereP̃in refers to the four partial operatorsP̃0, P̃v , P̃r , P̃rv defined in the relationshipsA1d andmin

to their respective coefficients in the formulasA2d. In this developed form it is clear that this
scattering kernel describes various types of accommodation processes at the wall. Each of the

partial scattering kernelsBkP̃in corresponds to a particular type of accommodation. There are
exactly 32 types.
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