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Dates as data revisited: A statistical examination of the Peruvian Preceramic radiocarbon record 

 

Abstract 

This paper adopts a formal model-testing approach to the Peruvian radiocarbon (14C) record, the site 

of the first aggregate analysis of this type of archaeological data. Using a large and improved regional 

dataset of radiometric determinations (n = 1180) from the period 14000 – 3000 14C years before 

present, the study performs a comparative analysis of the demographic trajectories of two sub-

regions, the desert coast and Andean highlands. Against the backdrop of theoretical models of 

population growth, and controlling for taphonomic factors and sampling biases, the study performs 

global significance and permutation tests on the data. These provide a necessary measure of statistical 

confidence that have hereto been absent from the discussion of pre-Columbian demography. Contrary 

to the findings of prior work, this study of radiocarbon data in Peru reveals that regional trends in the 

data are statistically indistinguishable. Further testing and comparison to climate archives is able to 

illustrate sustained population growth over the entire Holocene epoch in this region, with only a few 

notable exceptions at the end of the mid-Holocene (5000 cal BP). The findings of the analysis are 

viewed in relation to the cultural and technological changes that indigenous societies experienced in 

the timeframe in question, and some directions for methodological advances are suggested. 
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1. Introduction 

More than three decades have passed since the publication of John Rick’s seminal paper on the 

preceramic radiocarbon (14C) record of coastal and highland Peru (Rick 1987). This work marks a 

watershed moment in model-based archaeology, as the principles defined in this paper went on to 

inspire a wealth of developments on the quantitative analysis of radiocarbon dates (Gamble et al. 

2005; Surovell and Brantingham 2007; Williams 2012; Weninger et al. 2015). Most significant among 

these developments are robust statistical frameworks for assessing spatiotemporal trends in large 14C 

datasets (Shennan et al 2013; Timpson et al. 2014; Crema et al. 2016; Palmisano et al. 2017; Crema et 

al. 2017; Edinborough et al. 2017; Bronk Ramsey 2017). Model-testing approaches such as these 

represent a significant advance on “eyeballing” peaks and troughs in the summed probability 

distributions of calibrated radiocarbon dates (hereafter SPDs), which until relatively recently have 

remained the norm. The advance of time has also brought improvements in atmospheric and marine 

calibration curves (Reimer et al. 2013; Hogg et al. 2013), as well as an expansion in the quantity of 

available 14C dates in the published literature. This paper aims to re-evaluate the themes explored in 

the Peruvian 14C record (Rick 1987), by capitalising on these methodological advances. 

 

Previous findings based on the aggregation of radiocarbon data (Rick 1987) imply that the societies of 

the preceramic period in what is today Peru experienced divergent regional population histories from 

initial colonisation until the rise of complex aceramic polities around 3000 cal BP. To summarise the 

specifics, this study argued that the coast and highlands had significantly different resource bases to 

draw from, and consequently derived an expectation of different demographic trajectories. While 

accounting for time-dependent loss of sites and regional sampling biases, the observed distributions 

of 14C dates implied continuous exponential growth in the Coastal region, while in the Highlands a 

ceiling was quickly reached whereupon population stabilised around a mean, in the manner of a 

logistic curve. Although principally a methodological exercise, Rick’s Dates as Data paper (1987) 

helped to confirm the precocious nature of desert coast population expansions and set the scene for 

subsequent developments in the aggregate analysis of radiocarbon data (Williams 2012; Timpson et 

al. 2014; Bronk Ramsey 2017). In the process, this added a novel perspective on demography to the 

quiver of archaeologists studying the rise of complex pre-Columbian societies as rooted in maritime 

adaptations (Quilter and Stocker 1983; Moseley 1992; Haas and Creamer 2006; Pozorski and Pozorski 

2008). Due to the importance of this study for our understanding of pre-Columbian population 

fluctuation over a long span of time, the benefits of more advanced methods, as well as more 

expansive radiocarbon and comparative datasets can help further explore the issues raised and the 

trends identified in the original study. 
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The period investigated in Dates as Data (13000 – 3000 14C years BP) saw several important 

developments among indigenous South American cultures. Among these is the transition from 

economies reliant on wild and intensively managed resources, towards an ever-increasing proportion 

and variety of cultigens in dietary profiles, as plants were domesticated and spread throughout South 

America (Pearsall 2008; Piperno 2011). Furthermore, physical adaptations to high altitude 

environments may have been necessary (Aldenderfer 2006). Several significant climatic fluctuations 

also took place in parallel to major cultural and technological transitions over this period, in particular 

the end of the Pleistocene (11700 cal BP), the Mid-Holocene phase (8200 to 4200 cal BP), and the 

intensification of the El Niño Southern Oscillation (ENSO) as the Holocene progressed (Thompson et 

al. 2000; Moy et al. 2002; Walker et al. 2012). Intuitively, colonising groups inhabiting the range of 

biomes between the coastal strip and the highlands would have been required, over time, to deploy 

a similarly diverse set of strategies in the face of a potentially rapidly changing world (Aldenderfer 

1999; Sandweiss 2003; Sandweiss et al. 2007). By the end of the preceramic period, complex and semi-

sedentary societies are evident from the settlement, monumental, and bioarchaeological records 

(Shady Solis et al. 2001; Haas et al. 2004; Pozorski and Pozorski 2008; 2017). This wealth of new data 

available to archaeologists and the explicit references to population growth models by Rick (1987) 

provide useful starting points for the following investigation. The propositions of this model, in 

particular the identification of distinct demographic trends at different altitudes, provides a useful 

starting point for correlations between environment and long-term change in demography, which this 

study aims to test and compare directly. Nonetheless, the evidence for human presence in the desert 

coast and Andes before circa 14000 calendar years before present (cal BP) is contentious and sparse 

(Aldenderfer 2006; Rademaker et al. 2013; cf. Dillehay et al. 2015). This study focuses on pre-

Columbian demography for the period 14000 – 3000 cal BP, after which the available archaeological 

evidence for human presence is on much stronger footing.  

 

2. Materials and methods 

The dataset employed here is composed of 1180 14C dates (Figure 1), compiled from published articles 

and compendiums (see particularly Rademaker et al. 2013; Goldberg et al. 2016). While unlikely to be 

exhaustive, represent at least a majority of the preceramic archaeological radiometric determinations 

in Peruvian territory. As a standard hygiene protocol (Shennan et al. 2013; Crema et al. 2016), 96 dates 

with standard errors >±200 years have been excluded. In the analyses, dates are calibrated using the 

latest southern hemisphere calibration curve (Hogg et al. 2013), except for determinations on marine 

shell and human remains (n = 138, 11.7% of the dataset), which use the offset Marine13 curve (Reimer 



4 
 

et al. 2013), as marine resources are a potential source of ancient carbon affecting these dates 

(Ascough et al. 2005; Bronk Ramsey 2008). Regional marine reservoir offset values (ΔR) from mollusc 

shells of known age are used to calibrate the marine samples, although considering the highly variable 

patterns of marine upwelling in the eastern Pacific over time, there is likely some residual errors (Jones 

et al. 2007). The use of these offsets permits a first order of approximation in this case.  

 

To maintain comparability with the original paper, the same criteria are used to define subsets of the 

data. That is, Coastal dates are in the range 0-1000 m above sea level, and those above 1500 m are in 

the Highland group (Rick 1987, 58). Sampling biases and site destruction likely explain the absence of 

dates between 1000-1500 m (Rademaker et al. 2013, 42). Here, dates above the 1000 m contour are 

all grouped in the Highland category (n = 470), while those below are Coastal (n = 780). Although a 

separate analysis of data from the intermediate 1000-1500 m zone would be ideal, only 37 dates are 

located here. The few dates obtained (<10) for the preceramic period of Peruvian Amazonia are not 

employed in the present study.  

 

The method employed for investigating population history through the 14C record follows that of other 

practitioners performing quantitative analyses on radiometric data. This makes use of the R statistical 

environment (R Core Team 2017) to implement procedures in the package ‘rcarbon 1.1.2’ (Bevan and 

Crema 2017). SPDs of calibrated radiocarbon dates are employed as a proxy for past fluctuations in 

Figure 1: Kernel density estimate (points/km2) and distribution of Peruvian 14C dates (n=1180) used in this 
paper (left). Frequency (top right) and non-normalised summed probability distribution (bottom right) of 
calibrated 14C data in 200-year bins from 14000 to 3000 cal BP.  
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relative population in Coastal and Highland Peru. Archaeological analyses of this nature fundamentally 

rest on the assumption that relatively larger populations introduce more carbon into the material 

record, resulting in a proportionate amount of 14C determinations produced by archaeologists in the 

present. Formation processes and preservation bias, taphonomic loss, calibration curve effects, site- 

and regional-level sampling biases, and varying reporting conventions notwithstanding, this 

assumption has proven to be robust under many conditions (Rick 1987; Timpson et al. 2014; Weninger 

et al. 2015; Crema et al. 2016; Goldberg et al. 2016; Edinborough et al. 2017; Bevan et al. 2017; cf. 

Contreras and Meadows 2014). Summarising the analysis undertaken here, the following procedures 

are performed on the Peruvian 14C data: 

 

I. Radiocarbon dates are calibrated and aggregated by site into non-overlapping phases for each region 

over the period 14000 – 3000 14C BP, with an additional 500 years sampled at the extremes of this 

range to mitigate edge effects. Aggregation is carried out to account for the overrepresentation of 

very well-dated sites. A sensitivity analysis was undertaken to ascertain the effect of bin sizes 

(Supplementary Information), which indicates that only very low values (<100 y) have large effects on 

SPD shape. A bin size of 200 years was employed, well above the median error of 80 years in the 

dataset. 

 

II. The probability distributions of the calibrated dates are summed over the period. This is performed 

separately for the coast and highlands over the period of interest, but also using the entire dataset 

(see Figure 1, bottom right). Following discussion in Weninger et al. (2015) and further discussed in 

Bevan et al. (2017), the probability distributions are not normalised, reducing the effect of peaks and 

plateaus in the calibration curves on the shape of the final SPD. The SPDs display a 50-year running 

average of the probability distribution.  

 

III. The goodness-of-fit of each regional SPD to the inferred population growth trend in Rick (1987) is 

evaluated, by fitting the calibrated data to a generalised exponential and logistic model for both the 

Coast and the Highlands. The most parsimonious fitted model for each was selected with the use of 

an information criterion (Sakamoto et al. 1986). A sample of calendar dates equal to the number of 

bins are drawn from the fitted model, converted to 14C dates, re-calibrated, and their probability 

distributions summed. Errors for the re-calibration were generated by sampling with replacement 

from the empirical 14C errors. Through an additional Monte Carlo procedure of 1000 runs of this 

protocol, 95% confidence intervals are derived (Timpson et al. 2014). This procedure omits the marine 

dates from the analysis, as only a single calibration curve can currently be employed for generating 
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confidence envelopes (Bevan and Crema 2017). The two SPDs with marine dates and without marine 

dates are highly correlated (R2 = 0.99, p < 0.01, Pearson) and can be expected to capture very similar 

changes over time in post-calibration probability densities.  

 

IV. Finally and separately, using a permutation test with random assignation of the regional affiliation of 

all dates (including marine dates), a distribution of simulated SPDs are generated from 1000 Monte 

Carlo runs, from which 95% confidence intervals are derived. The empirical SPDs of both regions can 

are compared against both each other and the pan-regional trend. 

 

The above procedures explore the salient features of the Peruvian radiocarbon record first highlighted 

in Rick (1987), specifically: i) the extent to which preceramic Coastal demography differs from that of 

the Highlands, ii) the nature of population trajectories in each broadly-defined setting, and iii) the 

potential effects of biases (taphonomic deletion, sampling biases, sea level rise), as the use of 

exponential models has the additional advantage of mimicking time-dependent loss of archaeological 

sites through these mechanisms (Surovell and Brantingham 2007; Crema et al. 2016). Both sets of 

tests permit local and global tests of significance to be estimated, and regional population histories to 

be compared through z-transformation of the empirical and simulated SPDs (Bevan and Crema 2017). 

Although the Peruvian record suffers from significant selection bias against the highlands (Rademaker 

et al. 2013), the large quantity of dates from multiple projects likely offsets any bias stemming from 

any single investigation.  

 

3. Results 

Comparison of the fitted exponential and logistic null models using Akaike’s Information Criterion 

indicates that for both datasets an exponential model is most parsimonious (ΔAICCoastal = 259.98 and 

ΔAICHighland = 327.17). This model is reported on here, however, the code and data are supplied for 

replicating both results (Supplementary Information). This result is striking in itself, as Rick (1987) was 

previously unable to fit his Highland dataset to a model of exponential growth due to the strong 

dissimilarities between his datasets. It seems plausible that with the advance of time, the quantity of 

new research (particularly in early periods, see Rademaker et al. 2013) has altered the structure of the 

Peruvian 14C record substantially, explaining the differences. The results initially suggest that Highland 

and Coastal communities, for the definitions employed here, experienced relatively similar overall 

trajectories of growth, decline, and/or stability from initial colonisation until the rise of complex 

societies in the Late Archaic after circa 3000 cal BP. Nonetheless, both empirical SPDs are significantly 

different from their respective null models (p < 0.01) and necessitate further examination (Figure 2). 
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Both the Highland and Coastal SPDs are in line with model expectations for the initial two millennia 

and experience significant upturns in the millennia surrounding 11000 cal BP, however, this pattern is 

far more sustained in the Highland dataset, on the order of a millennium. Around ~9500 cal BP a robust 

upturn can be seen in the Coastal dataset, but a similar pattern in the Highlands is so slight that it 

could likely be due to the expected 5% sampling error (Crema et al. 2016). The same issue applies to 

the small upturn in the coast just before 10000 cal BP and around ~8500 cal BP. Again, at this point, 

where the Coastal record barely exceeds the null model, the Highland record shows a more 

pronounced period of growth beyond model expectations.   

 

Figure 2: Results of fitting and comparing the Highland (top) and Coastal (bottom) empirical summed 
probability distributions against exponential models of population growth. Grey envelopes are based on 
1000 Monte Carlo runs.  
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Following this initial phase of steady growth punctuated by periodic upturns (14000 – 8500 cal BP), 

both SPDs begin to record crashes resulting from repeated phases of population deflation, albeit with 

large qualitative differences.  Beginning around ~7500 cal BP, the Highland 14C record suggests three 

marked periods of population collapse, bracketing short recoveries lasting in the order of three to four 

centuries. In contrast, the coast of Peru experiences its first significant downturn somewhat later, 

around ~7700 cal BP, followed by a gap of 1500 years until the second downturn ~6100-5900 cal BP. 

Another millennium of expected growth occurs before the most sustained period of coastal deflation 

between 4900-4500 cal BP. The recovery after the final phase of deflation is so abrupt that by ~4100 

cal BP, the empirical SPD exceeds the opposite edge of the simulation envelope. The post-deflation 

recovery in the Highland dataset produces a similar pattern by ~3500 cal BP.   

 

These trends reflect numerous qualitative similarities and differences between the two subsets of the 

Peruvian 14C record. The regional permutation tests, however, provide a more direct comparison 

between the shapes of the SPDs, and hence the degree to which they may represent divergent 

Figure 3: Empirical summed probability distributions of Coastal and Highland 
radiocarbon dates, compared to a 95% confidence envelope (grey) derived from the 
combined dataset. Permutation testing indicates a high degree of correlation 
between each regional demographic trajectory over time. 
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regional trajectories. The global results of the permutation test suggest that there is no difference 

between the two sets of dates (p > 0.05 in both cases), notwithstanding very brief local divergences 

just before and after ~6000 cal BP. The two crashes observed in the Highland SPD mirror the positions 

of the first and last periods of population deflation in the model testing (Figure 2, top), during which 

the Coastal record is experiencing normal growth per model expectations. In contrast, all the 

preceding phases of significant positive deviation detected in the model testing approach do not 

appear in the permutation test. This is likely due to the patterns being a) largely concurrent, meaning 

no difference on a global level can be registered between the two SPDs and, b) in the cases where 

there are notable differences, they not sustained for longer periods of time. Nonetheless, a Highland 

expansion close to 3000 cal BP is plausible (Figure 3, top), yet could be due to unaccounted-for edge 

effects, while the reality of a Coastal bust (Figure 3, bottom) appears unlikely given the previous results 

(see Figure 2). Overall, the statistical testing and qualitative assessment of the SPDs and envelopes 

indicate little divergence from the null hypothesis of no difference between Coastal and Highland 

demographic trajectories (cf. Rick 1987). I now consider the implications of these findings. 

 

4. Discussion  

This section evaluates the results of this study against past approaches to indigenous South American 

demography that employ archaeological SPDs of calibrated 14C dates. Following precedent (Shennan 

et al. 2013; Crema et al. 2016), the simulation-based approach employed here permits statistical 

confidence in the results to be estimated both globally and locally. First, I tackle the regional 

population histories of the Pacific coast and the highland interior of Peru comparatively. Second, I 

compare the long-term demographic trends revealed by the SPDs against extant knowledge on 

transitions in society and environment from the Terminal Pleistocene to the Late Holocene. Finally, I 

address the implications of this in the context of broader cultural trends and technological innovations 

across Peru from colonisation to the end of the preceramic period.  

 

The permutation tests reveal robust and consistent cross-regional patterns that permit population 

trends to be discussed comparatively. Contrary to previous analyses of the Peruvian 14C record, 

remarkable consistency between the coast and the highlands can be observed from 14000 until 3000 

cal BP (Figure 3). Nonetheless, the permutation test SPDs fall outside the 95% confidence intervals for 

brief periods during the middle Holocene, at approximately 7000-6700 cal BP and 5900-5600 cal BP. 

These intervals provide the strongest evidence for local depopulation/expansion events at specific 

points in time. A later divergence between the two regions also occurs towards the very end of the 

Archaic period, however, without additional data extending into the later Holocene (in cultural-
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historical terms, the Initial Period onwards), it remains challenging to ascertain how consistent this 

pattern is beyond the period investigated here.  

 

The greatest differences, as noted, take place in two defined intervals within the Middle Holocene 

chron, a critical phase of transition in terms of both climate and culture in the study region (Sandweiss 

et al. 1999; Keefer et al. 2003; Gayo et al. 2015). Nonetheless, it is possible that the regional divisions 

implemented here are masking potentially more profound variation between different sets of sub-

regions. Indeed, this was raised in the original study (Rick 1987, 68), particularly as concerns another 

distinctive Andean biome: the puna. Human societies face a significantly different set of challenges to 

the successful colonisation of this environment, a montane region of grasslands that begins 

approximately 3200 metres above sea level, compared to both the coast and the lower reaches of the 

highlands. These include hypoxic conditions requiring progressive adaptation, as well as patchy water 

resources (Aldenderfer 2006; Núñez et al. 2013; Rademaker et al. 2014; Yacobaccio et al. 2017). 

Furthermore, as most high Andean precipitation is derived from the South American Summer 

Monsoon (and ultimately, the Atlantic Ocean) system, large parts of the puna are particularly 

vulnerable to aridification caused by a weakened monsoon (Núñez et al. 2002; 2013). A different set 

of population dynamics could be expected given these constraints and conditions over the range of 

the Holocene, which in turn ought to be reflected in the 14C record.  

 

To test this, I repeated the permutation test with three different subsets. Puna dates are inclusively 

defined as those from sites with elevations >3200 m, based on the SRTM elevation model v4.1 (Jarvis 

et al. 2008). The range of Coastal sites is reduced to 0-500 m elevation, while a third, new Intermediate 

group covers the interval 500-3200 m. Excepting the quantity of dates per group (Coastal = 599, 

Intermediate = 343, Puna, n = 238), all other parameters described above were held the same. This 

version of the permutation test (Figure 4) provides an alternative view of disaggregated regional 

population trends to the prior comparison of desert coast and highlands.  

 

This second permutation test shows significant deviations from the null hypothesis in the Puna and 

Intermediate datasets, and a global p-value of just above the significance threshold for the Coastal 

group. Population expansion is still evident in the desert coast around ~6000 cal BP, however, here it 

is joined by population deflation around ~11000 cal BP that is also observable in the Puna to a much 

greater degree. It ought to be cautioned that this very early Puna gap may be due to a comparative 

lack of research in extreme high-altitude environments, or perhaps, its hostility to initial colonisation 

efforts (Aldenderfer 2006). In contrast, the Intermediate zone shows a long, sustained period above 
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the pan-regional trend between approximately 12800 – 10800 cal BP, and again in the centuries 

around 10000 cal BP. Mid-Holocene population crashes  that appear in the Highland dataset appear 

to have been shifted towards the late Holocene transition (4200 cal BP) in the Intermediate dataset. 

At the same time, the Highland deflation around ~7000 cal BP (lasting some four centuries) is 

approximately concurrent with a similar pattern observed in the Puna in this test. By comparison, 

Coastal population levels appear to have thrived over these same intervals, although joined by the 

Puna around ~5000 cal BP while the Intermediate zone was experiencing downturns. Overall, the 

picture presented by these three subregions of the Peruvian 14C data could suggest a degree of 

Figure 4: Regional permutation test between Puna 14C data (>3200 m), 
and Coastal and Intermediate zone data. 
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teleconnectivity between the demographic trends of different regions, however, they are also out of 

phase with one another important ways.  

 

Recent studies have marshalled population genetics, geoarchaeology, and importantly, climate 

archives to contextualise the wealth of data on pre-Columbian demographic processes (Keefer et al. 

2003; Dillehay and Kolata et al. 2004; Fehren-Schmitz et al. 2014; Perez et al. 2017). Figure 5a-c 

presents three palaeoclimatic archives for the Holocene that are of especial importance to 

contextualising millennial-scale demographic patterns illustrated by the model and permutation 

testing. Together they approximate the source and availability of water for the study regions over time 

(Pacific versus Atlantic), as ENSO introduces precipitation to the desert coast, while the SASM waters 

higher elevations. First, the Nevado Sajama ice core (Bolivia) records the quantity of dust particles 

over time as an index of aridity at altitude in the Andes (Thompson et al. 1998; 2000). Second, 

alkenone measurements from a series of marine sediment cores across a transect of water depths, 

and using the UK’
37 calibration, provides an estimate of sea surface temperature (SST) variation in 

Celsius (°C) along the Peruvian margin (Bova et al. 2015). This also indexes the degree of marine 

upwelling and hence the availability of different fish stocks (Chavez et al. 2003; Sandweiss et al. 2004). 

Third, and complementary to this, the 106KL marine sediment core records the concentration and 

accumulation rate (flux) of terrestrial lithic input from a continental shelf site (Rein et al. 2005). This 

provides a proxy for the frequency and intensity of ENSO events, as a driver of coastal flooding, 

highland aridity, sea temperature inversions, and resulting reconfigurations of coastal aquatic 

ecosystems (Moy et al. 2002; Keefer et al. 2003; Chavez et al. 2003; Sandweiss et al. 2004; Williams et 

al. 2008). Both concentration and flux are rendered as a percentage of the maximum recorded value 

in the core and must be interpreted together, as very low flux rates for the mid-Holocene could in part 

be due to erosional processes as well as a suppressed ENSO (Rein et al. 2005).  

 

Comparing the three regional SPDs (Figure 5d) with 50-year running averages of these data suggests 

some likely correlations between demography and Holocene climate variability. The spike in highland 

aridity at ~7000 cal BP, likely caused by a weakened SASM and possible ENSO activity at this point in 

time (Baker et al. 2001; Rein et al. 2005), precedes a significant crash in puna population. Later, more 

severe phases of aridity, corresponding to the Holocene lowstand of Lake Titicaca, (Baker et al. 2001), 

align closely with the crashes identified in the intermediate zone. These patterns largely agree with 

weak mid-Holocene anthropic signals that have been observed contemporaneously at similar 

elevations in the even more arid South-Central Andes (Núñez et al. 2013; Muscio and López 2016). 
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A depression in lithic input is coeval with a phase of warmer SST during the mid-Holocene (8200 – 

4200 cal BP), and indicates a weakened or absent ENSO phenomenon during this chron. Coastal 

populations appear to have benefitted from this configuration (see Figure 4, top; see also Sandweiss 

Figure 5: Proxies for regional palaeoclimate since the onset of the Holocene. a) 
Sajama (Bolivia) ice core particle counts (Thompson et al. 1998). b) Alkenone-
derived SST estimates for the eastern Pacific (Bova et al. 2015). c) Lithic input 
concentration (green) and relative accumulation rate (red) from the 106KL core 
(Rein et al. 2005). d) Summed probability distributions for the Coastal (grey), 
Intermediate (gold), and Puna zones (blue). 
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2003). Interestingly, the very strong phase of input around ~8200 cal BP, which has possible 

geoarchaeological correlates with catastrophic flooding and evidence of site abandonment (Fontugne 

et al. 1999; Keefer et al. 2003) is associated to concurrent long-term downturns in all three SPDs, 

which nonetheless fall within the range of variation expected by the envelope. Similarly, the re-

emergence of a strong ENSO with the commencement of the later Holocene (Moy et al. 2002) appears 

to have the largest impact on the Coastal SPD, displaying a sharp, albeit non-significant, downturn. 

Despite this, and the two closely-associated significant downturns in the Intermediate area, rapid 

recoveries are evident, suggesting a degree of resilience to abrupt climatic events by this time. A 

stronger than expected anthropic signal in the Peruvian puna at ~4900 cal BP, close to phases of peak 

aridity at altitude, also suggests that populations occupying highly distinct niches were beginning to 

adapt successfully to the challenges presented by a changing Holocene climate (Sandweiss 2003; 

Núñez et al. 2013; Marsh 2015).  

 

While demography does not always closely track climatic variability over the timespan in question, 

this should not be taken as evidence that there was a total absence of impact on the preceramic 

societies of Peru. Site abandonment or destruction was likely preceded by catastrophic flooding 

resulting from shifts in the ENSO regime (Fontugne et al. 1999; Sandweiss 2003), while also 

contributing to the deletion of mid-elevation sites (Keefer et al. 2003; Rademaker et al. 2013). 

Variability in access, adoption, and success rates of subsistence, social, and technological innovations 

also likely explains some of the out-of-phase demographic recoveries observed in the SPDs. The 

precocious adoption of a diversified resource base in the early Holocene likely afforded an initial 

measure of protection against sustained periods of climatic instability and aridity, for example at the 

onset of the middle Holocene. Only a few millennia after initial colonisation, early Holocene foraging 

societies in both the highlands and coast began to incorporate cultivated plants into their subsistence 

systems. The record of early plant cultivation reveals broad-spectrum use of domesticated crops in 

Peru, including squash, peanut, a variety of tubers, and beans, which complemented marine, aquatic, 

and terrestrial resource bases (Piperno and Dillehay 2008; Pearsall 2008; Piperno 2011). In parallel, 

these horticultural communities were experimenting with new forms of social organisation 

(Sandweiss et al. 1999). By the end of the preceramic period, rooted in processes observed in the mid-

Holocene record of Peru, politically and economically integrated hierarchical polities are an 

archaeological fact (Stothert et al. 2003; Dillehay et al. 2003; Pozorski and Pozorski 2008; 2017). In 

turn, this trajectory may have increased the reliance of horticultural and high-altitude agro-pastoralist 

societies on anthropic niches to reinforce their pre-existing and adaptive strategies (Brooks 2006; 

Boivin et al. 2016; Marsh 2016; Blockley et al. 2018).  
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In this, the pre-Columbian record of Peru may differ markedly from, for example Northern Europe, 

which experiences no implicit correlation between increased technological and subsistence 

sophistication, and societal resilience (see Bevan et al. 2017). Nonetheless, highly anomalous climatic 

events did have cascading effects, albeit frequently offset in time from the SPDs, and responses to 

climate change likely varied substantially on a local scale (see Fontugne et al. 1999; Keefer et al. 2003; 

Sandweiss 2003), particularly as ENSO-driven rainfall patterns can have a highly heterogeneous spatial 

distribution (Moy et al. 2002; Rein et al. 2005). This study has attempted to address questions at a 

scale commensurate with Rick (1987); future research aiming to trace the evolution of concurrent 

adaptive strategies in coastal, highland, and puna biomes by pre-Columbian societies will help to 

reveal the requisite conditions for the emergence of stratified polities. The results of this study 

underline that robust statistical frameworks should underpin comparative investigations, ideally using 

simulation techniques. 

 

5. Conclusions 

Except for a relatively small number of deviations on the centennial scale, the Peruvian 14C record for 

the desert coast, highlands, and puna form part of a single pan-regional demographic trend from the 

end of the Pleistocene until the late Holocene. Furthermore, these trajectories are only consistent 

with major climatic shifts in some circumstances. The strongest evidence for deleterious impact on 

indigenous societies can be found at major points of transition, such as the end of the Younger Dryas 

in the Coastal region, the late Holocene transition in the intermediate zone, and at peak mid-Holocene 

aridity in the puna. Nonetheless, population recovery is rapid and precedes alleged “ameliorations” in 

climate, particularly approaching the late Holocene (4200 cal BP onwards). This phase of transition, 

where ENSO activity and aridity peak, appear to have affected Intermediate populations more 

profoundly than those on the desert coast. Although population in terms of absolute numbers likely 

differed between the zones in question, their trajectories and sensitivity (or lack thereof) to climate 

change appear to be coeval in many cases. As a measure of relative population, SPDs provide useful 

insight into pan-regional dynamics over time. The results of the statistical tests argue against purely 

inductive pattern recognition for assessing population history using archaeological 14C data (see Rick 

1987; Araujo et al. 2005; Grosjean et al. 2007; Neme and Gil 2009; Mendéz et al. 2015; Gayo et al. 

2015; Barberena et al. 2017), particularly where climate change is invoked as a direct causal 

mechanism (Núñez et al. 2002; Yacobaccio et al. 2017). Explicit comparisons between theoretical 

models of population growth and empirical radiocarbon records are necessary, here as in previous 

work (Rick 1987).  
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Finally, it is worth reflecting on current methods of significance testing in the analysis of archaeological 

SPDs (see Bevan and Crema 2017). Future investigations and extensions of this method might pay 

more attention to the rate of change of the empirical SPD slope, meaning the growth rate of a 

theoretical population, rather than its deviation from a simulation envelope. Observe, for example, 

the slope of the SPD in Figure 4 (top) after the final positive deviation at ~6000 cal BP, discussed above. 

This drop, while non-significant, is much greater in amplitude than a concurrent (significant) event in 

the Intermediate subset. Methods for quantifying statistical deviation from the average gradient of 

an SPD might provide another way to study these oscillations of population levels around the mean 

trend (see also Edinborough et al. 2017), as large troughs may be suggestive of a large reduction in 

relative population levels that, nonetheless, do not attain statistical significance given the way in 

which the method current frames its null hypothesis.  

 

In summary, summed probability distributions of calibrated radiocarbon dates have provided a proxy 

for relative changes in pre-Columbian demography throughout the preceramic period of Peru. With 

the benefit of additional data and methodological advances, this produced some striking differences 

from prior findings in the study area (see Rick 1987), underscoring the value of marshalling these 

resources for the re-examination of such venerable studies (Huggett 2018). Broader-scale analyses of 

archaeological radiocarbon data can produce novel insights into a neglected area of research in the 

pre-Columbian Americas. The integration of established databases (for example, Williams et al. 2008; 

Gayo et al. 2015; Goldberg et al. 2016; Barberena et al 2017) into broader comparative frameworks, 

combined with high-resolution local palaeoclimatic and palaeoecological indices, will be instrumental 

in this regard. As the scale and legacy of environmental impact are necessarily linked to demography, 

precisely measuring the effects of prehistoric societies on the biosphere will increasingly becoming a 

concern in the human sciences. 
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