

In situ HT-XRD study of the UO_2-PuO_2-Pu_2O_3 sub-system

R. Vauchy, Renaud Belin, Christine Gueneau, Thibaut Truphemus, Michal Strach, Alexis Joly, Jean-Christophe Richaud

► To cite this version:

R. Vauchy, Renaud Belin, Christine Gueneau, Thibaut Truphemus, Michal Strach, et al.. In situ HT-XRD study of the UO_2-PuO_2-Pu_2O_3 sub-system. Pu Futures The Science 2016, Sep 2016, Baden Baden, Germany. cea-02438336

HAL Id: cea-02438336 https://hal-cea.archives-ouvertes.fr/cea-02438336

Submitted on 14 Jan2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Plutonium Futures The Science 2016 September 18-22

www.cea.fr

In situ HT-XRD study of the UO₂-PuO₂-Pu₂O₃ sub-system

Romain VAUCHY¹

Renaud C. BELIN², Christine GUENEAU³, Thibaut TRUPHEMUS², Michał STRACH¹, Alexis JOLY¹, Jean-Christophe RICHAUD²

¹CEA, DEN, DTEC, Marcoule F-30207 Bagnols-sur-Cèze, France ²CEA, DEN, DEC, Cadarache F-13108 Saint-Paul-Lez-Durance, France ³CEA, DEN, DANS, DPC, Saclay F-91191 Gif-sur-Yvette Cedex, France

Pu Futures 2016

DTEC/SECA/LCC | PAGE 1

U-Pu-O : literature review

- o A phase diagram
- \circ UO₂-PuO₂-Pu₂O₃ at room temperature
- o UO_2 -Pu O_2 -Pu O_3 at high temperature

• Studying UO_2 -Pu O_2 -Pu O_3 *in situ* by HT-XRD

- o Our setup
- o Limitations of the setup
- o Selected samples and conditions

Experimental results

- Phase separation temperatures
- o How evaluating the O/M ratio

• Conclusions

Plutonium Futures

The Science 2016 September 18-22

U-Pu-O literature review

C. Guéneau et al., Journal of Nuclear Materials 419 (2011) 145-167

- Chart depicting phases at equilibrium
- Each point has composition and temperature coordinates
- HT-XRD => crystal structure and temperature
- In oxide samples, two variables :
 - Oxygen/Metal ratio (related to oxygen activity)
 - o **Temperature**

Calculated U-Pu-O phase diagram at RT

Guéneau et al., Journal of Nuclear Materials 419 (2011) 145-167

U

UO_2 -PuO₂-Pu₂O₃ at room temperature

Sari et al., Journal of Nuclear Materials 35 (1970) 267-77

Experiment vs. Modeling

- Experiment and modeling in good agreement
- Same low Pu content limit for the miscibility gap (~17% Pu)
- Biphasic domain $MO_{2-x} + M_2O_3$ not modeled
- Existence of a triphasic domain 2MO_{2-x} + M₂O₃
- Calculated composition range far from the hatched area of Sari

UO₂-PuO₂-Pu₂O₃ at HT

Experimental values for the critical temperature of phase separation found in the literature using DTA and HT-XRD

The critical T progressively increases with Pu content

At low Pu content, only DTA results Scattering confirms the difficulties in measuring at low Pu content

At higher Pu content, T of phase separation obtained with DTA are lower than those obtained with HT-XRD

At y=1 (PuO₂), HT-XRD value (1000 K) in agreement with the description of the Pu-O phase diagram

DTA data underestimate the T

HT-XRD provides a large amount of experimental data that lead to reliable T

Experiment vs. Modeling

Rapports O/M

Markin & Street, Journal of Inorganical Nuclear Chemistry 29 (1967) 2265-2280.

Guéneau et al, Journal of Nuclear Materials 419 (2011) 145-167

- Good agreement between experimental and modeling for $y \le 0.40$
- Difference for y > 0.40 : calculations overestimate T_{separation}

New HT studies are required to better describe the phase separation phenomenon

Plutonium Futures The Science 2016 September 18-22

Studying UO₂-PuO₂-Pu₂O₃ *in situ* by HT-XRD

The High-Temperature X-Ray Diffraction setup

X-ray diffraction technical details

Goniometer in dedicated a **shielded glove-box**

XRD type : Bragg-Brentano θ - θ

Brand : BRUKER® D8 Advance XRD

Source : copper radiation (K α_1 + K α_2 radiation : $\lambda = 1.5406$ and 1.5444 Å) at 40 kV and 40 mA

Detector: LynX'Eye PSD fast-counting detector

Heating stage : MRI[®], Mo or W strip and Ta radiant heater up to 2273 K on powders and 1273 K on bulk samples

Control of oxygen activity and temperature required

Pu Futures 2016

R. Vauchy et al. Appl. Mater. Today 3, 2016, 87-95

Controlling the temperature

Calibration : W powder (ALDRICH[®] 99.999%) ±20 K between RT and 1973 K Prompt cooling/heating rates + fast counting detector
Suited for kinetics studies

Controlling the oxygen activity : 2 approaches

Controlling the oxygen activity

- Certain species in the used gas might react with the studied sample
- H₂ rises security issues
- Direct measurement of pO₂ in the vicinity of the sample is (usually) impossible
- The pipeline needs particular attention

Control of oxygen activity is challenging

Controlling the oxygen activity

- Relatively wide range of achievable O/M ratios
- Sample can reach low O/M ratios at equilibrium with the gas mixture

Controlling the oxygen activity

- Very restricted achievable O/M ratios
- Sample can not reach low O/M ratios at equilibrium with the gas mixture

Cea

How to read the data : iso-intensity map

Reduction experiments under He + 5% H₂

Plutonium Futures The Science 2016 September 18-22

Experimental results

In situ observation of phase separation

Pu Futures 2016

2.00

XRD iso-density maps

Lattice parameters and phase fractions

Temperature of phase separation

Evaluation of the O/M ratio ?

O/M determination : Calculations to overcome limitations

Determination of O/M is possible in certain cases:

• Biphasic domain → Rietveld refinement + CALPHAD

Phase fractions from experiments (peak intensities, Rietveld refinement)

Phase fractions are positioned on the calculated miscibility gap

O/M value at each T

Calculations + Rietveld

Calculations + literature

$$\frac{O}{M} = 21,3075 + 22,78 * 10^{-5} * T - 3,565 * a$$

At HT \rightarrow equilibrium between sample and gas = reduced sample At LT \rightarrow equilibrium between sample and gas = stoichiometric sample/SECA/LCC | PAGE 26

To be or not to be at equilibrium ?

Fast cooling experiment under He/5%H₂ + ~ 15 vpm (y = 0.46)

Measurements in isothermal conditions

25 min per scan between 22 and 145° (2Θ) (311) fcc structure 31500 1300°C peak 1400 Température 1300 2 1200 3 emperature (K) 1100 25°C 1000 4 4 h 9 h 900 Temps 800 6 700 600 7 500 400 310 55 55.5 56 20 Angle (°)

Measurements in fixed-scan (non-isothermal)

14 s per scan on a restricted 3° (2 Θ) angular range Cooling rate ~ **2** °**C/ sec**

Phase separation at ~ 775 K and 2 fcc a = 5.439(1)Å and 5.504(5)Å

Almost identical XRD results

Suggests that the phase separation is mostly governed by oxygen diffusion under both conditions

5.495(5)Å

R. Vauchy, R.C. Belin, A.-C. Robisson, F. Hodaj, J. Eur. Ceram. Soc. 34 (2014)

Slow cooling experiment under He/5%H₂ + ~ 15 vpm (y = 0.46)

Measurements in isothermal conditions

No phase separation is observed Oxygen stoichiometry (O/M=2) reached at 873K

- We have developed a high temperature XRD with the capability of performing precise measurements : phases identification, l.p., fractions vs. T and pO₂
- However, we are aware of the constraints of the experimental technique and try to deal with them
- Calculations with the CALPHAD method are useful to overcome experimental limitations (determination of the O/M as a function of T)
- With this HT-XRD, we have provided new experimental data, both in the hyper- and hypo-stoichiometric domains of the U-Pu-O system
- They will contribute to the available knowledge on this phase diagram, possibly ameliorating the currently available thermodynamic database
- The methodology used in the current work might be useful to investigate other oxides systems exhibiting a miscibility gap

Thank you for your attention

Recent publications :

R. Vauchy et al. JNM 469, 2016, 125-132 R. Vauchy et al. Inorg. Chem. 55(5), 2016, 2123-2132 R. Vauchy et al. Appl. Mater. Today 3, 2016, 87-95

Sample manufacturing

Manufacturing of U_{0.55}Pu_{0.45}O₂ pellets by powder metallurgy [1]

• Objective #1 : homogeneous U-Pu distribution

Pu Futures 2016

EPMA X-ray mapping in gray levels of Pu and U in $U_{0.55}Pu_{0.45}O_2$ [2]

• Objective #2 : dense pellets with big grains for diffusion study

P _{apparent}	Grain size
(%ρ _{theo})	(µm)
95.6(3)	30-40

Optimized ceramic processing

Optimization of a powder metallurgy process ^[1]

^[1] *R. Vauchy et al., Ceram. Int.* 40, 2014, 10991-10999 ^[2] *S. Berzati, Thèse, 2013*

Cez

Microstructural effects of phase separation

Microstructural effects of phase separation

Samples fabrication and characterization

www.cea.fr

| PAGE 36

Samples fabrication and characterization

Microstructure of starting samples

- Dense samples
- Homogeneous microstructure for all Pu content

DE LA RECHERCHE À L'INDUSTR

Cez

Effect of the phase separation on the microstructure

- Cracked material after phase separation
- Appearance of a new type of microstructure

Effect of the phase separation on the microstructure

25%Pu

35%Pu

Significant impact on the microstructure

The higher the Pu content, the more cracks are observed

Affinement Rietveld : triphasé + phase résiduelle

Affinement compatible avec un équilibre triphasé

| PAGE 41/35

