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We propose a practical quantum cryptographic scheme which combines high information capacity, such
as provided by high-dimensional quantum entanglement, with the simplicity of a two-dimensional Clauser-
Horne-Shimony-Holt (CHSH) Bell test for security verification. By applying a state combining entanglement
in a two-dimensional degree of freedom, such as photon polarization, with high-dimensional correlations in
another degree of freedom, such as photon orbital angular momentum (OAM) or path, the scheme provides a
considerably simplified route towards security verification in quantum key distribution (QKD) aimed at exploiting
high-dimensional quantum systems for increased secure key rates. It also benefits from security against collective
attacks and is feasible using currently available technologies.
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I. INTRODUCTION

Cryptography is one of the most promising applications of
quantum science [1]. With the recent demonstrations of high-
dimensional two-photon entanglement using time bins [2,3]
and photon orbital angular momentum (OAM) [4,5], large-
alphabet entanglement-based quantum key distribution (QKD)
systems become closer to their real-world implementations
and applications. The traditional approach to large-alphabet
QKD based on Bell’s theorem involves encoding a key in a
high-dimensional degree of freedom, such as photon OAM,
and verifying the security of the generated key using a test
of a Bell inequality which requires projective measurements
in high-dimensional mutually unbiased bases [6]. This is a
straighforward generalization of the original protocol intro-
duced by Ekert in 1991 (E91) [1,7] and its modifications, such
as proposed in Ref. [8].

E91-based protocols have been demonstrated for qubits
using polarization [9] and time-energy entanglement [10].
A Bell-type test of energy-time entangled qutrits has also
been realized [11]. Reported Bell-test-based QKD experiments
using OAM qutrits [12] have implemented a randomized selec-
tion of dichotomous measurements instead of full projective
measurements in a three-dimensional state space. Although
projective measurement for detection of high-dimensional
OAM states of light with up to 11 different outcomes is now
within reach [13,14], it still remains an experimental challenge
to perform them in arbitrary qudit bases. In the case of
high-dimensional time-bin states, such measurements would
require multipath interferometric setups which become too
cumbersome to implement for a high number of dimensions.
Although a scheme for large-alphabet QKD has been proposed
and realized using energy-time entanglement [15], the applica-
bility of this scheme is specific to this kind of entanglement and
the security verification is highly device dependent as it places
stringent conditions on timing resolutions of the detectors,
which limits key generation rates.

Security verification of quantum key distribution schemes
is a complicated problem in general. Security proofs have been
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provided for Bell-test-based QKD against so-called collective
attacks [16] as well as the most general coherent attacks in the
standard security scenarios [17]. However, proofs of device-
independent security against these sophisticated attacks are
not yet available in the case of entangled qudits requiring Bell
tests generalized to high dimensions [18].

Here, we propose an approach to large-alphabet
entanglement-based QKD which circumvents these problems
by avoiding the need to perform high-dimensional unitary
rotations required for measurements in different mutually
unbiased bases, resulting in a much simplified measurement
setup. The scheme presented here also benefits from security
proofs for QKD based on entangled qubits against collective
attacks. Our approach is in principle applicable to any system
in which it is possible to create bipartite two-dimensional
entanglement in one degree of freedom and high-dimensional
correlations in another. Although we use an example with
photon polarization and OAM to illustrate the protocol, the
principle can be applied to other systems using other degrees
of freedom to encode large secret keys.

The very essence of large-alphabet QKD is the possibility
of a large rate of key generation. In practice, for a given
entanglement-based QKD system, the minimum applicable
coincidence detection time window �t is an important factor
limiting the maximum rate at which it is possible to generate
secure keys per run, i.e., a single transmission and detection
of the source state. As the number of dimensions offered by
the source state increases, the maximum possible key rate
per run for a given �t also increases. The development of
OAM sorters makes genuine large-alphabet key generation
using up to 11-dimensional OAM entanglement feasible. This
will also allow for a higher data rate per photon pair, as
the detection of the photonic qudits would not need to be
implemented as (probabilistic) dichotomous measurements,
as has been the case in previous experiments [4,12]. It is
also straightforward to implement projective measurements in
computational (unrotated) time-bin bases. In what follows, we
first describe the existing generalizations of the E91 protocol.
We will describe the source state, measurement setup, and
security considerations for our proposed scheme. Finally,
we conclude with a few remarks on the realizability of the
proposed experimental implementations.
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II. GENERALIZED E91 PROTOCOL

To establish our scheme, let us first review the basic
entanglement-based large-alphabet QKD resulting from a
direct generalization of the E91 protocol and its variants.
Assume a source producing photon pairs in the state

|�〉 = 1√
d

d−1∑
j=0

|j 〉A ⊗ |j 〉B. (1)

Here we use the notation |x,y〉 ≡ |x〉 ⊗ |y〉, where ⊗ denotes
tensor product. In terms of OAM eigenstates |�〉, for example,
this may be written as the maximally entangled state

|�〉 = 1√
d

�=+[d/2]∑
�=−[d/2]

h(�)|�〉A ⊗ |−�〉B, (2)

where h(�) = 1 for all � when d is odd, and h(� �= 0) = 1,
h(0) = 0 when d is even.

In a Bell inequality test experiment, each of the commu-
nicating parties Alice (A) and Bob (B) will have a photon
OAM detector with d outcomes per setting and two settings
or measurements, {A1,A2} and {B1,B2} respectively, which
maximize Bell inequality violation. For the QKD scheme,
there is an additional setting for each detector, i.e., A3 for
Alice and B3 for Bob, chosen to produce perfect correlations.
In a variant of Ekert’s scheme modified for increased key
generation efficiency [8,17,18], only Alice’s detector uses
an additional setting, i.e., A0, which is chosen to produce
perfect correlations when Bob measures with setting B1

for the purpose of key generation. Although our scheme is
directly applicable to this higher-efficiency version, we mainly
illustrate here using Ekert’s scheme for clarity. Alice and Bob
independently choose their settings at random and also note
their detection results independently. After sufficiently many
measurement runs, Alice and Bob perform basis reconciliation
through one-way classical postprocessing [19], followed by
privacy amplification on the raw key.

When the combination {A3,B3} (or {A0,B1}) is selected by
Alice and Bob, the measurement results are used for the secret
key as they are perfectly correlated on both sides. To determine
the security of this key, the correlation in the rest of the data will
be checked for eavesdropping through a Bell inequality test,
for example, using Bell inequalities generalized to d outcomes
per measurement proposed by Collins et al. [20], equivalent
to the CHSH-Bell inequality [21] when d = 2. Only cases in
which the combination of measurement settings involve A1,2

and B1,2 are used for this test, while the remaining results
are discarded. After basis reconciliation, Bob announces his
data for the Bell inequality check, and Alice computes the
value of the Bell parameter S. If S > 2, then the key is
secure and the eavesdropper, Eve, will not have gained any
useful information on the key. The secret key can then be
used in any cryptographic communication between Alice
and Bob.

Implementing the above requires full projective measure-
ments in the OAM state basis {|�〉} in a d-dimensional
subspace, corresponding to A3,B3. This may be realized, e.g.,
for up to d = 11 using OAM mode sorters as mentioned
above. However, full projective measurements whose oper-

ators have eigenstates which are OAM superpositions are
also required. It is nontrivial to realize such measurements
because they require unitary operations within the high-
dimensional OAM subspace being considered before the
OAM detection. The implementations of such operations are
difficult to derive in general and have not yet been realized
experimentally.

III. PROPOSED SCHEME

A. State preparation

We propose a state which replaces the need for measure-
ments in high-dimensional rotated bases with the simplicity of
a two-dimensional CHSH Bell test for the verification of the
security of generated key. To appreciate how our source state
relates to hybrid entangled states, consider the state expressed
in terms of the composite OAM and polarization basis states
|�,P 〉 (where � denotes the OAM, � = −∞, . . . , + ∞; and P

denotes the prolarization P = H,V ) as

|�ε〉 = 1√
2d

n=+[d/2]∑
n=−[d/2]

|2n,H 〉A|−2n,H 〉B

+ |2n−1,V 〉A|−2n+1,V 〉B, (3)

with n �= 0 for even d. Note that this state combines 2d-
dimensional orbital angular momentum entanglement and
polarization entanglement in a way similar to but quite
different from the cases of the so-called hyperentangled [22],
hypoentangled [23], or entangled entangled [24] states. In
hyperentanglement, a measurement of OAM will not destroy
polarization entanglement and vice versa. In hypoentan-
glement, measuring either polarization or OAM destroys
entanglement in the other degree of freedom. Here measuring
OAM completely destroys polarization entanglement, but the
converse is not true. We note that the division of the subspaces
(e.g., into odd and even OAM parities in this example)
can also be done in other ways, depending on the specific
realization and experimental convenience. State (3) can be
rewritten, as

|�ε〉 = 1√
d

n=[d/2]∑
n=−[d/2]

|φ〉n, n �= 0 for even d. (4)

Here |φ〉n is an entangled state within the nth OAM subspace.
Although this state is (hypo)entangled in both polarization
and OAM, only the classical correlation in OAM is strictly
necessary for our scheme.

Our source state is of the form

∣∣�d
sε

〉P/D =
n=[d/2]⊗

n=−[d/2]

|φ〉P/D
n , (5)

where |φ〉P/D
n is an entangled state in polarization within

an OAM subspace specified by n. The source state could
be obtained either by postselection or deterministically (de-
noted by superscripts P and D respectively) as outlined
below.

052313-2



MULTIPLEXING SCHEME FOR SIMPLIFIED . . . PHYSICAL REVIEW A 91, 052313 (2015)

(a)  State preparation (post-selective case) (b) Measurement (post-selective case)( ) (p )

UV pump
BBO, 
Type I

Even

O
dd

Parity
 sorter

HWP1 
( /4) PBS0 BS1 (1:1)

ALICE

BOB

HWP2

SLM1
(OAM +/- 1)

PBS1 PBS2
1
2

2dO
A

M
 so

rte
r

BOB/
ALICE

BS2 (2:1)

1 2 2d

OAM sorter

PBS3

SLM2
 (OAM -/+ 1)

PBS4

A1: 0
A2: /8

Measurement 3 Measurement 1 or 2

B1: /16
B2: 3 /16

(  d)

FIG. 1. (Color online) Schematic diagram for a suggested implementation of the proposed simplified large-alphabet entanglement-based
quantum key distribution using OAM and polarization. (a) Preparation of the two-photon state |�ε〉 [Eq. (3)] or |�d

ε 〉 [Eq. (8)] using spontaneous
parametric down conversion (SPDC) in a β-barium borate (BBO) nonlinear crystal cut for type-I spontaneous parametric down conversion.
The preparation uses an OAM parity sorter [25], a polarizing beam splitter (PBS), and a nonpolarizing 1:1 beam splitter (BS). (b) Measurement
setup for Alice (Bob). Measurements 1, 2, and 3, i.e., Aj and Bk (j,k = 1,2,3) are respectively selected randomly (e.g., using beam splitters)
on Alice’s and Bob’s side. For the Bell test, Alice (Bob) adds (subtracts) � of OAM for vertically polarized photons using PBS1, SLM1
(OAM ± 1), and PBS2. Then Alice (Bob) sets the half-wave plate (HWP2) orientation angle to implement the randomly chosen measurement
(A1/B1 or A2/B2). HWP2 and PBS3 are used for polarization analysis in the Bell test, after which Alice (Bob) may then choose to reverse
the first operation by using SLM2 (OAM ∓ 1) and PBS4. OAM sorting [13] is used to resolve the qubit subspaces and/or establish the key
(measurement 3).

1. State preparation: Postselective case

Suppose we define

|φ〉P
n = (|HA,HB〉n + |VA,VB〉n)/

√
2, where (6)

|HA,HB〉n = |2n,H 〉A ⊗ |−2n,H 〉B,

|HA,VB〉n = |2n,H 〉A ⊗ |−2n + 1,V 〉B,
(7)

|VA,HB〉n = |2n − 1,V 〉A ⊗ |−2n,H 〉B,

|VA,VB〉n = |2n − 1,V 〉A ⊗ |−2n + 1,V 〉B.

Note that this state is a combination of d photon pairs,
with each pair hypoentangled in both polarization and OAM
in unique OAM subspaces.

A source state for our scheme [of the form Eq. (5)] could
be obtained by postselection from∣∣�d

ε

〉 = |�ε〉⊗d , (8)

which is a product state of d pairs of OAM-entangled photons
where |�ε〉 is the two-photon state expressed in Eq. (3). A
proposed scheme to obtain |�ε〉⊗d from common spontaneous
parametric down conversion (SPDC) sources is illustrated in
Fig. 1(a). This involves generating OAM entanglement by
type-I collinear parametric down conversion with a defined
polarization, say horizontal (|H 〉). The copropagating photon
pairs entangled in OAM are passed through an OAM parity
(even-odd) sorter [25]. A half-wave plate is then inserted
after one of the output arms which rotates |H 〉 to vertical
polarization |V 〉, coupling OAM parity to polarization. The
state represented in Eq. (8) could then be generated by
choosing parameters of the SPDC source to create more than
one entangled photon pair simultaneously. It is well known
that a desired probability of multiple pair generation per pump
pulse can be achieved according to the theoretical d-pair
creation probability [26]

pd = (d + 1)sech4(τ ) tan2d (τ ), (9)

where τ is a real-valued coupling coefficient which is propor-
tional to the product of the pump amplitude and the coupling
constant between the electromagnetic field and the nonlinear
crystal. The source state for our scheme can then be obtained
by final postselection on the state represented by Eq. (3). This
can be done by registering only the values of n for which both
Alice and Bob have a single detection each per OAM subspace
in one run. To achieve this, it suffices to use detectors which
distinguish among zero, one, and more than one photon. Such
detectors have been experimentally demonstrated [27,28].
Also, actual photon-number-resolving detectors have been
realized (e.g., see Refs. [29,30]) with increased detection
efficiencies [31].

2. State preparation: Deterministic case

A more suitable approach, however, is to prepare the
source state in a deterministic way by, e.g., using an array
of d polarization-entangled-photon sources (EPS) generating
exactly one photon pair at a time. Existing semiconductor
quantum dot (QD) systems provide a suitable platform for
single-photon generation [32,33], as well as generation of
entangled photon pairs on demand with high efficiency [34].
Rapid experimental progress is also being made towards
implementing arrays consisting of several QD high-fidelity-
entangled-photon-pair emitters on the same chip [35]. Here,
we propose a setup utilizing d EPS (see Fig. 2). OAM of
� = n, for example, is then individually imprinted on photons
emitted by the nth source to yield state |φ〉n, resulting in
basis states that are assigned as shown below. The photons
in an entangled pair are usually generated using the biexciton-
exciton-vacuum cascade and are separable based on their
wavelength. Individual photons from different pairs may then
be combined into one beam using an OAM combiner (i.e., a
coherent OAM sorter operated in reverse) to obtain the source
state |�d

sε〉 [Eq. (5)]. For this case, the entangled state |φ〉D
n
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(a) State preparation (deterministic case) (b)  Measurement (deterministic case)
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FIG. 2. (Color online) Schematic diagram for a deterministic implementation of the proposed QKD scheme (a) Suggested preparation of
the source state using an array of single-entangled-photon-pair sources (EPS), spatial light modulators (SLMs), splitters, and OAM combiners.
(b) Suggested measurement setup for Alice (Bob). Measurements 1, 2, and 3, i.e., Aj and Bk (j,k = 1,2,3), are respectively selected randomly
(e.g., using beam splitters) on Alice’s and Bob’s side. For the Bell test, Alice (Bob) sets the half-wave plate (HWP3) orientation angle to
implement the randomly chosen measurement. HWP3 and PBS6 are used for polarization analysis in the Bell test. As in Fig. 1, OAM sorting
is used to resolve the qubit subspaces and/or establish the key.

within the nth subspace defined as

|φ〉D
n = (|HA,HB〉′n + |VA,VB〉′n)/

√
2, where (10)

|HA,HB〉′n = |n,H 〉A ⊗ |n,H 〉B,

|HA,VB〉′n = |n,H 〉A ⊗ |n,V 〉B,
(11)|VA,HB〉′n = |n,V 〉A ⊗ |n,H 〉B,

|VA,VB〉′n = |n,V 〉A ⊗ |n,V 〉B.

We note that the source state [Eq. (5)] is essentially the
same for both the probabilistic and deterministic preparations
except for a change in the basis state assignment of the
OAM measurement. This basis selection is simply for the
convenience of experimental implementation specific to each
method of state preparation.

B. Measurement settings

As in the standard case for the generalized E91 protocol
described in Sec. II, our scheme using the state (5) also involves
three measurement settings randomly and independently cho-
sen by Alice and Bob. However, the settings A1,2 and B1,2 are
now achieved using polarization measurements for maximal
CHSH-Bell inequality violation. These measurement settings
each have two outcomes, “+” and “−”. For key generation,
A3 and B3, (or A0 and B1) are the same as described above.
An important aspect of our scheme is to perform both key
generation and Bell tests individually in each nth subspace (or
channel), and simultaneously for all n = 1, . . . ,d, using the
same Bell-test setup.

1. Measurement: Postselective case

To achieve the simultaneous measurements for the case of
the nondeterministic state preparation outlined in Sec. III A 1
above, Alice and Bob need to first perform local operations
which make the respective OAM states degenerate for or-
thogonal polarizations of Alice’s and Bob’s photons within
each nth subspace, i.e., to disentangle the polarization and
OAM degrees of freedom. This can be achieved if, e.g., Alice
(Bob) subtracts (adds) � of OAM for the vertically polarized

photons [using the combination of PBS1, SLM1, and PBS2 in
Fig. 1(b)]. This operation by Alice and Bob can be described
by the transformations Q̂A and Q̂B where

Q̂A =
d∑

n=1

|2n,H 〉A〈2n,H |A + |2n,V 〉A〈2n − 1,V |A,

Q̂B =
d∑

n=1

|−2n,H 〉B〈−2n,H |B+|−2n,V 〉B〈−2n − 1,V |B.

(12)

Note that this only causes a transformation of the basis states
defined in Eq. (7) as follows:

|HA,HB〉n Q̂A⊗Q̂B−−−−→ |HA,HB〉Qn = |2n,H 〉A ⊗ |−2n,H 〉B,

|HA,VB〉n Q̂A⊗Q̂B−−−−→ |HA,VB〉Qn = |2n,H 〉A ⊗ |−2n,V 〉B,

|VA,HB〉n Q̂A⊗Q̂B−−−−→ |VA,HB〉Qn = |2n,V 〉A ⊗ |−2n,H 〉B,

|VA,VB〉n Q̂A⊗Q̂B−−−−→ |VA,VB〉Qn = |2n,V 〉A ⊗ |−2n,V 〉B.

(13)

A combination of a HWP and a PBS can now carry out the
Bell-test polarization measurements (A1,2 or B1,2) for each
value of n.

We can write the CHSH inequality in the nth subspace as

Sn = En(A1,B1) − En(A1,B2) + En(A2,B1)

+En(A2,B2) � 2, (14)

where the correlation coefficients of the measurement Ai

performed by Alice and Bj by Bob are defined as

En(Ai,Bj ) = Pn(Ai = Bj ) − Pn(Ai �= Bj ). (15)

Pn(Ai = Bj ) and Pn(Ai �= Bj ) are probabilities for equal and
unequal outcomes respectively, determined experimentally
using the coincidence rates within each nth subspace. The
detector settings for the CHSH Bell inequality violation could
be specified as measurements in the bases {|m+(θ )〉,|m−(θ )〉},
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where

|m+(θ )〉 = − cos(2θ )|±2n,H 〉 + sin(2θ )|±2n,V 〉,
(16)|m−(θ )〉 = sin(2θ )|±2n,H 〉 + cos(2θ )|±2n,V 〉.

In the ± sign above, + applies to Alice and − applies to Bob. A
half-wave plate oriented at an angle θ rotates the measurement
basis of a polarizing beam splitter (PBS), i.e., {|H 〉,|V 〉} to
{|m+(θ )〉,|m−(θ )〉}. If we set

θa
1 = 0, θa

2 = π/8, θb
1 = π/16, and θb

2 = 3π/16 (17)

as values of θ for A1,A2,B1, and B2 respectively so that
Alice and Bob always measure in bases which are mutually
unbiased with respect to each other, then we will ensure the
commutativity of Alice’s and Bob’s measurement outcomes
and get the maximal violation of 2

√
2 for each nth subspace

of state (5). Using the basis notation defined above [Eq. (13)],
the corresponding Bell operator [36–38] can be written as

Ŝn =
√

2
(|HA,HB〉Qn 〈HA,HB |Qn + |VA,VB〉Qn 〈VA,VB |Qn

+ |HA,HB〉Qn 〈VA,VB |Qn + |VA,VB〉Qn 〈HA,HB |Qn
− |HA,VB〉Qn 〈HA,VB |Qn − |VA,HB〉Qn 〈VA,HB |Qn
+ |HA,VB〉Qn 〈VA,HB |Qn + |VA,HB〉Qn 〈HA,VB |Qn

)
. (18)

Obtaining the statistical data for the Bell test requires either
carrying out a detection which resolves both polarization and
OAM or, as illustrated in Fig. 1(b), reversing operation Q̂A/B

to re-establish OAM-polarization entanglement (using SLM2
and PBS4), and then carrying out OAM detection. We define
the operations to reverse Q̂A/B as

Q̂−
A =

d∑
n=1

|2n,H 〉A〈2n,H |A + |2n,V 〉A〈2n + 1,V |A,

Q̂−
B =

d∑
n=1

|−2n,H 〉B〈−2n,H |B+|−2n,V 〉B〈−2n + 1,V |B.

(19)

Since the state within the nth subspace [Eq. (6)] is maximally
entangled, it gives a maximal violation of the CHSH inequality
based on operator (18)

Sn(|φ〉n 〈φ|n) = Tr(Ŝn |φ〉n 〈φ|n) = 2
√

2 � 2. (20)

2. Measurement: Deterministic case

When the state is prepared deterministically as described in
Sec. III A 2, operators Q̂

(−)
A and Q̂

(−)
B [Eqs. (12) and (19)] are

not necessary for the measurements. As in the nondeterministic
case, the Bell test is carried out using a combination of a HWP
and PBS [see Fig. 2(b)], but photon number resolution and
final postselection are not required. Due to the difference in
basis assignment in this case, we redefine the detector settings
for the CHSH Bell inequality violation as measurements in the
bases {|m+(θ )〉′,|m−(θ )〉′}, where

|m+(θ )〉′ = − cos(2θ )|n,H 〉 + sin(2θ )|n,V 〉,
|m−(θ )〉′ = sin(2θ )|n,H 〉 + cos(2θ )|n,V 〉. (21)

The optimum settings (specified by θ ) for the HWP are the
same as in Eq. (17) above, and the resulting Bell operator for
this case [see Eq. (11)] is

Ŝn =
√

2(|HA,HB〉′n 〈HA,HB |′n + |VA,VB〉′n 〈VA,VB |′n
+ |HA,HB〉′n 〈VA,VB |′n + |VA,VB〉′n 〈HA,HB |′n
− |HA,VB〉′n 〈HA,VB |′n − |VA,HB〉′n 〈VA,HB |′n
+ |HA,VB〉′n 〈VA,HB |′n + |VA,HB〉′n 〈HA,VB |′n). (22)

The state represented by Eq. (10) is also maximally
entangled within the nth subspace for this case, and it
gives a maximal violation of the CHSH inequality based on
operator (22) when the key has not been eavesdropped.

C. Security against collective attacks

Any eavesdropping of the key is essentially a measurement
strategy that will destroy polarization entanglement which is
used to establish the key. This in turn degrades the CHSH Bell
inequality violation [1] in any respective OAM subspaces.
A collective attack is one in which the eavesdropper (Eve)
applies the same operation on each of Alice’s and Bob’s
particles, but has no other limitations. In particular, she is
allowed to have access to a string of qubits from Alice or Bob
at one time, and to other dimensions of their particle states,
even possibly unknown to Alice or Bob. Since Eq. (5) is a
product state of d entangled qubits pairs, our scheme is essen-
tially a multiplexing of multiple polarization-entangled qubit
pairs by means of a higher-dimensional degree of freedom,
followed by independently testing the CHSH Bell inequality
simultaneously—Eve’s access to one or more source states in
our scheme is equivalent to her access to a string of qubits
on which she can perform joint (coherent) measurements.
Therefore, the security of our scheme is completely guaranteed
by the security of the individual qubit-based schemes against
collective attacks [16]. This, in turn, implies security against
the most general, so-called coherent attacks [16,39] if an
application of the exponential quantum de Finetti theorem
can be made [40]. This is indeed the case in our scheme (under
the assumption of finite-dimensional subsystems) because
our source state is invariant under permutation of Alice and
Bob, and their measurement outcomes are commutative, as
mentioned above [Eq. (17)]. These results apply fully to our
large-alphabet protocol since it is equivalent to simultaneous
but independent 2-qubit secure protocols. The total bit rate
generated securely against collective attacks as a function of
Bell parameters Sn can therefore be written as [17]

r �
∑

n

1 − h(Qn) − h

(
1 +

√
(Sn/2)2 − 1

2

)
, (23)

where h is the binary entropy and Qn is the quantum bit
error rate for channel n. As shown in Fig. 3, larger measured
Bell violations mean higher secure key rates per run. Our
scheme gives a d-fold enhancement over the traditional
2-qubit schemes as a large-alphabet scheme, but uses a
much simplified Bell-test measurement setup compared to a
traditional large-alphabet scheme.

The implications of loopholes for QKD based on Bell’s
theorem is worthy of some mention here. Closing the locality
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FIG. 3. (Color online) Comparison of the minimum secure key
rate rmin as a function of the Bell parameter S and the quantum
bit-error rate (QBER) Q, in a single run, for our scheme with a
qubit-based E91-type protocol [17,18]. We assume that the quantum
bit-error rate Q and Bell parameter for each channel is the same,
i.e., Qn = Q and Sn = S respectively for all n. Our scheme shows a
d-fold enhancement in secure key rate.

loophole in general requires enforcing a spacelike separation
between Alice and Bob as required for testing nonlocality [41],
but in the context of our QKD scheme, it would be sufficient
to guarantee that no quantum signals can travel from Alice
to Bob by ensuring proper isolation of Alice’s and Bob’s
locations [18]. Also, a proper closure of the detection loophole
is required for completely guaranteed security. This seems
promising as it has already been achieved in a photon-based
Bell-test experiment [42].

IV. CONCLUSION

Our scheme offers significant advantages over current
generalized E91 schemes. It results in a greatly simplified
security verification and key generation setup which does
not get more complicated with increasing d, except for an
increase in the number of output ports of the OAM sorting
device. It thereby provides a route to boosting the secure key
rates in entanglement-based QKD without the usual increased
complexity of Bell tests in high dimensions. It also benefits
from the relative tolerance of two-dimensional Bell tests to
measurement error. Although it is known that the amount

of violation for an actual D-dimensional Bell test increases
with D, these increments are marginal even in the ideal
case and level off as D increases [20,43]. Also, the high
sensitivity of the complicated measurement setup to errors will
usually overwhelm these increments even for modest values
of D, resulting in smaller violations than in the qubit case.
Another advantage of our scheme where an SPDC source
is used is that nonmaximal high-dimensional entanglement
will not generally degrade the the verification of security. For
example, the spiral bandwidth [44] of the SPDC source will
not generally degrade Bell violation, but will only limit the
effective number of OAM channels in the nondeterministic
case. In contrast, if generalized OAM-based Bell tests are used
without procrustrean filtering, then a small spiral bandwidth
might cause a failure of the Bell test for an entangled state [4].

In summary, this paper has described a practical scheme in
which a single CHSH-Bell test setup combined with a full pro-
jective measurement is sufficient for security verification even
for a large-alphabet scheme capable of arbitrarily large key
rates per run. The scheme is simpler to implement than existing
generalizations of E91 protocol to high dimensions because it
circumvents measurements in mutually unbiased bases in high
dimensions while maintaining capacity for large key rates
and security against collective attacks. A second significant
advantage is that nonmaximal high-dimensional entanglement
will not necessarily degrade the verification of security. We
point out that the scheme is realizable using current technology
by mentioning two examples for generating applicable source
states, namely, spontaneous parametric down conversion and,
more suitably, source of single pairs of entangled photons,
such as semiconductor quantum dots. From the point of view
of real-world applications of high-dimensional QKD based
on photon OAM in free space, judicious selection of basis
states [45,46] will increase resilience against decoherence
induced by atmospheric turbulence in a free space implemen-
tation. Although this can be applied within the framework of
this scheme, implementations with time bins [10,47] or paths
appear especially promising for long-distance applications.
The complexity of security verification in large-alphabet
entanglement-based QKD makes it apparent that the simplified
scheme presented here will likely enable otherwise infeasible
secure key rates in QKD, enabling more practical implemen-
tations of entanglement-based technologies.
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