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Scattering kernel for polyatomic molecules
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A polyatomic scattering kernel phenomenologically presented in a previous paper is
derived from an integral operator formulation. The five parameters involved in the
scattering kernel expression are shown to be equal to the accommodation coeffi-
cients of various fluxes at the wall, namely, the fluxes of the three components of
the momentum and the fluxes of the rotational and vibrational energies of mol-
ecules. Under its present form the model is especially convenient for the diatomic
molecules. ©2005 American Institute of PhysicdDOl: 10.1063/1.1904703

I. INTRODUCTION

During the last 20 years a need of new knowledge appeared concerning the interaction of
gases with solid surfaces in order to formulate realistic boundary conditions in rarefied gas
dynamicst™ In spatial research the challenge was especially to predict correct heat fluxes and
drag forces on engines reentering in planetary atmospheres. With the recent developments of the
gaseous microflows, where the flow fields are characterized by moderately high Knudsen numbers,
this topic acquired still more interest. This paper is devoted to the derivation of realistic laws
linking the distribution functions of the reflected and the incoming particles at the wall. As it is
well known such laws may be used as boundary conditions in order to resolve the Boltzmann
equation. Moreover, in the slip regime, these laws also allow us to obtain more accurate velocity
slip and temperature jumps at the wall, so the validity domain of the continuum equations is
extended up to higher Knudsen numbers when these equations are associated to the correct bound-
ary conditions.

In a previous papérwe developed a model of a scattering kernel for unstructured molecules
using an integral operator formulation as illustrated by Cercigﬁ?am‘t the end of this previous
work the proposed scattering kernel was extended to the case of molecules with internal structure
on the basis of brief phenomenological arguments. In the present paper, the integral operator
formulation is generalized to a polyatomic gas, then the polyatomic scattering kernel is method-
ologically derived from the study of an eigenvalue equation and the meaning of the five param-
eters introduced in the kernel is clarified.

In Sec. Il we deduced the polyatomic scattering kernel, investigating the associated integral
operator. In its fully developed form the scattering kernel appears as a linear combination of 32
partial kernels declining all the possible associations of, respectively, diffusive and specular pro-
cesseqaccording to three directiongnd elastic or inelastic processsr the internal modes
The 32 coefficients of this combination are the weight of the various accommodation processes
and they depend on five basic parameters. These five parameters are shown to be, respectively,
equal to the accommaodation coefficients of the momentum components and of the internal ener-
gies. In Sec. lll, we present a general comment on this method of integral operator in the frame-
work of scattering kernel derivation.
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II. POLYATOMIC SCATTERING KERNEL DERIVATION

We consider the problem of finding the scattering kernel,

B(V,inr’i Eiv'vgir’1V! Eir1 Eivigir)i

governing the reflection of polyatomic molecules at the wéllis the velocity of the impinging

gas particle referred to the waN,’=(Vy,Vy,V;) e {Q' =0 X QX Q;=R_XRXR} and V the
velocity of the reflected one referred to the wali=(V,,V,,V,) e{Q=Q,XQ, X,
=R, X R XR}. These velocities reduce to the peculiar velocities when the slip velocity at the wall
is neglectedVy is defined as/g=(-V,,V,,V,), and(x,y,2) are the three spatial coordinates with

x the normal axis to the wall oriented from the wall towards the asandE;,, are, respectively,

the rotational energy and the vibrational energy of an incident particle at the wall. Siniarly
andE;, are, respectively, the rotational energy and the vibrational energy of a reflected particle at
the wall. Then the subscripts andiv are the quantum numbers related to the internal energy of
a particle, hence they are integegs;is the weight of the rotational degeneracy and will be taken
here equal t@2ir +1). The kernelB, which is the density of probability that a molecule in a state
(V',E;+,E;,) hitting the wall at any poinX of the wall is reflected at the same point in a state
(V,E;,E;,), must satisfy the following conditions detailed in Ref-Bthe non-negativity,

B(V’1Eir’vEiv’!gir’iv!Eirinvvgir) ZO! (1)

the normalization,

2 B(V,inr’!Eiv’igir’lvlEirinv!gir)dV: 1! (2)
irjiv vy Q

and the reciprocity relation,

/—/Zz—s-r—s-r !
vy je V' e eew g, BV’ Eyrr,Eiyr,V, Eir Epy)

= V,e Mg #ne gy, B(= V, By, By = V', Eipr, By, (3)
where
E; E;
Ejr :ﬁvr 8i0:ﬁv (4)

with k the Boltzmann constant ang, the wall temperature.

A. Analytical derivation from integral operator

Let us write the transformation

K(V: EiriEivigihV, ’ Eir’rEiv’!gir’) = [|V),(|fO(V, ’ Eir’iEiv’)]l/2[|VX|f0(V! Eir ’ Eiv)]_llz

XB(Vg,Eir/,Eivr,Gir V, Eir, Eivs Gir)» )
wherefy(V,E; ,E;,) is the local equilibrium distribution function at the temperatligeof the wall,
defined by

n 2 Zgire_sire_siv
fo(V,Ey . Ey) = ———e MIGA=——— 6)
0 irs i ) (CW\“'7T)3 Qer (
with
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Q=g Q=Se, Cij= ™
ir iv m
Sincef, is a known function the problem of finding is equivalent to findind<. The normaliza-
tion condition and the non-negativity conditions Brimply obviously the same conditions d¢h
Note F, the set of the rotational energy states, andF, the set of the vibrational energy
statesE;,. Consider the five elementary Hilbert spaces of statéQ,) -, L4F;), andL?(F,) of
square summable functions with their corresponding usual scalar product

<(PK1’ ¢K2>K = f (PKl(V)QDKZ(V)dV for all Pl Pr2 € LZ(QK)’ K=XY,Z,
Q

K

<‘Pr1a‘Pr2>r = 2 (Prl(Eir)‘PrZ(Eir) forall ¢, ¢, € LZ(Fr)a
ir

<(Pvl!(Pv2>v = 2 (PU].(EiU)(PUZ(EiD) for all $Pp1:Py2 € LZ(FU) .
v
Consider the tensor produd=L%(Q,) ® L¥(€) ® L¥Q,) ® LAF,)® LAF,) of the five Hilbert
spaces of states. Let us remark that this tensor product of Hilbert §pacgense in the Hilbert
spaceH =L%(Q) ® L%(F,) ® L%(F,) where the scalar product is defined by

(p1,02) = > e1(V,Eir, Ei) 0oV, Eir Ejp )y for all @1, ¢, € H. (8)
ir,iv v Q
Instead of studying the problem of the kerri€] we study the linear integral associated
operatorA defined onH by

A(l;b)_ 2 J K(V ElrvElvvgler Elr IEIU Qi )lﬁ(v Elr vElv aglr/)dv/ (9)

ir’ IU

Assume that the operatérhas a purely discrete spectrum, and assume that its eigenfunctions are
all in the Hilbert spacé&. The kernelK can be written in the form

K= 2 Jxedydpip ¢’]x(vx)l/ij(vy)‘/ljz(vz)¢] (E|r)‘/lj (Ew)

jxvjyvjzvjrvjv
Xy (Vs (V) (Vo) 0y () (Er), (10

where the functions); (Vx)z,//J VY (V)i (E,r)z/;] (E;,) are the eigenfunctions ok with their
corresponding elgenvalue§ dylpindy” Accordmg to the non- negativity and the normalization con-
ditions, the eigenvalues must sat|9fyJ iy €[0,1] for all jy,jy,jzjr.j, € N. Moreover, one
can see that, in the tensor product spé,cﬂne scalar produdB) equals the scalar product defined
in this tensor product spadeby the product of the five elementary scalar prodéi8isSo, we can
suppose that the eigenvalues have the fd[m\] SRR and that the set of functions
1//J (M,),j, €N, is a function basis of thg correspondmg H|Ibert spage=x,Y,z,r,v. Therefore,
the expressmr@lO) can be written as a product of five infinite sums,

K= ]I Ex U5 (Mg (M), M=V Vi, Vo, By By (11)
xe{xy,zruv} j=0

Define o= o, o, Yo, %o, o, bY
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2
A 22 —_ 2.2
o (Vy) = _CW|VX|1/2e Vid2C,, o, (Vy) = (Cym) 112g-Vyl2Cy,

) ) ) ) . _ v e—IIZeiU
o (V) = (C\ ) V2 V2T, N(BER /%e V2, (E,) = —\’6 .
r o

Let us prove thatl, is an eigenfunction oA. Mathematically, the normalization condition can be
also written

E f B(_VlEirvEivlgir!_VI,?!Eir’!Eiv’lgir’)dV’:11 (12)
1 J Q!

ir’iv

from this relation(12), the reciprocity relatior{3) leads to

E f |V)’(|fO(V’ ’ Eir’inv’)B(VléQ! Eir’!Eiv’igir’vvv Eir!Eiv!gir)dV’ = |VX|f0(_ Vv Eir!Eiv) .
ir i’ 7

(13

Using the relation (13), the calculation of A(¢) gives Ay =t¢n. Consequently
gbozzpoxtpoywozzporxpov is an eigenfunction of the operatérassociated to the eigenvalue 1.

Now, following the five state parameters, let us introduce five parameters related to the
eigenvalues as followsiy =1, and forj #0,\; =(1-a,) for all x=X,y,z,r,v. The relation(11)
becomes ' '

K= {H } [on(MX)on(M;) tl-a)> amX(MijX(M;)]
Xeixy.zrv j=1
which may be written
K= {H } [CYX'/JOX(MX)%X(MQ t(l-a)> ij(MX)w,-gM;)} :
XEXY,ZIv j=1

Finally, using the following property,

]EO g5 (M9 (M) = &M, = M),
whereé is the dirac function, it is obtained

K= {axlﬂox(Vx) 'pOX(V;() +(1- ax) 5(Vx - V;)}{ayllloy(vy) lﬁoy(Vf,) +(1- ay) é\(Vy - V{/)}
X{azho (V) iho (V) + (1 = a) 8V, = V) ety (Vo) o (V) + (1 = ) 8V, = V)
X ety (Vo o, (V) + (1= )1V, =V} (1)

Applying inversely the transformatio(b), the operatoB corresponding to the kern& above
[relationship(14)] is
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, 2V, 22
B(V,!Eir’lEiv’!gir’ivv Eir-Eivrgir) = {(1 - ax) 5(Vx + VX) + a(XC_ZXe VX/CW}
W
’ 1 ~V2ic2
X9y (1- ay)é‘(Vy -V + ayCW —=e 'y w

N

1
X { (1-a)dV, -V, + aZC re—vilcﬁv}

X{(l -8By ~E)+ ara"e‘f”}

v

X{(l - av) 5(Eiv’ - Eiv) + avae_fiv} . (15)

In the further calculations, we will note the scattering keri&) simply as

B=P,P,P,P,P,,

where P,,P,,P,,P,,P, correspond, respectively, to the five factors of the expres&lon It
would be seen that these five factors satisfy

+o0 +oo +oo
J Pydy, = f Pydy, = f POy =2 P =2 P,=1. (16)
0 —o0 —00 ir iv

On the other hand when developing the expres§id) one obtains the kern® as combination
of 32 elementary scattering kernels where the coefficients are functions ef the

B. On the coefficient e,

In this section we prove that the five coefficientsinvolved in the scattering kernel equal,
respectively, the accommodation coefficients of the various fluxes of the five microscopic state
parametersM, =V,,V,,V,,E;,Ej,).

Thg flgccommodation coefficiept, of a physical propertj, at the wall is defined through the
relation™™

B,= = (17

=X X
b -

where®’ is the incoming flux at the wall of the properMX,CD; is the corresponding reflected

flux, and ®¢ is the reflected flux in the hypothetical situation of perfect accommodation to the

wall. These various fluxes are written

(I))‘(: E f m|V>,(|M;(f_(V,,Eirr,Eivr,girr)dvr, (18)
i i’ 7 Q'

(I);: E m|VX|MXf+(V1 Eirinvvgir)dV1 (19)
ir,iv JQ

wheref™ andf* are, respectively, the incident and the reflected distribution functions linked by the
relation
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|VX|fr(Vinr!girrEiv) = E f |V),(|f_(v,rEir'igir’!Eiv’)B(VriEir’igir'iEiv’!V!Eirigirinv)dV/'
1 J Q!

ir’iv
(20
Accounting for(20), the reflected fluxD; [expression(19)] may be rewritten as
or= > f m|V)'(|f‘(V’,Eir,,gi,,,EiU,)[ > f MXPXPyPZP,PUdV]dV, (21)
i iriv J Q
and the reflected flux in the case of perfect accommodation is written as
dD)e(: > m|V;|f‘(V’,Ei,,,gi,,,EiU,)[ > J MXBedV] dyr, (22
i J irivJ Q
whereB,, the perfect accommodation scattering kernel, is defined by
. &Vxe—uvuz/c@e—eire-%_ (23)

T QQChm

1. Calculation of B, and B,

The tangential accommodation coefficieff,is obtained by substitutinyl, =V, in the defi-
nition relation(17). In this case it is easily seen tf@ﬁzo. Then accounting for the property6)
the expressiorn21) leads to

CI);,— = (1 - Cl{y) E m\/;|V)'(|f_(V', Eir’agir’inv’)dV’ .

ir’ o 7 Q)

It results immediately from expressid7)

By=1- —L= ay
o,
Similarly it is found,
¢)+
B,=1- C}TE =y

2. Calculation of B,

The normal accommodation coefficient is obtained by substitudpe|V,| in the definition
(17). In this case, accounting for the prope(fy6) and the expressio of the partial operaRyy it
is obtained

E |Vx| P><PszPrPudV =-(1- ax)V;( * oy
ir,iv JQ

Co\m
2
then the expressio(21) yields.
- o= , G\
(I)x_q)x:ax 2 m|Vx|f (v 1Eir'inu’vgir’)<Vx+— dy.

ir’jp’ 7 Q 2

The calculation ofb€ leads easily to
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- [AF 3 ! ! C \”7_7
(Dg_q)x = E m|VX|f (V 1Eir’1Eiv’1gir')<Vx+ W2 )dV"
irjip’ 7 Q'

Consequently we obtained from the relatidry),

By = ay.

3. Calculation of B, and B,
Now substituteM , =g; E;, in the relation(17). Accounting for the propertyl6) it is obtained

*

Q
2 girEirPxPszPerdV = E GirEirPr = (1 — )9 Ejpr + arar,

ir,iv JQ ir r

where we have noted
Q: = 2 gﬁ' Eire_s"-
Ir
Then the expression ab* leads to

q)éir B q)Eir = ar 2

. . ’
ir’ v’ Y Q

! - ! Q*
mV,[f7(V inr’uEiv’-gir’)<gir’Eir’ ‘é)dv'-
r

Using the expressiof23) of B,, we obtain

Q*
E girEir BedV ==t

ir,iv Y Q Qr
and then
- e _ arsd 1 Q:
g ~dg = X [ MV EpEyr,Gi)| i Eir = - |y
ir i’ 7 Q' Q
consequently,
Br = a.
In the same way, substituting, =E;,, it is found
ﬁl} = aU'

In conclusion, the five parameteds involved in the scattering kernél5) are the accommodation
coefficients corresponding to the five state parameters, namely the three momentum components
and the two internal energy degrees.

IIl. COMMENT ON THE METHOD USED IN SCATTERING KERNEL DERIVATION

The H Hilbert space corresponds generally to the Hilbert space used in the framework of the
modelling of the Boltzmann equation in polyatomic gases. Following the quantum mechanic
concept, the wall and then the boundary conditions can be represented by an operator defined on
this H Hilbert spacé:®®Therefore the problem of boundary condition for the Boltzmann equa-
tion can be basically formulated through the integral oper@giso this formulation is convenient
for solving the linearized Boltzmann equation. The reciprocity relation assumption globally means
that the local equilibrium distribution function must be invariant by the ke&P This last
condition, which contains thermodynamic properties is the most important condition. In addition,
it is the only one condition containing physical meaning. This condition leads to the first eigen-
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function representatiogly. The other eigenfunctions remain unknown. At this step of the scatter-
ing kernel construction, one should suggest to choose the set of the other eigenf&?\cﬁicms
finite number of them. But, such a way would be a purely mathematical construction without real
physical justificationd:’

Then, another way consists to analyze physically the accommodation process. Let us consider
the couple gas/surface characterized by its macroscopic properties. It seems convenient to assume
that for each microscopic propenyof the molecules, the solid surface behaves in a way perfectly
defined in the accommodation process. In other worlds, in a gas/surface configuration, physically
and geometrically given, for each microscopic property there is a linear relation between the
amount of thep flux accommodated by the wall and the amount of phi@coming flux. So the
accommodation at the wall of any physical microscopic property provides a physical information
through a corresponding accommodation coefficient. Thus, five elementary accommodation coef-
ficients associated to the five basic parameters defining the molecule(gtatédsree momentum
components, rotational energy, vibrational engm@ne naturally introduced completely describing
the molecules behavior in the reflection process. In this way, the present construction of the
polyatomic scattering kernel is based on five accommodation coefficients, and corresponds to an
integral operator partially degenerated involving 32 different eigenvalues in its expansion: from
our point of view, this construction appears physically founded and completely describing the
reflection process.

IV. CONCLUDING REMARKS

We have established a scattering kernel for structured molecules involving one rotational and
one vibrational energy mode. A convenient integral operator formulation is used assuming a purely
discrete spectrum and assuming eigenvalues depending on five basic parameters in respect to the
five state parameters of the moleculesd then assuming a partial degeneracy of the integral
operato}. These five basic parameters are shown to be the accommaodation coefficients of, respec-
tively, the three momentum accommodation coefficients and the accommodation coefficients of
the two internal energy modes.

Under its factorized form(15), the proposed scattering kernel is easy to use in analytical
calculations or to be implemented in numerical modelling. In order to show its physical meaning,
the expressioltl5) may be developed. Under its developed form, the scattering kernel appears as
a linear combination of 32 elementary scattering kerigdsed in the Appendix All these el-
ementary kernels correspond to various situations of accommodation at the wall which have been
described in Ref. 5. The linear combination coefficients, which represent the weight of the various
types of accommodation in the reflection process, are combinations of the fagtamsd (1
—a,) (see the Appendjx In each elementary kernel each molecule state accommodates indepen-
dently from the others. So the new kernel allows us to take into account the interplay between the
molecule freedom degrees when interacting at the ¥&lp to now, the data available concerning
the whole set of accommodation coefficients involved in the proposed scattering kernel are rare;
that makes a complete validation of the model difficult.

Finally, let us add that, in the form presented here, the scattering kernel accounts for a single
rotational and a single vibrational mode. This description is sufficient in any condition for diatoms.
In the case of more complex polyatomic structures, involving various vibrati@nabtational
modes, the present form of scattering kernel remains directly usable, as long as the various
vibrational (or rotationa] modes remain in the same thermodynamics diate in local equilib-
rium the ones with the otherdn a contrary situatioiifor example, in strong vibrational nonequi-
librium conditiong it may be pertinent—depending on the considered time scale—to distinguish
various vibrationalor rotationa] accommodation coefficients to describe the reflection process. In
such a case, the scattering kernel should be written in the same way as previously, but it should
involve more than five state parameters, and thus more than five accommodation coefficients.
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APPENDIX: DIFFERENT WRITING OF THE SCATTERING KERNEL B OF RELATION (15)

Let
~ ~ e¢ir @ v
Po=d(E; - E)&E, —Ey), Pr= EgirQ_Ua
~ e v~ e i
Pv = 5(Eir’ - Eir)_i Pr = _giré(Eiv’ - Eiv)- (Al)
Qu Qr

Develop partially the expressiqi5). The scattering kernel can be written in the form presented
in Ref. 5, as follows:

B= (E MKBK<V',V>)<1 ~@)(1 - @,)Po+ ay(1 - )P, + ay(1 - a,)P, + ,a, Py, (A2)

whereB, the elementary scattering kernels, andtheir corresponding coefficients in the case of
unstructured molecule given in Ref. 5, are recalled below,

Bo(V/,V) = 8V, + Vi) SV, = V) 8V, ~ Vi),

1
ByAV',V) = —5 8V, + V))& WCie VICh,
7Cy,

2
BV, V) = =V, 8V, - Ve WChe VICk,
CNT

2
Bxy(V, V)= 3 =V, 8V, ~V,) e_Vilcgve_Vf/ C\i’
CNT

2 22 22 22
Bxyz(V,;V) = C4 Vxe VX/CWe Vy/CWe VZ/CW,
T W

1
BAV/,V) = ———= 8V, + V) &V, ~ V))& /%,
Cm
’ — 1 ’ ’ —V§IC2
B,(V',V) = m AV + V) 8(V, = Vy)e Yy w,

2
BV, V) = 55 VsolVy — V) alV, — Ve,
W
and

Moz = ayar (1 = a'y)a Mxy = a’xa'y(l - ay), Myz= ayaz(l —ay), px=ay(l- ay)(l - ay), Mxyz

= axayaz, Mo = (1-a)(1- ay)(l —ay), My = ay(l —a)(l-a), w=afl-a)(l- ay)-
A complete development of expressi@tb) yields the scattering kernel written as a sum of 32
elementary polyatomic scattering kern&gP;, as follows:
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B= 2 MKMinBKPinv

K,in

Where|~3in refers to the four partial 0perato~P@,I~3U ,I~3’r ,I~3rv defined in the relationshifA1) and w;,
to their respective coefficients in the formula2). In this developed form it is clear that this
scattering kernel describes various types of accommodation processes at the wall. Each of the

partial scattering kerneIBKI~=’in corresponds to a particular type of accommodation. There are
exactly 32 types.
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