What is the nursing time and workload involved in taking and recording patients' vital signs? A systematic review

ABSTRACT

Aims and objectives: To synthesise evidence regarding the time nurses take to monitor and record vital signs observations, and to calculate early warning scores (EWS).

Background: While the importance of vital signs' monitoring is increasingly highlighted as a fundamental means of maintaining patient safety and avoiding patient deterioration, the time and associated workload involved in vital signs activities for nurses are currently unknown.

Design: Systematic review.

Methods: A literature search was performed up to 17 December 2019 in CINAHL, Medline, EMBASE, and the Cochrane Library using the following terms: vital signs; monitoring; surveillance; observation; recording; early warning scores; workload; time; and nursing. We included studies performed in secondary or tertiary ward settings, where vital signs activities were performed by nurses, and we excluded qualitative studies and any research conducted exclusively in paediatric or maternity settings. The study methods were compliant with the PRISMA checklist.

Results: Of 1,277 articles, we included 16 papers. Studies described taking vital signs observations as the time to measure/collect vital signs and time to record/document vital signs. As well as mean times being variable between studies, there was considerable variation in the time taken within some studies as standard deviations were high. Documenting vital signs observations electronically at the bedside was faster than documenting vital signs away from the bed.

Conclusions: Variation in the method(s) of vital signs measurement, the timing of entry into the patient record, the method of recording, and the calculation of EWS values across the literature makes direct comparisons of their influence on total time taken difficult or impossible.

Relevance to clinical practice: There is a very limited body of research that might inform workload planning around vital signs observations. This uncertainty means the resource implications of any recommendation to change the frequency of observations associated with early warning scores are unknown.

KEYWORDS

Vital Signs; Nursing; Monitoring; Early Warning Scores;

INTRODUCTION

Patients' vital signs and associated trends are accurate predictors of clinical deterioration (Brekke, Puntervoll, Pedersen, Kellett, & Brabrand, 2019; Churpek, Adhikari, & Edelson, 2016; Kause et al., 2004), and a failure to monitor them is associated with adverse patient outcomes, including death (Hogan et al., 2012; National Patient Safety Agency, 2007a). Often the measured vital signs values are used within aggregate early warning scoring systems to provide a single numerical assessment of the patient's risk of deterioration – an early warning score (EWS) (e.g. the National Early Warning Score, NEWS) (Royal College of Physicians, 2017). Measuring and recording vital signs, and calculating a EWS, are fundamental aspects of nursing work in acute care hospitals (Odell, Victor, & Oliver, 2009; Rose & Clarke, 2010). However, these activities are often incomplete (Mok, Wang, Cooper, Ang, & Liaw, 2015; National Patient Safety Agency, 2007b; Odell, 2015) or sometimes omitted completely (Palese et al., 2015; Schubert et al., 2013; Wood, Chaboyer, & Carr, 2019; Zander, Dobler, Baumler, & Busse, 2014), with inadequate nurse staffing (Griffiths, Ball, et al., 2018; Griffiths, Recio-Saucedo, et al., 2018; Odell, 2015) or long nursing shifts (Dall'Ora et al., 2019) cited as possible underlying reasons.

This raises the question of what the workload associated with taking vital signs observations is, and it highlights the importance of understanding the costs and benefits of changes in vital signs observation frequency. A recent systematic review found that implementing continuous monitoring in acute wards outside of intensive care units (ICU) is feasible and may improve patient safety, however the cost-effectiveness of such an approach is still unknown (Downey, Chapman, Randell, Brown, & Jayne, 2018). Current guidance on the recommended frequency of vital signs collection is supported by minimal empirical evidence (G. B. Smith, Recio-Saucedo, & Griffiths, 2017), and has largely been based on expert opinion (Devita, 2010; Miltner, Johnson, & Deierhoi, 2014; National Institute for Health Care Excellence, 2007). While the evidence broadly points towards benefits from more frequent observations, the absence of precise guidance combined with uncertainty about the resources required makes comparison between alternative strategies difficult.

The precise contribution that measuring and recording vital signs makes to overall nurse and nursing assistant workloads is unknown. However, it will depend upon (a) the time taken to collect and document the vital signs; (b) the number of patients in a given clinical area needing to have vital signs measured at any one time; and (c) the chosen frequency of measurements for individual patients, which is dictated by clinical opinion and/or national policy (National Institute for Health Care Excellence, 2007; G. B. Smith et al., 2017). This is summarised in Figure 1.

AIMS

This review aims to summarise the evidence regarding the time required for nurses to monitor and record a set of vital signs, in order to understand the nursing workload involved.

METHODS

Search strategy

We undertook a literature search from inception until 17 December 2019 to identify quantitative studies reporting the time spent by members of the nursing workforce (i.e., registered and licensed nurses, nursing assistants and equivalent roles – henceforth referred to as "nursing staff") in undertaking vital signs observations, the length of time to take a set of observations or factors that influenced the time taken. The study methods were compliant with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist (see Supplementary File 1). We searched CINAHL, Medline, EMBASE and the Cochrane Library using the following search terms: vital signs; monitoring; surveillance; observation; recording; early warning scores; workload; time; and nursing (See Supplementary File 2 search strategy). The search strategy was agreed by all authors and one author conducted the search.

Inclusion and exclusion criteria

We included studies that provided an evaluation of the time spent by members of the nursing workforce in gathering and recording any of the following vital signs (which are those included in NEWS) (Royal College of Physicians, 2017). These are: heart (or pulse) rate; respiration rate; body temperature; blood pressure (BP); level of consciousness; peripheral oxygen saturation (S_pO_2), and the inspired gas (air or oxygen) at the time of S_pO_2 measurement (Royal College of Physicians, 2017). Because we anticipated that we would find limited evidence, we decided not to exclude studies that were not explicit in reporting which vital signs were being measured, provided that the focus appeared to be on these 'standard' observations. We focused on adult secondary and tertiary care ward settings, excluding studies exclusively in paediatric or maternity settings, as the necessary vital signs measurements are often different for these populations. We excluded qualitative only studies, as our review question was quantitative in nature (i.e. time involved in vital signs activities). We retained studies that included other observations (e.g. patient weight, urine output) within the total times offered, as long as any or all of the components of NEWS were measured.

Data selection

One reviewer conducted the first screening of titles and abstracts for relevance. Two reviewers independently assessed the list of potentially relevant studies and identified studies for inclusion; any disagreements were resolved by discussion.

For quality appraisal, we focussed on describing key aspects of the study likely to affect the validity of the results including design, the methods of observation and recording, the vital signs observed and the setting and sample sizes using a framework based on the Joanna Briggs Institute Critical Appraisal checklist for descriptive / case series. (Munn, Moola, Riitano, & Lisy, 2014) Items that were not applicable to the main study question (such as confounding) were omitted from the checklist. The checklist comprises some items relating to risk of bias, and some concerning adequate reporting and statistical analysis, and poses questions to which possible answers are "no", "yes", and "unclear". A response of "no" or "unclear" to any of the questions implies lower quality or else insufficient detail to judge the quality of a study. The checklist was completed by two reviewers, and one further reviewer resolved any disagreements. We did not exclude any studies based on their quality.

Data extraction

We extracted the following data from included studies: country; study design; sample size and setting; methods of vital signs measuring and recording; data collection; results; vital signs definition; mean (minutes); standard deviation (minutes).

Data analysis

Where authors reported only mean and 95% confidence intervals, we calculated the standard deviation as: ($\sqrt{n*}$ (upper limit – lower limit)/t-value*2), where n is the sample size, upper limit and lower limit are those from confidence intervals. If the sample size is >100, the 95% confidence interval is 3.92 standard errors wide. We initially considered conducting a meta-analysis, but the high heterogeneity between studies, in terms of sample sizes, settings, and vital signs timing measurements, rendered this unfeasible.

RESULTS

The database search retrieved 1,277 papers, of which 11 studies met the inclusion criteria. An additional five studies were identified from the reference lists of papers accessed in full text (n= 59). The article screening and selection process is reported in Figure 2. The results of all 16 included studies are summarised in Table 1 - Summary of selected studies (N= 16).

(Table 1 here)

Overall, the quality of the reports was low, with unclear reporting and significant limitations across many items in most studies (see Table 2 – Quality Appraisal of Studies). No study reported any reliability assessment of their measure of time, and no study scored a positive response to all remaining items on the checklist.

(Table 2 here)

Design of studies

Five publications were described as before-and-after studies (Bellomo et al., 2012; Fuller, Fox, Lake, & Crawford, 2018; Ito et al., 1997; McGrath, Perreard, Garland, Converse, & Mackenzie, 2019; Wong et al., 2017), mostly evaluating the impact of introducing automatic electronic vital signs systems or continuous vital signs monitoring. Ten studies were classified as descriptive observational (Adomat & Hicks, 2003; Clarke, 2006; Hendrich, 2008; Hoi, Ismail, Ong, & Kang, 2010; Kimura, Nakai, & Ishihara, 2016; Travers, 1999; Wager et al., 2010; Yeung, Lapinsky, Granton, Doran, & Cafazzo, 2012; Zeitz, 2005; Zeitz & McCutcheon, 2006), and one study was a pilot study of a bedside clinical information system (Erb & Coble, 1989).

Most (n= 11) used time-and-motion methodologies (Adomat & Hicks, 2003; Fuller et al., 2018; Hendrich, 2008; Hoi et al., 2010; McGrath et al., 2019; Travers, 1999; Wager et al., 2010; Wong et al., 2017; Yeung et al., 2012; Zeitz, 2005; Zeitz & McCutcheon, 2006). In eight studies, researchers collected data by directly observing nursing staff (Hoi et al., 2010; McGrath et al., 2019; Travers, 1999; Wager et al., 2010; Wong et al., 2017; Yeung et al., 2012; Zeitz, 2005; Zeitz & McCutcheon, 2006). One study used data from a video recording of 48 continuous shifts (Adomat & Hicks, 2003). Another plotted the number of steps that nurses took from the bedside to the computer when documenting vital signs in addition to measuring the time taken to complete and record vital signs observation using time-andmotion methodology (Fuller et al., 2018). In three studies, nurses were asked to estimate the time they had taken to complete vital signs observations. (Clarke, 2006; Hendrich, 2008; Ito et al., 1997) In one of these studies, nurses noted the time taken to complete vital signs for each patient and calculated the total time spent on this activity. (Ito et al., 1997) In one timesampling study, nurses were asked to report the activity they were engaged in when a personal digital assistant (PDA) they were carrying vibrated at random times during the shift (Hendrich, 2008). As indicated in Table 2, seven studies did not provide a clear description of how time to complete a set of vital signs was assessed; among these, three studies did not give any meaningful detail about how the time to complete a set of vital sign

observations had been collected (Bellomo et al., 2012; Erb & Coble, 1989; Kimura et al., 2016). Among these, one study was available as abstract only (Kimura et al., 2016).

Setting of studies

Coverage of settings ranged from one to thirty-six hospital wards of various types, namely: acute surgical/medical general wards, ICU, an emergency department, a cardiovascular unit, a trauma ward, and a radiology unit. One study did not specify the type of hospital or which wards were included (Kimura et al., 2016).

Methods of vital signs measurement

The 16 studies generally described taking vital signs observations as the time to measure/collect vital signs and the time to record/document vital signs. However, the specific set of vital signs chosen for measurement differed by study, which inevitably affected the overall time taken. Some included seven different physiological signs in a complete vital signs set (Wong et al., 2017), while others included only four (Kimura et al., 2016). All studies reporting physiological signs measured temperature, heart rate, respiration rate, blood pressure (Bellomo et al., 2012; Erb & Coble, 1989; Fuller et al., 2018; McGrath et al., 2019; Travers, 1999; Wager et al., 2010; Wong et al., 2017; Yeung et al., 2012; Zeitz, 2005; Zeitz & McCutcheon, 2006). Some studies offered no specific description of the vital signs collected (Adomat & Hicks, 2003; Hendrich, 2008; Hoi et al., 2010; Ito et al., 1997). Also, studies did not always specify whether only complete sets of vital signs had been included for analysis. A number of studies included additional observational and assessment activities in the time taken to complete vital signs, such as completing fluid balance charts, checking infusion pump, and weighing the patient (Bellomo et al., 2012; Erb & Coble, 1989). The measurement tools did not vary substantially across the years.

Methods of time recording

In general, the time involved in vital signs recording and documenting was reported in two different ways. A number of studies reported a mean time for taking a vital signs set, mean time to record vital signs on charts, or both (Bellomo et al., 2012; Clarke, 2006; Ito et al., 1997; Kimura et al., 2016; McGrath et al., 2019; Travers, 1999; Wager et al., 2010; Wong et al., 2017; Zeitz, 2005; Zeitz & McCutcheon, 2006). Other studies reported the amount of time that nursing staff spent taking vital signs and/or recording them over a shift, per hour, per patient, or over an amount of time (e.g. over 44.5 hours). (Adomat & Hicks, 2003; Erb & Coble, 1989; Fuller et al., 2018; Hendrich, 2008; Hoi et al., 2010; Yeung et al., 2012) None attempted to disentangle the time taken to collect or document each vital sign (i.e. blood pressure or oxygen saturations or respiration rate) or EWS value separately.

(Table 3 here)

Studies reporting mean times

Ten studies provided a total of twelve samples to estimate mean times for taking and/or recording vital signs (see Table 3). When studies investigated the time involved in measuring and documenting vital signs using pen and paper methods, mean times ranged from 3.58 minutes (Wong et al., 2017) to 5.80 minutes (Zeitz, 2005; Zeitz & McCutcheon, 2006). When documentation was performed using electronic systems, mean times for measurement and documentation were lower at 2.50 minutes in both studies (Bellomo et al., 2012; Wong et al., 2017). We did not find any differences in mean times involved in vital signs measuring and documenting that could be attributed to different clinical settings, nor to different nursing personnel (i.e. registered nurses vs nurse assistants). Differences in mean times appeared to be related to the combination of vital signs included within the recorded dataset; the method(s) of vital signs measurement; the timing of entry into the patient record; the method of recording; the calculation of EWS values. As well as mean times being variable between studies, it was clear that there was considerable variation in the time taken within some studies, as standard deviations were high.

All studies where reported times focused only on vital signs documentation involved continuous patient monitoring and focused on electronic systems of data transfer to the patient record. Electronic systems where vital signs were entered at the bedside seemed to be associated with reduced time. The mean times to document vital signs observations electronically at the bedside ranged from 0.90 (Ito et al., 1997) to 1.27 minutes (Kimura et al., 2016), and mean time for documenting vital signs outside the bed space was between 1.47 minutes (Kimura et al., 2016) and 2.02 minutes (Ito et al., 1997). One study focused on the mean time difference between the time vital signs were taken and when the data were recorded in the patient's record, and found that when staff were recording data on a vital signs monitor at the bedside and transferring them to a PC tablet the mean difference was 0.59 minutes; when vital signs observations were transcribed from handwritten notes to patient notes the mean difference was 1.24 minutes; and for handwritten observations to be transferred to a computer on wheels outside the bed space, the latency time was 9.15 minutes (Wager et al., 2010).

Studies which do not provide mean time estimates

Four studies reported the time involved in collecting and recording vital signs by hour or by nursing shift (Adomat & Hicks, 2003; Hendrich, 2008; Hoi et al., 2010; Yeung et al., 2012). Hoi et al. found it took 144 minutes of total nursing time per day for a patient in the most

highly acute and dependent category, where assistance with all care needs and multiple treatments were often required (Hoi et al., 2010). Adomat et al. showed that charting observations and record keeping in two units ranged from a mean average of 5.44 to 10.78 minutes per hour in an HDU and from 10.66 to 17.43 min/hr in ICU (Adomat & Hicks, 2003). Hendrich et al. showed that vital signs took up 7.2% of nursing time or 30.9 minutes in a 10-hour shift (Hendrich, 2008). According to Yeung et al., the total time spent by each nurse performing vital signs observations was on average 12 minutes, albeit the unit of observation was not reported (i.e. per hour, per shift, or per patient) (Yeung et al., 2012).

Erb and Coble reported vital signs documentation on a new automated system, where nurses record all vital signs at the bedside using a monitor that measures blood pressure, pulse rate and temperature (Erb & Coble, 1989). Vital signs data are stored on a computer at the nurse station unit, and the bedside unit and nurse station unit are connected directly. The authors compared this system to an older manual system, and found that it offered an overall mean time saving per nurse per shift of 11.86 minutes (Erb & Coble, 1989). Fuller et al. reported that the time taken to document vital signs in a computer was seven minutes per ten patients (Fuller et al., 2018) suggesting a mean time below that of any study reporting a per patient time above.

DISCUSSION

This is the first systematic review of evidence to identify the amount of nursing time required to take vital signs observations. We found sixteen studies that evaluated the time taken by nursing staff to perform and/or record vital signs observations. Studies varied considerably in their time estimates, although most estimates demonstrate the potential for this activity to occupy a considerable amount of nursing time, especially if undertaken with high frequency. However, this variation and uncertainty in the evidence means that we were unable to give a reliable estimate of time taken. A variety of factors influence the times taken to complete vital signs observations and, while the studies illustrate these factors, they are inconsistently and incompletely recorded in the literature, making direct comparisons of their influence on total times difficult or impossible.

We identified a number of key variables related to overall times recorded in the studies:

- The combination of *vital signs* included within the recorded dataset
- The method(s) of vital signs *measurement*
- The *timing* of entry into the patient record
- The method of *recording*

• The calculation of EWS values

Across studies, there was variation in the dataset of *vital signs* measured each time, as these are often determined by local guidance. There was also variation in the *methods of measurement* of vital signs observations. Some vital signs (e.g., heart rate and respiratory rate) can be measured manually (i.e., without the use of equipment) or automatically using devices/monitors. Some parameters (e.g., consciousness level) can only be measured on general wards using manual techniques, whilst others (e.g. S_pO_2) can only be measured using an electronic monitor. Studies considered in this review either involved a mixture of manual and automatic methods of measuring vital signs or did not clearly report them (see (Adomat & Hicks, 2003; Hendrich, 2008; Hoi et al., 2010; Ito et al., 1997).

A further source of variation seen in the papers described in this review was the *timing of entry* of measured vital signs data into charting systems. Nursing staff entered data either in real-time at the patient's bedside (Bellomo et al., 2012; Erb & Coble, 1989; Fuller et al., 2018; Ito et al., 1997; McGrath et al., 2019) or after leaving the bedside (i.e. delayed) (Wager et al., 2010; Wong et al., 2017; Yeung et al., 2012). In some studies, vital signs data were entered in real-time at the bedside on paper charts, and in others they were manually entered on electronic or paper medical records after collection. However, in the papers reviewed here, when data were recorded at the bedside, it was mostly done using hand-held electronic devices, where data was either uploaded automatically or required the nurse to physically transfer data to a central database using a wired system. Results from studies where real-time electronic systems had been introduced showed a reduction in the time involved in vital signs monitoring and recording compared to traditional paper-based methods, especially if the latter required further transcribing at the end of the observation sessions.

In the papers we studied, there was little indication of the approach to the *calculation of EWS values* even though determination of risk based on vital signs is now seen as an important function of taking the observations (G. B. Smith et al., 2017). It would be possible for these to be calculated manually (i.e., without using a device), using a device such as a calculator; within a free-standing, mobile app; or automatically using a hand-held device or as part of the data measurement/entry system. In this review, two studies reported that the electronic systems being piloted were designed to calculate EWS values automatically after the entry of vital signs data.(Bellomo et al., 2012; Wong et al., 2017) In both studies, the EWS values were displayed on the electronic systems alongside clinical advice (e.g. escalation to a doctor or rapid response team) based on the automatically calculated EWS value. Previous

studies reported that calculation of EWS with hand-held devices improves accuracy of EWS values (Mohammed, Hayton, Clements, Smith, & Prytherch, 2009) and saves nursing time, with one study reporting that using a programmed digital assistant (i.e. VitalPAC[™]) was on average 1.6 times faster than using the traditional pen and paper method (Prytherch et al., 2006).

The workload involved in vital signs activities for nursing staff is potentially significant (Clarke, 2006; Zeitz, 2005; Zeitz & McCutcheon, 2006) with important clinical consequences. However, we have shown that there is a very limited body of research that might inform workload planning. The studies surveyed here also highlight that there is currently no standardised way of measuring vital signs workload or interpreting it. Several publications affirm that failure to engage with vital signs activity leads to adverse patient outcomes, including mortality (Churpek et al., 2016; Devita et al., 2006; Osborne et al., 2015). Nursing staff have previously reported that workload is an important factor in the timeliness and ability to observe patients regularly (Mok et al., 2015; D. J. Smith & Aitken, 2016), so that the absence of reliable evidence to determine the workload involved with vital signs observations is surprising. This is of particular importance, especially as vital signs monitoring and recording is regarded as a fundamental component of nursing care. Clinical guidelines recommending the frequency of vital signs observations do not take into account the time required to complete them (National Institute for Health Care Excellence, 2007; Royal College of Physicians, 2017).

If nursing staff perceive the vital signs workload as excessive, they may choose to prioritise other activities and follow their clinical judgement rather than an observation schedule dictated by a protocol (Hope et al., 2018) At present, there is no evidence to determine whether the nursing workforce is sufficient to accommodate existing demand - or potentially an increase in demand - arising from increasing compliance with current observation protocols, or from changing such protocols because the demand is not clearly quantified. Based on the current literature we cannot yet tell whether observations for all patients in a 30-bed unit might require an hour of work (2 minutes per patient) or two and a half hours (5 minutes per patient) or indeed considerably more or less if these estimates are inaccurate, or sub-optimal systems are in place.

The investigation of time and workload involved in taking vital signs observations activities has focused mainly on reporting average times. However, mean times varied substantially due to different physiological parameters being measured across studies and, where reported, different methods of measurement and vital signs documenting. Future research

that can determine the workload associated with nurses' activities around vital signs observations is warranted. Future studies should be more explicit in describing contexts and systems in use. In particular for new electronic systems it would be worthwhile establishing how accessible it is for nursing staff to observe vital signs observation trends of their patients and how accessible these systems are for temporary staff.

Limitations

In appraising studies, we applied a checklist based on the Joanna Briggs Institute Critical Appraisal checklist for descriptive / case series (Munn et al., 2014), and all studies were of low quality. We highlighted key omissions of important details, for example which vital signs were included and how they were measured and recorded, or how were nurses and/or patients sampled. The results of the review illustrate the variety of factors that may influence the time estimates derived from the studies and demonstrate where information is missing. Whilst we used a reproducible search strategy searching MEDLINE, CINAHL, EMBASE and the Cochrane Library, it is possible that we did not identify studies indexed elsewhere and not cited by the included studies. It seems unlikely that these exist in sufficient quantity to substantively change our conclusions.

CONCLUSIONS

There is currently insufficient robust evidence around the time nurses require to perform vital signs activities. To increase consistency and impact, we propose a framework for future studies to adopt measuring the time and workload involved in vital signs observations that includes (a) the methods of measurements, (b) the timing of entry of measured data into charting system and (c) the approach to calculation of EWS values. This categorisation would be suitable for vital signs measured on an individual patient basis, or on the basis of vital signs "rounds", where the mean time for each patient on the round could be calculated.

RELEVANCE TO CLINICAL PRACTICE

Recommendations for vital signs observations need to consider the workload involved and include consideration of the potential opportunity costs if observations are given higher priority at the expense of other aspects of nursing work. Vital signs observations are considered to be a fundamental aspect of nursing work, and key to ensure early detection of patient deterioration. The lack of robust evidence means that those making clinical and managerial decisions about resource allocations, including workload planning around vital signs observations, must make these in the face of considerable uncertainty. Uncertainty means that the workload associated with changes to the frequency of observations associated with early warning scores are unknown. At a system level, the costs from

changes in policy such as the shift from NEWS to NEWS2, which increased the frequency of observations for some patient groups, is unquantifiable. On a ward level, the feasibility of implementing such changes and integrating them into existing work is uncertain. On another hand, workload reductions associated with the introduction of technology that facilitates continuous monitoring, which might reduce requirement for nurses to take vital signs observations, are equally uncertain. Measuring patients' vital signs at times that are appropriate is key to avoiding patient deterioration and adverse outcomes. In the interest of patient safety, further research that uses vital signs and patient objective data aiming to define the optimal frequency of vital signs observations should be conducted.

REFERENCES

- Adomat, R., & Hicks, C. (2003). Measuring nursing workload in intensive care: an observational study using closed circuit video cameras. *Journal of Advanced Nursing*, *42*(4), 402-412. doi:DOI 10.1046/j.1365-2648.2003.02632.x
- Bellomo, R., Ackerman, M., Bailey, M., Beale, R., Clancy, G., Danesh, V., . . . Assess Level of Care Study, I. (2012). A controlled trial of electronic automated advisory vital signs monitoring in general hospital wards. *Critical Care Medicine*, 40(8), 2349-2361. doi:10.1097/CCM.0b013e318255d9a0
- Brekke, I. J., Puntervoll, L. H., Pedersen, P. B., Kellett, J., & Brabrand, M. (2019). The value of vital sign trends in predicting and monitoring clinical deterioration: A systematic review. *PloS One*, *14*(1), e0210875. doi:10.1371/journal.pone.0210875
- Churpek, M. M., Adhikari, R., & Edelson, D. P. (2016). The value of vital sign trends for detecting clinical deterioration on the wards. *Resuscitation*, *102*, 1-5. doi:10.1016/j.resuscitation.2016.02.005
- Clarke, M. F. (2006). Exploration of nursing intensity in a sample of acute care cardiovascular patients using the nursing interventions classification (NIC). University of Iowa,
- Dall'Ora, C., Griffiths, P., Redfern, O., Recio-Saucedo, A., Meredith, P., Ball, J., & Missed Care Study, G. (2019). Nurses' 12-hour shifts and missed or delayed vital signs observations on hospital wards: retrospective observational study. *BMJ Open, 9*(1), e024778. doi:10.1136/bmjopen-2018-024778
- Devita, M. A. (2010). Identifying the hospitalised patient in crisis'-A consensus conference on the afferent limb of Rapid Response Systems. *Resuscitation*, 81(4), 375-382.
- Devita, M. A., Bellomo, R., Hillman, K., Kellum, J., Rotondi, A., Teres, D., . . . Galhotra, S. (2006). Findings of the first consensus conference on medical emergency teams. *Critical Care Medicine*, *34*(9), 2463-2478. doi:10.1097/01.CCM.0000235743.38172.6E
- Downey, C. L., Chapman, S., Randell, R., Brown, J. M., & Jayne, D. G. (2018). The impact of continuous versus intermittent vital signs monitoring in hospitals: A systematic review and narrative synthesis. *International Journal of Nursing Studies, 84*, 19-27. doi:10.1016/j.ijnurstu.2018.04.013
- Erb, P. S., & Coble, D. (1989). Vital signs measured with nursing system. *Computers in Healthcare,* 10(3), 32-34.
- Fuller, T., Fox, B., Lake, D., & Crawford, K. (2018). Improving real-time vital signs documentation. *Nursing Management, 49*(1), 28-33. doi:10.1097/01.NUMA.0000527716.05512.4e
- Griffiths, P., Ball, J., Bloor, K., Böhning, D., Briggs, J., Dall'Ora, C., . . . Smith, G. (2018). Nurse staffing levels, missed vital signs and mortality in hospitals: retrospective longitudinal observational study. *Health Services and Delivery Research*, 6, 38. doi:10.3310/hsdr06380
- Griffiths, P., Recio-Saucedo, A., Dall'Ora, C., Briggs, J., Maruotti, A., Meredith, P., . . . Missed Care Study, G. (2018). The association between nurse staffing and omissions in nursing care: A systematic review. *Journal of Advanced Nursing*, 74(7), 1474-1487. doi:10.1111/jan.13564
- Hendrich, A. (2008). A 36-Hospital Time and Motion Study: How Do Medical-Surgical Nurses Spend Their Time? *The Permanente Journal*, *12*(3), 25-34. doi:10.7812/tpp/08-021
- Hogan, H., Healey, F., Neale, G., Thomson, R., Vincent, C., & Black, N. (2012). Preventable deaths due to problems in care in English acute hospitals: a retrospective case record review study. *BMJ Quality & Safety, 21*(9), 737-745. doi:10.1136/bmjqs-2011-001159
- Hoi, S. Y., Ismail, N., Ong, L. C., & Kang, J. (2010). Determining nurse staffing needs: the workload intensity measurement system. *Journal of Nursing Management*, *18*(1), 44-53. doi:10.1111/j.1365-2834.2009.01045.x
- Hope, J., Recio-Saucedo, A., Fogg, C., Griffiths, P., Smith, G. B., Westwood, G., & Schmidt, P. E. (2018). A fundamental conflict of care: Nurses' accounts of balancing patients' sleep with taking vital sign observations at night. *Journal of Clinical Nursing*, *27*(9-10), 1860-1871. doi:10.1111/jocn.14234

- Ito, C., Satoh, I., Michiya, H., Kitayama, Y., Miyazaki, K., Ota, S., . . . Miyasaka, K. (1997). Reducing nurses' workload using a computerized nursing support system linked to the hospital information system. *Nursing Informatics*, *46*, 527-532.
- Kause, J., Smith, G., Prytherch, D., Parr, M., Flabouris, A., Hillman, K., . . . New Zealand Intensive Care Society Clinical Trials, G. (2004). A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom--the ACADEMIA study. *Resuscitation*, 62(3), 275-282. doi:10.1016/j.resuscitation.2004.05.016
- Kimura, E., Nakai, M., & Ishihara, K. (2016). Evaluation of Efficiency Improvement in Vital Documentation Using RFID Devices. *Nursing Informatics 2016: Ehealth for All: Every Level Collaboration from Project to Realization, 225*, 1042-1042. doi:10.3233/978-1-61499-658-3-1042
- McGrath, S. P., Perreard, I. M., Garland, M. D., Converse, K. A., & Mackenzie, T. A. (2019). Improving Patient Safety and Clinician Workflow in the General Care Setting With Enhanced Surveillance Monitoring. *IEEE Journal of Biomedical and Health Informatics*, 23(2), 857-866. doi:10.1109/JBHI.2018.2834863
- Miltner, R. S., Johnson, K. D., & Deierhoi, R. (2014). Exploring the frequency of blood pressure documentation in emergency departments. *Journal of Nursing Scholarship, 46*(2), 98-105. doi:10.1111/jnu.12060
- Mohammed, M., Hayton, R., Clements, G., Smith, G., & Prytherch, D. (2009). Improving accuracy and efficiency of early warning scores in acute care. *British Journal of Nursing*, *18*(1), 18-24. doi:10.12968/bjon.2009.18.1.32072
- Mok, W., Wang, W., Cooper, S., Ang, E. N., & Liaw, S. Y. (2015). Attitudes towards vital signs monitoring in the detection of clinical deterioration: scale development and survey of ward nurses. *International Journal for Quality in Health Care, 27*(3), 207-213. doi:10.1093/intqhc/mzv019
- Munn, Z., Moola, S., Riitano, D., & Lisy, K. (2014). The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. *International journal of health policy and management*, *3*(3), 123-128. doi:10.15171/ijhpm.2014.71
- National Institute for Health Care Excellence. (2007). Acutely ill patients in hospital: Recognition of and response to acute illness in adults in hospital. NICE guideline.
- National Patient Safety Agency. (2007a). *Recognising and responding appropriately to early signs of deterioration in hospitalised patients*. London: The National Patient Safety Agency.
- National Patient Safety Agency. (2007b). Safer care for the acutely ill patient: learning from serious incidents. London: The National Patient Safety Agency.
- Odell, M. (2015). Detection and management of the deteriorating ward patient: an evaluation of nursing practice. *Journal of Clinical Nursing*, 24(1-2), 173-182. doi:10.1111/jocn.12655
- Odell, M., Victor, C., & Oliver, D. (2009). Nurses' role in detecting deterioration in ward patients: systematic literature review. *Journal of Advanced Nursing*, *65*(10), 1992-2006.
- Osborne, S., Douglas, C., Reid, C., Jones, L., Gardner, G., & Council, R. P. A. R. (2015). The primacy of vital signs--acute care nurses' and midwives' use of physical assessment skills: a cross sectional study. *International Journal of Nursing Studies*, *52*(5), 951-962. doi:10.1016/j.ijnurstu.2015.01.014
- Palese, A., Ambrosi, E., Prosperi, L., Guarnier, A., Barelli, P., Zambiasi, P., . . . Saiani, L. (2015). Missed nursing care and predicting factors in the Italian medical care setting. *Internal and Emergency Medicine*, *10*(6), 693-702. doi:10.1007/s11739-015-1232-6
- Prytherch, D. R., Smith, G. B., Schmidt, P., Featherstone, P. I., Stewart, K., Knight, D., & Higgins, B. (2006). Calculating early warning scores--a classroom comparison of pen and paper and hand-held computer methods. *Resuscitation*, 70(2), 173-178. doi:10.1016/j.resuscitation.2005.12.002

- Rose, L., & Clarke, S. P. (2010). Vital signs. *American Journal of Nursing, 110*(5), 11. doi:10.1097/01.NAJ.0000372049.58200.da
- Royal College of Physicians. (2017). National Early Warning Score (NEWS) 2 Standardising the assessment of acute-illness severity in the NHS.
- Schubert, M., Ausserhofer, D., Desmedt, M., Schwendimann, R., Lesaffre, E., Li, B., & De Geest, S. (2013). Levels and correlates of implicit rationing of nursing care in Swiss acute care hospitals--a cross sectional study. *International Journal of Nursing Studies*, *50*(2), 230-239. doi:10.1016/j.ijnurstu.2012.09.016
- Smith, D. J., & Aitken, L. M. (2016). Use of a single parameter track and trigger chart and the perceived barriers and facilitators to escalation of a deteriorating ward patient: a mixed methods study. *Journal of Clinical Nursing*, 25(1-2), 175-185. doi:10.1111/jocn.13104
- Smith, G. B., Recio-Saucedo, A., & Griffiths, P. (2017). The measurement frequency and completeness of vital signs in general hospital wards: An evidence free zone? *International Journal of Nursing Studies, 74*, A1-A4. doi:10.1016/j.ijnurstu.2017.07.001
- Travers, D. (1999). The research column. Triage: how long does it take? How long should it take? *JEN: Journal of Emergency Nursing*, 25(3), 238-240.
- Wager, K. A., Schaffner, M. J., Foulois, B., Swanson Kazley, A., Parker, C., & Walo, H. (2010). Comparison of the quality and timeliness of vital signs data using three different data-entry devices. *Computers, Informatics, Nursing, 28*(4), 205-212. doi:10.1097/NCN.0b013e3181e1df19
- Wong, D., Bonnici, T., Knight, J., Gerry, S., Turton, J., & Watkinson, P. (2017). A ward-based time study of paper and electronic documentation for recording vital sign observations. *Journal of the American Medical Informatics Association*, 24(4), 717-721. doi:10.1093/jamia/ocw186
- Wood, C., Chaboyer, W., & Carr, P. (2019). How do nurses use early warning scoring systems to detect and act on patient deterioration to ensure patient safety? A scoping review. *International Journal of Nursing Studies*, *94*, 166-178. doi:10.1016/j.ijnurstu.2019.03.012
- Yeung, M. S., Lapinsky, S. E., Granton, J. T., Doran, D. M., & Cafazzo, J. A. (2012). Examining nursing vital signs documentation workflow: barriers and opportunities in general internal medicine units. *Journal of Clinical Nursing*, *21*(7-8), 975-982. doi:10.1111/j.1365-2702.2011.03937.x
- Zander, B., Dobler, L., Baumler, M., & Busse, R. (2014). [Nursing tasks left undone in German acute care hospitals results from the international study RN4Cast]. *Gesundheitswesen*, 76(11), 727-734. doi:10.1055/s-0033-1364016
- Zeitz, K. (2005). Nursing observations during the first 24 hours after a surgical procedure: what do we do? *Journal of Clinical Nursing*, 14(3), 334-343. doi:10.1111/j.1365-2702.2004.01071.x
- Zeitz, K., & McCutcheon, H. (2006). Observations and vital signs: ritual or vital for the monitoring of postoperative patients? *Applied Nursing Research*, 19(4), 204-211. doi:10.1016/j.apnr.2005.09.005

WHAT DOES THIS PAPER CONTRIBUTE TO THE WIDER GLOBAL CLINICAL COMMUNITY?

- Time taken to perform vital signs observation activities varied considerably across studies, although most time estimates demonstrate the potential for vital signs to occupy a considerable amount of nursing time, especially if undertaken with high frequency
- There is lack of evidence around the time taken to perform vital signs activities, and this prevents us from informing workload planning around vital signs observations for nurses
- Changes to vital signs observation protocols have an unquantified effect on nurses' workload that could be considerable, making such changes unfeasible..

TABLES

Table 1 Summary of selected studies (N= 16)

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs				
Year, &	Design	& Setting	recording			definition				
Country										
Studies report	Studies reporting mean times of vital signs measurements and/or recording									
Bellomo et	Before-and-	10 hospitals	Measurement:	Information on	After the introduction	Temperature,				
al., 2012	after	in five	Enhanced surveillance system:	how vital signs	of continuous	heart rate,				
	controlled	countries, 74	manual	data were	monitoring, time	respiration				
US, Sweden,	trial	nurses. The	Mode of recording and	collected before	required to complete	rate, blood				
UK, The		number of	documentation timing:	the introduction	and record a set of	pressure,				
Netherlands		observation	Enhanced surveillance system:	of the	vital signs	oxygen				
& Australia		hours is	Nurse obtain oxygen	automated	decreased from on	saturations,				
		unspecified.	saturations, heart rate, blood	advisory vital	average 4.1 minutes	consciousnes				
			pressure, temperature and	signs monitors	(SD 1.3) to 2.5	s, urine				
			these are automatically	was not	minutes (SD 0.5)	output				
			transferred and displayed by	reported.	(difference 1.6; 95%					
			direct physical link with the		CI: 1.4–1.8; p <					
			monitoring devices. Respiration		.0001)					
			rate and conscious state are							
			input by the nurse.							
			Calculation of Early Warning							
			Score (EWS) value:							

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
			The electronic automated			
			advisory vital signs system			
			automatically calculates EWS.			
			When EWS is calculated, it			
			displays a colour coded			
			message to the nurse (red			
			range prompted the need for			
			increased frequency of			
			monitoring or escalation; safe			
			range in white; observe range in			
			yellow; warning range in			
			orange).			
Clarke, 2006	Descriptive	200 patients,	Measurement:	Nurses were	Vital signs	According to
	observation	1 community	Not specified	asked to self-	monitoring occurred	NIC
US	al study	hospital, 1	Mode of recording and	report the	in 814 occasions	definition:
		cardiovascul	documentation timing:	number of times	during the one-	"Collection
		ar unit.	Not specified	the NIC	month data	and analysis
		A total of	Calculation of EWS value:	intervention was	collection period.	of
		10,645	Not specified	used during the	Mean time for vital	cardiovascula
		nursing		shift, estimate	signs monitoring: 5.8	r, respiratory,

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
		intervention		the average	minutes (SD: 3.72;	and body
		(classified		time each	95% CI: 5.54-6.06).	temperature
		with Nursing		intervention took		data to
		Intervention		to complete, and		determine
		Classification		identify the		and prevent
		s (NIC)) were		education level		complications
		reported		that was		"
		during a one-		required to		
		month data		accomplish		
		collection		each		
		period.		intervention.		
Ito et al.,	Before-and-	1 hospital, 1	Measurement:	Nurses had to	Mean time required	Not specified
1997	after study	Radiology	Mixture of automatic and	note the time	to measure vital	
	with time-	ward, 23	manual	taken to	signs and fill in vital	
Japan	motion	nurses	Mode of recording and	complete vital	signs documentation	
	methodolog	working day	documentation timing:	signs with each	was reduced from	
	у	shifts	Nurses enter vital signs into the	patient and	2.02 minutes to 0.90	
			hand held computer at the bed-	calculate total	minutes (p<0.01),	
			side. Vital signs data are then	time spent on	because information	

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
			transferred from the hand-held	each task. This	transfer directly from	
			computers to the desktop	was done before	hand-held	
			computers with a cable. The	and after	computers to the	
			information is then sent	introduction of	desktop computer	
			automatically to the data server	handheld	eliminated the need	
			Calculation of EWS value:	computers for	to duplicate data	
			Not specified	use by bedside	entry.	
Kimura et	Descriptive	One hospital	Measurement:	There were no	Time for information	Body
al., 2016	observation		Automatic: the radio-frequency	details on how	to be transferred	temperature,
	al study		identification (RFID) reader on	the time	from the patient tags	oxygen
Japan			the patient automatically	required to	to the device: Cart:	saturations,
[abstract]			transfers data to the electronic	obtain a set of	1.47 minutes (SD:	heart rate,
			medical records.	vital signs was	0.55) per person	blood
			Mode of recording and	captured.	Bed: 1.27	pressure
			documentation timing:		minutes(SD: 0.62)	
			Automatic: the RFID reader on		seconds per person	
			the patient automatically			
			transfers data to the electronic			
			medical records.			
			Calculation of EWS value:			

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
			Not specified			
McGrath et	Before-and-	1 Hospital.	Measurement:	One hundred	Mean vital signs	Temperature,
al., 2019	after study	Enhanced	Enhanced surveillance system:	samples of vital	assessment times	heart rate,
		surveillance	Continuous monitoring for	signs	were 2.98 minutes	Respiration
US		system	oxygen saturations, heart rate,	assessment	before	rate, blood
		trialled in 2	blood pressure, temperature.	were collected	implementation and	pressure,
		surgical	Respiration rate is calculated by	in the before	2.15 minutes after	oxygen
		units, 71	observation	and after	implementation.	saturations
		beds. Control	Control: a mixture of automatic	periods of the		
		were 3	and manual instruments.	study units by		
		medical-	Mode of recording and	direct		
		surgical	documentation timing:	observation of		
		units, 61	Enhanced surveillance system:	licensed nurse		
		beds.	All vital signs automatically	assistants over		
			transferred to electronic medical	12 months.		
			records by pressing a button on	Time to collect		
			patient's monitor	vital signs and		
			Control: Each vital sign entered	enter data into		
			manually into medical record	the medical		
			after collection	record manually		

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
			Calculation of EWS value:	or electronically		
			Not specified	was measured		
				using an		
				electronic stop		
				watch.		
				Observations		
				were conducted		
				at various times		
				on multiple		
				days.		
Travers and	Observation	16 nurses, 1	Measurement:	Nurses	Mean time of vital	Blood
Hill, 1999	al time-and-	Emergency	Not specified	observed over	signs taken at triage:	pressure,
	motion study	Department	Mode of recording and	10 days.	4 minutes (range 1.9	pulse,
US			documentation timing:	Research	– 11.1)	respiratory
			Not specified	assistants		rate, and
			Calculation of EWS value:	performed		tympanic
			Not specified	prospective,		temperature
				direct		
				observations of		
				triage, using		

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
				stop watches to		
				measure triage		
				start and stop		
				times.		
Wager et al.,	Observation	1 hospital, 4	Measurement:	Observers	Mean time	Blood
2010	al	inpatient	Not specified	record the date	difference between	pressure,
	descriptive	medical/surgi	Mode of recording and	and time the	the time vital signs	temperature,
US		cal units, 270	documentation timing:	vital signs were	were taken and	heart rate,
		vital signs	(1) a paper medical record	taken and the	when the data were	SpO2, and
		sets	system where vital signs were	time the vital	recorded in the	respiration
			handwritten on a piece of paper	signs were	patient's record:	rate
			and then transcribed to the	entered into the	1) With paper	
			patient's record (paper to paper)	patient's record	records: mean time:	
			(2) a clinical documentation		1.24 minutes (SD:	
			system with a "computer on		2.17 minutes)	
			wheels" workstation outside the		2) Computer on	
			patient's room where vital signs		wheels: 9.15	

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
			were handwritten on a piece of		minutes (SD 7:25	
			paper and then transcribed into		minutes)	
			a computer on wheels (paper to		3) Tablet PC: mean	
			computer)		time: 35 seconds	
			(3) a clinical documentation		(SD 1:42 minutes)	
			system with a tablet PC affixed			
			to the vital signs monitor, a			
			machine where vital signs were			
			immediately transcribed from			
			the vital signs monitor to the			
			tablet PC (machine to computer)			
			Calculation of EWS value:			
			Not specified			
Wong et al.,	Before-and-	606 sets of	Measurement;	Nursing staff	1) Mean time to	Temperature,
2017	after study	vital signs	Mixture of manual and	were observed.	view chart: 0.3	heart rate,
		observed. 2	automatic	Observers	minutes (on	respiration
UK		university	Mode of recording and	recorded start	paper: 0.21	rate, blood
		teaching	documentation timing:	and end times	minutes on e-	pressure,
		hospitals, 3	Before e-Obs (i.e. a system that	of:	Obs	oxygen
		medical	allows vital signs to recorded on	1) View chart	2) Mean time to	saturations,

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
		wards.	a handheld device) system was	(locating &	take a complete	oxygen
			introduced: notes	opening chart)	set of vital signs:	therapy,
			After e-Obs system was	2) Take vital	3.58 minutes	consciousnes
			introduced: vital signs are	signs	(SD 8.9) on	s
			manually entered using the	(measuring &	paper; 2.50	
			tablet	documenting	minutes (SD:	
			Calculation of EWS value:	vital signs).	0.74) on e-Obs.	
			Before e-Obs: not specified	Interruptions		
			After e-Obs: Automatic on	were timed and		
			electronic chart	subtracted from		
				the measured		
				process		
				duration.		
Zeitz et al.,	Descriptive	282 hours of	Measurement:	Non-participant	Mean time to take	Temperature,
2005	observation	observation,	Not specified	observation of	vital signs and any	heart rate,
	al study	81 patients, 2	Mode of recording and	nursing practice:	other activities	respiration
Australia		hospitals, 2	documentation timing:	observation of	alongside was 5.8	rate, blood
		surgical units	Not specified	post- operative	minutes (SD: 2.56;	pressure
			Calculation of EWS value:	patients in the	range: 1-15)	
			Not specified	first 24 hours		

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
				after returning to		
				the ward over		
				an 8-week		
				period.		
Zeitz et al.,	Descriptive	282 hours of	Measurement:	Non-participant	Mean time to take	Temperature,
2006	observation	observation,	Not specified	observation of	vital signs and any	heart rate,
	al study	81 patients, 2	Mode of recording and	nursing practice:	other activities	respiration
Australia		hospitals, 2	documentation timing:	observation of	alongside was 5.8	rate, blood
		surgical units	Not specified	post- operative	minutes (SD: 2.56;	pressure
			Calculation of EWS value:	patients in the	range: 1-15)	
			Not specified	first 24 hours		
				after returning to		
				the ward over		
				an 8-week		
				period.		
Studies which	do not provide	mean time mea	surements estimates			1
Adomat and	Descriptive	360 hours of	Measurement:	Video recorder	Charting	Not specified
Hicks, 2003	observation	observation.	Not specified	documented	observations/record	
	al study	1 hospital, 2	Mode of recording and	nurse activity for	keeping.	
UK		Intensive	documentation timing:	48 continuous	1) ICU A	

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
		Care Units	Not specified	shifts.	High	
		(ICU)	Calculation of EWS value:		Dependency Unit	
			Not specified		(HDU) patients:	
					10.78 min/hour	
					ICU patients:	
					17.43 min/hour	
					2) ICU B	
					HDU patients:	
					5.44 min/hour;	
					ICUpatients:10.6	
					6 min/hour	
Erb and	Pilot study	1 general	Measurement:	There were no	On average, each	Blood
Coble, 1989		hospital, 1	Mixture of automatic and	details on how	nurse saved 11.86	pressure,
		Trauma Unit	manual	the time	minutes per shift by	arterial pulse
US		with 31 beds;	Mode of recording and	required to	using the automated	rate,
		1 Cardiac	documentation timing:	obtain a set of	system to record	respiration,
		Catheter Unit	The nurse records all vital signs	vital signs was	vital signs (length of	temperature,
		with 26 beds.	at the bedside unit, which is a	captured other	shift was	intake/output
			system that records blood	than to say the	unspecified). This	and patient's
			pressure, pulse rate and	results came	equated to a 63%	weight.

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
			thermometer. Vital signs data	from a	decrease in overall	
			are stored on the nurse station	management	nursing time on vital	
			unit, which is a computer at the	study of nursing	signs collection.	
			nurses' station. The bedside unit	activities.		
			and nurse station unit are			
			connected by existing telephone			
			wires.			
			Calculation of EWS value:			
			Not specified			
Fuller et al.,	Before-and-	A 32-bed	Measurement:	A time and	Time to document	Blood
2018	after study	medical	Mixture of automatic and	motion study	vital signs before the	Pressure,
		telemetry unit	manual	plotted the	introduction of	heart rate,
US		with 54	Mode of recording and	number of steps	mobile vital signs	respirations,
		nurses and	documentation timing:	and time taken	machines interfaced	temperature,
		Unlicensed	Nurses enter vital signs into the	to document	with the electronic	and oxygen
		assistive	mobile machines directly at the	vital signs data.	health record: 7	saturation
		personnel.	bedside. Vital signs are		min/10 patients.	
			automatically transferred to		After the introduction	
			electronic health record (real		it was 0 seconds.	
			time).			

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
			Calculation of EWS value:			
			Not specified			
Hendrich et	Descriptive	382 nurses	Measurement:	Data were	Assessments and	Not specified
al., 2008	observation	over 1083	Not specified	collected for 7	vital signs	
	al study	shifts, within	Mode of recording and	consecutive 24-	observations took on	
US		17 health	documentation timing:	hour days using	average 30.9	
		care systems	Not specified	time-motion	minutes (7.2%) in a	
		in 15 states,	Calculation of EWS value:	methodology.	10-hour shift.	
		36 medical-	Not specified	Nurses self-		
		surgical		reported what		
		units.		they were doing		
				by recording the		
				activity in which		
				they were		
				engaged when		
				a pager vibrated		
				during the shift.		
				Vital signs was		
				a categorised		
				activity.		

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection	Results	Vital signs
Year, &	Design	& Setting	recording			definition
Country						
Hoi et al.,	Descriptive	1596 hours	Measurement:	All nursing staff	Observation and	Not specified
2010	observation	of	Mixture of manual and	were observed	monitoring (i.e. vital	
	al study	observation.	automatic	adopting a work	signs and other	
Singapore		1 acute care	Mode of recording and	sampling	assessments	
		hospital, 19	documentation timing:	technique. Each	including urinary	
		general	Not specified	staff member	catheter care):	
		wards.	Calculation of EWS value:	was coded	1) 16.5 minutes for	
			Not specified	using a coloured	very low acuity &	
				lanyard,	dependency	
				activities	patients	
				performed were	2) 40.5 minutes for	
				observed and	very high acuity	
				documented at	& dependency	
				5 min intervals.	patients per day	
Yeung et al.,	Descriptive	44.5 hours of	Measurement:	Nurses were	Measuring vital	Temperature,
2012	observation	observations,	Not specified	observed. Time-	signs: 12	heart rate,
	al study	24 nurses, 88	Mode of recording and	motion	minutes per	respiration
Canada		patients, 3	documentation timing:	methodology to	nurse over 44.5	rate, blood
		tertiary care	Two hospitals: pen and paper,	measure the	hours for	pressure,
		hospitals, 5	some directly on charts before	duration of and	measuring vital	oxygen

Author(s),	Study	Sample size	Vital signs measuring and	Data Collection		Results	Vital signs
Year, &	Design	& Setting	recording				definition
Country							
		general	leaving the bedside	the time		signs.	saturations
		medical	One hospital: pen and paper,	between clinical	2)	Total mean	
		wards	transcribed on electronic	activities i.e.		documentation	
			documentation after leaving	vital signs		time at the	
			bedside	assessment &		electronic	
			Calculation of EWS value:	documentation.		documentation	
			Not specified			based hospital:	
						53.2 minutes	
						(SD 27.1)	
					3)	Total mean	
						documentation	
						time at the paper	
						only based	
						hospitals: 17.2	
						minutes (SD	
						13.2 minutes)	
						over 44.5 hours.	

Table 2 Quality appraisal of studies

Study	Random or representative sample from defined population?	inclusion / exclusion criteria?	clear description of methods of assessment (time)?	Clear description of what was included / excluded in vital signs?	Was the assessment reliable?	Was information given to determine the precision of the estimate?
Bellomo et al	U	N	N	Υ	U	Υ
2012						
Clarke 2006	N	?N	Υ	Υ	U	Υ
Ito et al 1997	N	N	Υ	N	U	N
Kimura et al	N	N	N	Υ	U	Υ
2016						
McGrath et al	N	N	Υ	Υ	U	N
2019						
Travers & Hill	Υ	Υ	Υ	Υ	U	N
1999						
Wager et al	U	N	N	Υ	U	Υ

2010						
Wong et al	U	N	Υ	Υ	U	Υ
2017						
Zeitz et al	U	N	N	Υ	U	Υ
2005						
Zeitz et al	U	N	N	Υ	U	Υ
2006						
Adomat &	N	N	Υ	N	U	N
Hicks 2003						
Erb & Coble	N	N	N	Υ	U	N
1989						
Fuller et al	N	N	N	Υ	U	N
2018						
Hendrich et al	Υ	Υ	Υ	N	U	N
2008						
Hoi et al	Υ	Υ	Υ	N	U	N
2010						

Yeung et al	U	Υ	Υ	Υ	U	Υ
2012						

Possible responses are U = Unclear; Y= Yes; N = No

Table 3 Summary of mean time in minutes taken by nursing staff to measure and record vital signs

Study	Mean	Standard	Vital Signs included	Vital signs activities
	(Minutes)	Deviation		assessed
Studies involv	ing taking ar	nd documenting	g vital signs	
Bellomo et	4.10	1.3	Temperature, heart	Measure vital signs &
al., 2012			rate, respiration rate,	document them with
			blood pressure, oxygen	paper
			saturations,	
			consciousness, urine	
			output	
Bellomo et	2.50	0.5	Temperature, heart	Measure vital signs &
al., 2012			rate, respiration rate,	document them
			blood pressure, oxygen	electronically at
			saturations,	bedside
			consciousness, urine	
			output	
Clarke, 2006	5.80	3.72	Cardiovascular,	Measure vital signs
			respiratory, and body	& document them
			temperature data	with paper
McGrath et	2.15	Not	Temperature, heart	Continuous
al., 2019		reported	rate, respiration rate,	monitoring (multiple
			blood pressure, oxygen	monitors) &
			saturations	document vital signs
				electronically at
				bedside
McGrath et	2.98	Not	Temperature, heart	Continuous
al., 2019		reported	rate, respiration rate,	monitoring (single
			blood pressure, oxygen	monitor) & document
			saturations	vital signs
				electronically outside
				bed space
Travers and	4	Not	Blood pressure, pulse,	Measure vital signs
Hill, 1999		reported	respiratory rate, and	observations
			tympanic temperature	
Wong et al.,	3.58	8.9*	Temperature, heart	Measure vital signs &

2017			rate, respiration rate,	document them with
			blood pressure, oxygen	paper
			saturations, oxygen	ραροι
			therapy, consciousness	
Mong of al	2.50	0.74*		Mooguro vital signs
Wong et al.,	2.50	0.74	Temperature, heart	Measure vital signs
2017			rate, respiration rate,	and document them
			blood pressure, oxygen	electronically at
			saturations, oxygen	bedside
			therapy, consciousness	
Zeitz, 2005	5.80	2.56	Temperature, heart	Measure vital signs &
			rate, respiration rate,	document them with
			blood pressure	paper
Zeitz, 2006	5.80	2.56	Temperature, heart	Measure vital signs &
			rate, respiration rate,	document them with
			blood pressure	paper
Studies repor	ting docume	entation only		
Ito et al.,	0.90	Not	Not specified	Document vital signs
1997		reported		electronically at
				bedside using RFID
				from continuous
				monitor
Ito et al.,	2.02	Not	Not specified	Document vital signs
1997		reported		electronically outside
1007		Toponou		bed space
Kimura et	1.27	0.55	Body temperature,	Document vital signs
	1.27	0.55		
al., 2016			oxygen saturations,	electronically at
			heart rate, blood	bedside with hand
10	ļ.,. <u>-</u>		pressure	held device
Kimura et	1.47	0.62	Body temperature,	Document vital signs
al., 2016			oxygen saturations,	electronically outside
			heart rate, blood	bed space
			pressure	
Wager et al,	1.24	2.17	Blood pressure,	Mean time difference
2010			temperature, heart rate,	between the time vital
			SpO2, and respiration	signs

				the data were
				recorded on paper in
				the patient's record
				(paper to paper)
Wager et al,	9.15	7.25	Blood pressure,	Mean time difference
2010			temperature, heart rate,	between the time vital
			SpO2, and respiration	signs
			rate	were taken on paper
				and when the data
				were recorded on a
				computer on wheels
Wager et al,	0.59	1.42	Blood pressure,	Mean time difference
2010			temperature, heart rate,	between the time vital
			SpO2, and respiration	signs
			rate	were taken on a vital
				signs monitor and
				when the data were
				recorded on PC tablet

^{*}Standard Deviation estimated from 95% CIs

FIGURE LEGENDS

Figure 1	Processes	involved	with	undertaking	vital signs

Figure 2 Studies selection process