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ABSTRACT
We present a new structural characterization of the expres-
sive power of the acyclic conjunctive queries in terms of
guarded simulations, and give a finite preservation theorem
for the guarded simulation invariant fragment of first order
logic.

We discuss the relevance of these results as a formal basis
for constructing so-called guarded structural indexes. Struc-
tural indexes were first proposed in the context of semi-
structured query languages and later successfully applied
as an XML indexation mechanism for XPath-like queries
on trees and graphs. Guarded structural indexes provide a
generalization of structural indexes from graph databases to
relational databases.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic; H.2.3 [Database Management]:
Languages—Query languages; H.2.4 [Database Manage-
ment]: Systems—Query processing ; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing—
Indexing Methods

General Terms
Design, Languages, Theory

Keywords
Acyclicity, conjunctive queries, guarded simulation, fact sim-
ulation, finite preservation theorems, hypergraph

1. INTRODUCTION
Recent years have witnessed an increased interest in tree-

based and graph-based data formats, first with the advent
of XML and more recently with the wide adoption of RDF
and JSON to store graphs arising in social networks and the
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Semantic Web, among other uses. This interest has led to
the creation of many specialized graph storage and query
processing engines. Typically, these engines use clever tech-
niques that exploit the graph topology to provide the re-
quired performance on large input graphs (e.g., [14,21,31]).
So-called structural indexes that provide succinct graph sum-
maries constitute one important technique in this respect [5,
10,11,18,22,27,30].

The key idea behind structural indexing is that for many
practical graph query languages Q (reachability queries [10],
XPath queries [11, 16], modal or temporal logic queries [4],
. . . ) it is possible to group together the nodes of input graph
G to obtain a more compact representation, called the struc-
tural index for G (with respect to Q). The grouping is done
in such a way that any query Q ∈ Q can be answered either
directly on the structural index of G instead of on G itself, or
can be answered more efficiently on G after obtaining prun-
ing information from the index [5,10,11,18,22,27,30]. Since
the index is typically (much) smaller than G itself, this way
of processing Q can be significantly faster than evaluating
Q directly over G.

Example 1. To illustrate, Figure 1 shows a graph G and
a structural index I for G. Observe that each node of I is
actually a set of nodes in G. There is an edge between sets
V and W in I if there is an edge between some v ∈ V and
some w ∈ W in G. Clearly, I has fewer nodes and edges
than G. Further observe that to evaluate a query Q such as
“select all professors that advised someone who is currently
a professor who is advising a PhD student”, it suffices to
evaluate Q on I: the resulting node {2, 3} is exactly the set
of nodes resulting from evaluating Q on G.

To obtain a useful structural index, the grouping of nodes
must obviously be done intelligently, in such a way that the
right information can be retrieved from the index when pro-
cessing a query. The notions of simulation and of bisim-
ulation [29] are fundamental for this purpose. Essentially,
bisimulation characterizes when two nodes in a graph share
exactly the same basic structural characteristics such as la-
bels and neighborhood connectivity. Such nodes are called
bisimilar. Simulation, in contrast, relates pairs of nodes
(v, w) such that w has at least, but possibly more of, the
basic structural characteristics of v. Nodes for which there
is a simulation from one to the other and vice-versa are called
similar. Nodes that are bisimilar are also similar, but the
converse does not necessarily hold (e.g., [29]).

In the context of XML, simulation- and bisimulation-based
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Figure 1: Graphs about academic relations between
professors, phd students, and bachelor students, with
advisor-of and supervises relationships. Graph I is a
simulation-based structural index for G.

structural indexes are obtained by grouping together nodes
in the input graph that are similar (respectively, bisimilar).
These indexes are known to be covering for different frag-
ments of the XPath query language [11,22,27]. That is, given
a query in the fragment, its evaluation on the structural in-
dex will provide exactly the nodes that would be returned
had the query been evaluated on the original data. In Fig-
ure 1, for example, the index I is actually a simulation-based
index obtained by grouping together the similar nodes in G.
(And, as Example 1 has already illustrated, certain queries
can be immediately answered on I instead of G.)

Variations of this idea underlying structural indexing have
also been used in graph data management to compress [5,10]
graph-structured datasets, as well as aid in query process-
ing [18,25,30], and data analytics [9].

Given the numerous successful applications of structural
indexing in graph databases, one may ask the question: Is it
possible to extend structural indexing from graph databases
to arbitrary relational databases? In this paper and com-
panion work [24, 25], we embark on a formal study of this
question, and show that it has an affirmative answer, both
from a theoretical and practical perspective.

General methodology. Our study follows the methodol-
ogy proposed by Fletcher et al. [11] for the design of covering
structural indexes for a given target query language Q. This
methodology requires the development of the following three
components.

(1) A language-independent structural characterization of
query invariance, characterizing when data objects (in
our setting: relational tuples) cannot be distinguished
by any query in the target query language Q.

(2) An efficient algorithm to group together data objects
that cannot be distinguished by any query in the target
language Q.

(3) A data structure (i.e., the index) that exploits this group-
ing to support query answering by means of the index
instead of reverting to the full database.

In this paper, we focus on the conjunctive queries as our tar-
get query language, and devote our study to the structural
characterization required for component (1). Components
(2) and (3) are developed in companion work [24,25]. Actu-
ally, we will focus on those conjunctive queries that “select”
tuples in the input database rather than compute new tu-
ples. Our focus on this fragment of the conjunctive queries
as the target language instead of all conjunctive queries is

motivated by the fact that, at least for the purpose of obtain-
ing succinct structural indexes, the class of all conjunctive
queries is too large.

To clarify this claim, we note that in graph databases there
is a known trade-off between the arity of queries in Q and
the size of the corresponding structural indexes: the index
size increases with the arity. In graph databases, for exam-
ple, Q is usually a language of node-selecting (i.e., unary)
queries. In this setting, the data objects in the methodology
of Fletcher et al. are nodes; the structural characterization is
given by (bi)similarity; and the structural index data struc-
ture is built from the groups of indistinguishable nodes, as
illustrated in Example 1. The groups of indistinguishable
nodes are necessarily disjoint. Therefore, there can be at
most as many groups as there are nodes in the input graph,
and, hence, the structural index is always guaranteed to be
at most the size of the input graph (although usually much
smaller).

Now consider the setting where Q is a class of k-ary graph
queries (k ≥ 2) instead. Milo and Suciu have shown that
essentially the same approach as before can be used to build
structural indexes for Q [22]. However, the data objects
become k-tuples of nodes; the structural characterization of
indistinguishability is a generalization of (bi)simulation to
k-tuples; and the structural index is composed of the groups
of indistinguishable k-tuples. Essentially, we are no longer
building a summary of the input graph, but a summary of
the possible output space of queries in Q—which can be
vastly larger than the input graph. In particular, since the
number of k-tuples for k ≥ 3 significantly exceeds the size of
the input graph, the number of groups of indistinguishable
k-tuples (and hence, the index) exceeds the size of the input
graph in practice. Clearly, this defeats the purpose of the
structural index as a succinct graph summary.

Since an analogous reasoning applies to the relational set-
ting, we are therefore not interested in a structural charac-
terization of indistinguishability that applies to all conjunc-
tive queries (of arbitrary arity), but in a characterization
that is applicable to those conjunctive queries that “select”
tuples in the input database. In the literature, these con-
junctive queries are known as the strict (or variable-guarded)
conjunctive queries [12]. Formally, a rule-based conjunctive
query is strict if all variables in the head occur together in
a single atom in the body. (See also Section 2.)

Our focus on the strict conjunctive queries as the target
query language implies that we will not be able to answer
non-strict queries on the structural index directly. Never-
theless, we show in companion work that query processing
of all conjunctive queries can benefit from the presence of
these indexes [24,25]. (See also Section 5.)

Overview of approach and main result. What is a good
notion of indistinguishability by strict conjunctive queries?
It is well known that all conjunctive queries (strict and non-
strict) are invariant under homomorphisms (i.e., structure
preserving functions from databases to databases), in the
following sense.1

1For the formal development in this paper, it will be conve-
nient to focus on the conjunctive queries that do not mention
any constants. All results can be extended to account for
the presence of constants, much in the same way as e.g., the
classical result on genericity in relational databases can be
extended to C-genericity, preserving constants in the finite
set C [3].
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Theorem 2. For all databases db1 and db2 and all tuples
a1 and a2, if there exists a homomorphism f from db1 to db2
such that f(a1) = a2, then for every conjunctive query Q, if
a1 ∈ Q(db1) then also a2 ∈ Q(db2).

Moreover, a seminal result by Rossman states that invari-
ance under homomorphisms is actually a characterization of
the conjunctive queries (modulo union).

Theorem 3 ([28]). A query expressible in first order logic
(FO) is invariant under homomorphisms on finite structures
if, and only if, it is equivalent in the finite to a union of
conjunctive queries.

Homomorphisms are hence the “right” notion for indistin-
guishability by (strict and non-strict) conjunctive queries on
relational databases (which are finite by definition). Unfor-
tunately, however, for component (2) in the methodology of
Fletcher et al., we need to be able to efficiently group to-
gether indistinguishable data objects. This means that we
need to group together homomorphic database tuples. Yet,
the problem of deciding, given two databases db1 and db2
and tuples a ∈ db1 and b ∈ db2, whether there is a homo-
morphism from db1 to db2 that maps a to b, is well-known
to be NP-complete [6,19]. This hence precludes an efficient
grouping algorithm.

This raises the question: is it possible to isolate a use-
ful fragment of the strict conjunctive queries that admits a
tractable structural characterization of indistinguishability?
There are two natural research directions one can take to
answer this question. First, one can look at known frag-
ments of the conjunctive queries that have previously been
shown to be well-behaved in other contexts. Perhaps one of
these fragments admits a tractable structural characteriza-
tion? An immediate candidate fragment here are of course
the acyclic conjunctive queries. Second, one can look at
generalizations of simulation and bisimulation from graphs
to arbitrary relational databases, and investigate what frag-
ment of the strict conjunctive queries are invariant under
these generalizations. We will actually show that, in a sense
to be made precise below, both directions lead to the same
answer.

We are hereby inspired by the following known results.
First, in their seminal work, Andréka et al. [2] and Otto [23]
have shown that the so-called guarded fragment (GF for
short) of FO is characterized by guarded bisimulation, a gen-
eralization of traditional bisimulation to relational databases.
This yields the following variation of Theorems 2 and 3.

Theorem 4 ([2, 23]). The GF is invariant under guarded
bisimulation. Moreover, a query expressible in FO is invari-
ant under guarded bisimulation on finite structures if, and
only if, it is equivalent in the finite to a query expressible in
GF.

Subsequently, Flum et al. [12] have established expressive
equivalence between the strict formulae in GF and the strict
formulae in the acyclic fragment of FO, and Leinders et al.
[20] have shown that strict GF corresponds to the semi-join
variant of Codd’s relational algebra. In parallel, Gottlob
et al. [13] have established the expressive equivalence of the
primitive positive fragment of strict GF and the acyclic strict
conjunctive queries.

These results hint at the possibility that the acyclic strict
conjunctive queries are invariant under a variant of guarded

bisimulation. To investigate this, we introduce guarded sim-
ulation, a variant of guarded bisimulation that is obtained
from guarded bisimulation analogously to how classical sim-
ulation is obtained from classical bisimulation by dropping
the back condition. We show that all acyclic strict conjunc-
tive queries are invariant under guarded simulation.

We actually establish the following stronger result that
characterizes the first order definable queries invariant under
guarded simulation in terms of a fragment of the conjunctive
queries that we call the freely acyclic conjunctive queries
(FACQs for short).

Theorem 5 (Main Result). FACQs are invariant under
guarded simulation. Moreover, a query expressible in FO
is invariant under guarded simulation on finite structures if,
and only if, it is equivalent in the finite to a union of FACQs.

Essentially, a (not necessarily boolean) conjunctive query
of the form head ← body is freely acyclic if the boolean
conjunctive query () ← head, body is acyclic. The classes
of acyclic conjunctive queries and freely acyclic conjunc-
tive queries are incomparable (see also Section 3.1.) Nev-
ertheless, the freely acyclic conjunctive queries do include
all acyclic strict conjunctive queries, as well as all boolean
acyclic conjunctive queries. Our result hence complements
the characterization of strict acyclic FO in terms of guarded
bisimulation. Since guarded bisimulation and guarded sim-
ulation are computable in polynomial time (e.g., [15,17,24]),
this hence identifies a useful fragment of the (strict) conjunc-
tive queries with a tractable structural characterization.

Fact simulation. To get a better understanding of guarded
simulation, we give an alternative definition that we call
fact simulation. As we have already stated above, guarded
simulation is essentially obtained from guarded bisimulation
by dropping the back condition. Since guarded bisimula-
tion can be seen as a variant of Ehrenfeucht-Fraissé games,
guarded simulation can hence be seen as a game in which
the Spoiler always puts pebbles in the same structure (ac-
cording to a given discipline), and the Duplicator has to
construct a partial homomorphism of the placed pebbles in
the other structure (within game rule bounds). Inherently,
the game configurations are thus more complex than in tra-
ditional simulation on graphs. Fact simulation, on the other
hand, can be viewed as a game where the Spoiler does not
put pebbles in one structure but selects entire facts in that
structure. The Duplicator is not concerned with construct-
ing partial homomorphisms directly, but responds with facts
in the other structure, making sure only to mimic the moves
that the Spoiler makes from one fact to the next. In this
respect, fact simulation is closer in spirit to classical simula-
tion on graphs which, viewed as a game, has a Spoiler that
always occupies a single node in one graph and a Duplicator
that has to respond with nodes in the other graph, mim-
icking the Spoiler’s moves. We therefore feel that fact sim-
ulation provides a simpler alternative definition to guarded
simulation.

Approximations. In graph data management, it is known
that, if there are few nodes in graph G that are (bi)similar,
then the corresponding structural index of G may be of the
same size as G itself, and hence be too large to act as a suc-
cinct summary of the structure of G [18]. In such situations,
it has been proposed to approximate (bi)similarity, and to
group nodes in the index with respect to these approxima-
tions instead of with respect to full (bi)similarity [11, 18].
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Since these concerns about index size can be transferred to
the relational setting, it is hence useful to develop approxi-
mate versions of guarded simulation.

To this end, we introduce approximations of fact simu-
lation analogously to how approximations of classical sim-
ulation are defined. These approximations are proved to
be tightly linked to invariance of freely acyclic conjunctive
queries whose join tree is of bounded height. In companion
work [24,25] we show that these approximations can both be
efficiently computed and used to engineer practical guarded
simulation-based structural indexes for relational query en-
gines operating on Semantic Web data.

Contributions and organization. In summary, our con-
tributions are as follows. (1) We introduce guarded simula-
tion as a variant of guarded bisimulation, and prove the char-
acterization stated in Theorem 5 (Section 3). (2) We intro-
duce fact simulation as an alternative definition of guarded
simulation, and show that approximations of fact simulation
are tightly linked to invariance of freely acyclic conjunctive
queries of bounded height (Section 4). (3) We show how
structural indexes based on (approximations of) fact simu-
lations can be defined (Section 5).

We begin, however, in Section 2 with introducing the re-
quired background.

2. PRELIMINARIES

Atoms, facts, and databases. From the outset, we as-
sume given a fixed universe U of atomic data values, a fixed
universe V of variables, and a fixed set S of relation sym-
bols, all infinite and pairwise disjoint. We call atomic data
values and variables collectively terms. Every relation sym-
bol r ∈ S is associated with a natural number called the
arity of r. An atom (respectively a fact) is an expression of
the form r(a1, . . . , ak) with r ∈ S a relation symbol; k the
arity of relation symbol r; and each of the a1, . . . , ak ∈ V
a variable (respectively an atomic data value). A relational
database over S is a finite set db of facts.

Notation. In what follows, we denote the set of all terms
(respectively variables, respectively data values) occurring
in a mathematical object X (such as, e.g. an atom, fact,
or set of atoms and facts) by terms(X) (resp. var(X), resp.
val(X)). We write rel(a) for the relation symbol r of atom or
fact a = r(a1, . . . , ak). We write |a| for the arity k of rel(a)
and a.i for the i-th term ai in a, provided 1 ≤ i ≤ |a|.
We denote tuples (a1, . . . , ak) as a, and give the natural
semantics to |a| and a.i.

The restriction of a set A of atoms or facts to a set of
terms X ⊆ U ∪ V, denoted A|X , consists of all atoms or
facts in A built only from terms in X, A|X := {a ∈ A |
terms(a) ⊆ X}.

Functions f : X → Y with X and Y sets of terms are ex-
tended point-wise to atoms, facts, tuples of terms, and sets
thereof. For instance, if a = r(a1, . . . , ak) and terms(a) ⊆ X
then f(a) = r(f(a1), . . . , f(ak)). We denote by f |Z the re-
striction of the domain of f to the set X ∩Z and, extending
this notation to atoms and facts, denote by f |a the restric-
tion of the domain of f to the set X ∩ terms(a).

We range over atoms by boldface letters drawn from the
beginning of the alphabet (a, b, . . . ) and facts by boldface
letters from the end of the alphabet (r, s, . . . ).

Project
PID Mgr Auditor

s1 1 Amy Lex
s2 2 Lex Amy
s3 3 Sue Sue

Database db1

WorksOn
Emp Proj

t1 Amy 1
t2 Lex 2
t3 Sue 3
t4 Jeffrey 3
t5 Cathy 3

Project
PID Mgr Auditor

u1 a Liv Rob
u2 b Rob Liv
u3 c Ned Ned
u4 d Ellen Fred
u5 e Fred Ellen

Database db2

WorksOn
Emp Proj

v1 Liv a
v2 Rob b
v3 Ned c
v4 Bob c
v5 Ellen d
v6 Fred e

Figure 2: Two company databases. For future ref-
erence, facts are labeled with identifiers (s1, s2, . . . ).
The dotted lines indicate a fact simulation (Sec-
tion 4) between db1 and db2.

Definition 6. If s and t are two facts (resp., atoms), then
the equality type of s and t, denoted eqtp(s, t) is the set

{(i, j) | s.i = t.j, with 1 ≤ i ≤ |s|, 1 ≤ j ≤ t}.

The equality type between two facts hence records the
positions on which the facts share a value. To illustrate,
referring to the facts in the database db1 of Figure 2, we
have eqtp(s1, t1) = {(1, 2), (2, 1)}.

Homomorphisms and isomorphisms. Let A and B be
sets of facts and atoms. A function f : X → Y is a homo-
morphism from A to B if terms(A) ⊆ X and f(A) ⊆ B. It
is a partial homomorphism if f(A|X) ⊆ B. It is an isomor-
phism if f is bijective, terms(A) ⊆ X, and f(A) = B.

Conjunctive queries. A (rule-based) conjunctive query
(CQ for short) Q consists of a rule of the form

Q : ans(x)← a1, . . . ,an,

with ans(x),a1, . . . ,an atoms (n ≥ 0). The set {a1, . . . ,an}
is called the body of Q and is denoted by body(Q). The atom
ans(x) is called the head of Q and is denoted by head(Q).
It is required that var(head(Q)) ⊆ var(body(Q)). We some-
times write Q(x) to indicate that x is the tuple of variables
in the head of Q.

A valuation µ is a partial function µ : V → U . A valua-
tion is an embedding of set of atoms A in a database db if
it is a homomorphism from A to db. A valuation µ is an
embedding of a conjunctive query Q in a database db if it
is an embedding of body(Q) in db. The result of conjunc-
tive query Q(x) on database db is the set Q(db) := {µ(x) |
µ is an embedding of Q in db}.

Example 7. Consider the following CQ Q:

ans(emp)← Project(pid,mgr,mgr),WorksOn(pid, emp).

When applied to the databases of Figure 2 it retrieves all
the employees who work on a project that is managed and
audited by the same person.

A union of conjunctive queries (UCQ for short) is a finite
set ϕ of CQs, all with the same head, say ans(x), which is
called the head of ϕ. The result of UCQ ϕ on database db
is the set ϕ(db) :=

⋃
{Q(db) | Q ∈ ϕ}.
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R(a, b)

S(b, c, e)

R(b, d) S(c, e, f)

R(a, k) R(g, h)

R(g, i) R(h, j)

Figure 3: A join tree for the query in Example 9.

An atom or fact a is boolean if it does not mention any
term. A CQ is boolean if its head is. A CQ Q is strict if all
variables in the head occur together in a single atom in the
body. To illustrate, the query from Example 7 is strict, but
the following is not:

ans(pid, emp,mgr)← Project(pid,mgr,mgr),

WorksOn(pid, emp).

Minimality. A CQ Q is contained in a CQ Q′, denoted Q ⊆
Q′, if Q(db) ⊆ Q′(db) for all databases db. Q is equivalent
to Q′, denoted Q ≡ Q′ if Q ⊆ Q′ and Q′ ⊆ Q.

A CQ Q is minimal if there does not exist an equivalent
conjunctive query with fewer atoms in the body. A UCQ
ϕ is minimal if all of its CQs are minimal, and, moreover,
Q 6⊆ Q′ for all distinct Q,Q′ ∈ ϕ. Obviously, every UCQ
has an equivalent one that is minimal.

Acyclicity. The acyclic conjunctive queries were recog-
nized early in the history of database theory as an impor-
tant subclass of the conjunctive queries that have a PTime
query evaluation problem under combined complexity [1,32].
There are many equivalent definitions of when a conjunctive
query is acyclic. Here, we will use two different versions:
a definition based on join trees and a definition based on
acyclic hypergraphs.

Definition 8 (Join tree). Let A be a finite set of atoms. A
join tree for A is a tree T (i.e., a connected acyclic undi-
rected graph) whose nodes are the atoms in A such that,
whenever the same variable x occurs in two atoms a and b
in A, then x occurs in each atom on the unique path linking
a and b. A join tree for a conjunctive query Q is a join tree
for body(Q).

Example 9. Consider the following query:

Q : ans(a, b)←R(a, b), S(b, c, e), R(b, d), S(c, e, f),

R(a, k), R(g, h), R(g, i), R(h, j).

A join tree for Q is shown in Figure 3.

Definition 10. A conjunctive query is acyclic if it has a
join tree. It is cyclic otherwise.

The query Q from Example 9 is hence acyclic.

Hypergraph acyclicity. A hypergraph is a pair (N , E),
where N is a set of nodes and E is a set of edges (also
called hyperedges), which are arbitrary nonempty subsets
of N . If Q is a conjunctive query, we define the hypergraph
H(Q) = (N , E) associated to Q as follows. The set of nodes
N consist of all variables occurring in Q. For each atom a
in the body of Q, the set E contains a hyperedge consisting
of all variables occurring in a.

It is well-known that a conjunctive query is acyclic if and
only if H(Q) is acyclic. Here, acyclicity of a hypergraph,

also referred to as α-acyclicity by Fagin [8], is defined as
follows.

A path from a node s to a node t in a hypergraph (N , E) is
a sequence of k ≥ 1 edges E1, . . . , Ek ∈ E such that: s ∈ E1,
t ∈ Ek, and Ei ∩ Ei+1 6= ∅, for every 1 ≤ i < k. Two nodes
(or two edges) are connected if there is a path from one to
the other. A set of nodes (or a set of edges) is connected if
all of its pairs of nodes (resp. edges) are connected.

The reduction of the hypergraph (N , E) is obtained by
removing from E each edge that is a proper subset of another
edge. A hypergraph is reduced if it is equal to its reduction.

Given a hypergraph (N , E), the set of partial edges gen-
erated by a set of nodes M ⊆ N is obtained by intersecting
the edges in E with M . That is, the set of partial edges
generated by M is the reduction of {E ∩M | E ∈ E} − {∅}.
A set B is said to be a node-generated set of partial edges if
B is the set of partial edges generated by M ⊆ N , for some
M .

Let F be a connected, reduced set of partial edges, and
let E and F be in F . Let G = E ∩ F . We say that G is an
articulation set of F if the set of partial edges {H−G | H ∈
F} − {∅} is not connected.

Definition 11 (Hypergraph Acyclicity). A block of a re-
duced hypergraph is a connected, node-generated set of par-
tial edges with no articulation set. A block is trivial if it
contains less than two members. A reduced hypergraph is
acyclic if all its blocks are trivial. A hypergraph is said to be
acyclic if its reduction is.

Observe that no block can be formed from exactly two par-
tial edges. Indeed, these two edges are either disconnected
or their intersection forms an articulation set.

Example 12. Consider the conjunctive query

Q2 : ans()← R(a, b, c), R(a, b, d), R(a, c, d), R(b, c, d).

Its hypergraph H(Q2) consists of the following edges:

E1 = {a, b, c} E2 = {a, c, d}
E3 = {a, b, d} E4 = {b, c, d}

Note that H(Q2) itself equals the set of partial hyperedges
of H(Q2) generated by the set {a, b, c, d}. This set is clearly
connected and reduced. Furthermore, it has no articulation
set, and it is not trivial. Therefore, H(Q2) itself forms a
non-trivial block of H(Q2). Hence H(Q2) is cyclic, and so
is Q2.

3. STRUCTURAL CHARACTERIZATION
Guarded bisimulation is a generalization of classical bi-

simulation to relational databases introduced by Andréka
et al. [2]. (A formal definition of guarded bisimulation is
provided in Appendix A for completeness.) Analogously to
modal bisimulation, guarded bisimulation is formulated by
means of back and forth conditions. In this section, we in-
troduce guarded simulation as a variant of guarded bisim-
ulation without the back condition, and prove Theorem 5.
Towards this, we start with the definition of free acyclicity.

3.1 Free Acyclicity
The extension of CQ Q, denoted by Q+, is the CQ ob-

tained by adding head(Q) as an atom to the body.
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Example 13. Here are some CQs and their extensions.

Q1 : ans(x, z)← R(x, y), R(y, z)

Q1
+ : ans(x, z)← R(x, y), R(y, z), ans(x, z)

Q2 : ans(x, y, z)← R(x, y), R(y, z), R(x, z)

Q2
+ : ans(x, y, z)← R(x, y), R(y, z), R(x, z), ans(x, y, z)

Observe in particular that Q+ is always strict.

Definition 14. CQ Q is freely acyclic if Q+ is acyclic.

The classes of acyclic CQs (ACQs for short) and freely
acyclic CQs (FACQs) are incomparable. Indeed, Q1 in Ex-
ample 13 is acyclic but not freely acyclic while Q2 is freely
acyclic, but not acyclic. It is readily verified, however, that
for strict queries the two classes coincide (observe that in
this case the reduction of H(Q) coincides with the reduction
of H(Q+)). Since every boolean CQ is strict, the two classes
hence also coincide on the boolean queries.

Discussion. The class of FACQs may seem strange at first
sight. We find, however, that, from a theoretical view-
point, they form a natural class of queries since they co-
incide with the queries expressible in the primitive positive
version of the well-known and well-studied Guarded Frag-
ment [2, 12, 13, 15, 20] (GF for short) of FO. The formulas
of the primitive positive guarded fragment (denoted {∧, ∃}-
GF) are built by closing the set of all atoms under conjunc-
tion (∧) and guarded quantification of the form ∃x(a ∧ ϕ)
where x is a finite non-empty sequence of variables, a is an
atom, ϕ is a formula in {∧, ∃}-GF, and all free variables of
ϕ must occur in a. To illustrate, ∃z(R(x, y, z) ∧ S(x, y) ∧
S(x, z)) is a formula in {∧, ∃}-GF, as is S(x, y)∧S(y, z), but
∃z(S(x, y) ∧ S(y, z)) is not.

Proposition 15. A query is expressible by a formula in
{∧, ∃}-GF if, and only if, it is equivalent to a FACQ.

While it is generally acknowledged that ACQs are practi-
cally prevalent, it is not clear that the same can be said for
FACQs. To get an initial insight into the practical relevance
of FACQs, we have analyzed a log of SPARQL queries posed
to the DBPedia RDF database between April and July 2010.
SPARQL is the standard query language for data in RDF
format [26]. In particular, SPARQL queries that use only
composition and FILTER in their patterns are CQs. The log
contains more than 3 million queries in total, of which over a
million remain after duplicate elimination. In total, 2061469
queries in the log are CQs in the above sense (688824 after
duplicate removal). Of these, 99.9% are ACQs, and a sim-
ilarly high number (99.7%) turn out to be FACQs. While
of course more real-world query workloads should be inves-
tigated to fully establish the practical relevance of FACQs,
this at least indicates that such relevance cannot be dis-
carded offhand.

3.2 Guarded Simulation
To formally introduce guarded simulation, we first require

the following notions.
Let X ⊆ U ∪ V be a set of terms and let A be a set of

atoms and facts. X is called guarded in A if there is some
atom or fact a ∈ A with X = terms(a). For instance, in the
database db1 of Figure 2, the set {1,Amy} is guarded by t1,
and {3, Sue} is guarded by s3. In contrast, the set {1, 3}

is not guarded in db1, since there is no database fact built
from exactly these two values.

We say that two functions f : X → Y and g : X ′ → Y ′

agree on X ∩ X ′ if f(x) = g(x) for all x ∈ X ∩ X ′. The
notion of guarded simulation is then defined as follows:

Definition 16 (Guarded simulation). Let db1 and db2 be
databases. A guarded simulation from db1 to db2 is a non-
empty set S of finite partial homomorphisms from db1 to db2
such that the following forth condition is satisfied.

• For every f : X → Y ∈ S and for every set X ′ guarded
in db1, there exists a partial homomorphism g : X ′ →
Y ′ ∈ S such that g and f agree on X ∩X ′. (Guarded
Simulation Forth).

We say that (db1, a) is guardedly simulated by (db2, b),
denoted db1, a �g db2, b, if there exists a guarded simulation
S from db1 to db2 and a partial homomorphism h ∈ S such
that h(a) = b. Note that hence a and b must be of the same
arity.

Example 17. Let db1 and db2 be the two databases shown
in Figure 2. The following set S of partial homomorphisms
is a guarded simulation from db1 to db2:

(1,Amy,Lex) 7→ (c,Ned,Ned)

(2,Lex,Amy) 7→ (c,Ned,Ned)

(3,Sue) 7→ (c,Ned)

(Amy, 1) 7→ (Ned, c)

(Lex, 2) 7→ (Ned, c)

(Jeffrey, 3) 7→ (Bob, c)

(Cathy, 3) 7→ (Bob, c).

Let us check the guarded simulation forth property for the
particular partial homomorphism

f : (1,Amy,Lex) 7→ (c,Ned,Ned).

We must consider all guarded sets X ′ of db1:

• if X ′ is {1,Amy,Lex} we choose g as f ;

• if X ′ is {2,Lex,Amy} we choose g as (2,Lex,Amy) 7→
(c,Ned,Ned) (clearly, the intersection of X and X ′ is
{Lex,Amy} and both f and g map Lex 7→ Ned and
Amy 7→ Ned);

• if X ′ is {Amy, 1} we choose g as (Amy, 1) 7→ (Ned, c)
(the intersection of X and X ′ is {Amy, 1} and both f
and g map Amy 7→ Ned and 1 7→ c);

• if X ′ is {Lex, 2} we choose g as (Lex, 2) 7→ (Ned, c)
(the intersection of X and X ′ is {Lex} and both f and
g map Lex 7→ Ned);

• in all other cases, the intersection of X ′ and X is
empty and we are free to choose g : X ′ → Y ′ (since
the intersection is empty, any such g will do).

Using analogous arguments, the guarded simulation forth
property can be checked for the other partial homomorphisms.
Hence, S is a guarded simulation. Moreover, since f(s1) =
u3, we have db1, (1,Amy,Lex) �g db2, (c,Ned,Ned).

Readers familiar with the work by Chen and Dalmau [7]
may observe that a guarded simulation is nothing more than
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a so-called compact winning strategy for the existential k-
cover game between two relational structures, for the special
case where k = 1. Chen and Dalmau link the existence of
winning strategies for the k-cover game to invariance by con-
junctive queries of so-called coverwidth (also known as gen-
eralized hypertree width) at most k. Since it is known that
the conjunctive queries of coverwidth ≤ 1 are exactly the
ACQs (e.g., [7,13]), it is not difficult to obtain the following
from their results.

Proposition 18. The following are equivalent.

• db1, a �g db2, b

• For all FACQs Q, if a ∈ Q(db1) then b ∈ Q(db2).

3.3 Characterizing invariance under guarded
simulation

Proposition 18 implies that the FACQs are invariant under
guarded simulation. It also implies that any FO definable
query that is equivalent to a union of FACQs must be in-
variant under guarded simulation. To obtain Theorem 5,
therefore, it remains to prove that any FO definable query
that is invariant under guarded simulation is equivalent to a
union of FACQs. We devote the rest of this section to this
proof, which starts with the following observation.

Proposition 19. If ϕ is a FO formula invariant under
guarded simulation (on finite databases) then ϕ is equiva-
lent (in the finite) to a UCQ.

Proof. Every homomorphism gives rise to a guarded sim-
ulation. Indeed, if h is a homomorphism from db1 to db2
that maps a to b then it is readily verified that the set S :=
{h|a} ∪ {h|X | X guarded in db1} is a guarded simulation
from db1 ∪{ans(a)} to db2 ∪{ans(b)}. Hence db1, a �g db2, b,
since h|a ∈ S maps a to b. Then since ϕ is invariant under
guarded simulations, it is also invariant under homomor-
phisms. By Rossman’s theorem (Theorem 3), ϕ is hence
equivalent to a UCQ.

Now fix throughout the remainder of this section an FO
formula ϕ(x) invariant under guarded simulation. By Propo-
sition 19 we may assume w.l.o.g. that ϕ is a UCQ. Further-
more, we may assume w.l.o.g. that this UCQ is minimal.

Now assume for the purpose of contradiction that no union
of FACQs expresses ϕ. Then in particular there exists some
CQ Q(x) in ϕ that is not freely acyclic, i.e., Q+ is cyclic.
From Q we will construct pairs (canondb, a) and (unrolldb, b)
such that canondb, a �g unrolldb, b and a ∈ ϕ(canondb) but
b 6∈ ϕ(unrolldb). Then obviously, ϕ is not invariant under
guarded simulation, yielding the desired contradiction. The
definition of canondb and unrolldb is as follows.

The canonical database. The database canondb is simply
what is normally called the“canonical database” (or“frozen”
database) for Q in the theory of conjunctive queries. For-
mally, fix for every variable x ∈ Q a unique data value
x∗ ∈ U such that the function freeze mapping x 7→ x∗ for all
x ∈ var(Q) is a bijection. Let canondb := freeze(body(Q))
and a := freeze(x). By construction, freeze is an embedding
of Q in canondb. Therefore,

Lemma 20. a ∈ Q(canondb) ⊆ ϕ(canondb).

The unrolled database. Since Q+ is cyclic the hyper-
graph H(Q+) contains a nontrivial block. Fix such a non-
trivial block B, as well as a distinguished hyperedge F ∈ B.
Let {x1, . . . , xn} be the variables mentioned in Q. We fix
a set U = {x1◦, . . . , xn◦, x1•, . . . , xn•} ⊆ U of pairwise dis-
tinct values. In what follows, we call xi

◦ the white colored
version of xi, and xi

• the black colored version of xi.
Let var(B) denote the set of all variables that are men-

tioned in the hyperedges of block B. We define for every
V ⊆ var(B) the function clrV : var(Q)→ U by:

clrV (v) = v◦ v 6∈ var(B) or v ∈ V
clrV (v) = v• v ∈ var(B) and v 6∈ V.

Intuitively, clrV is a function that maps variables to values
by“coloring”the variables. Variables not mentioned in B are
colored white, while a variable v mentioned in B is colored
white if v is in V , and black otherwise.

Definition 21 (Covering). Let E, E′, and V be three sets
of variables. We say that E covers E′ w.r.t. V , denoted
E wV E′, if E ∩ V ⊇ E′ ∩ V .

We abbreviate E wvar(B) E
′ by E w E′ and write E = E′

and E =V E′ to denote the corresponding strict relations.

Definition 22 (Maximum intersections). Let B=F denote
the set of all partial hyperedges E ∈ B \ {F} that have a
maximal intersection with F among the hyperedges in B \
{F}. That is, B=F consists of all E ∈ B \ {F} for which
there does not exist E′ ∈ B \ {F} with E′ =F E. Let M∩
be the set of maximum intersections of partial hyperedges of
B \ {F} with F , M∩ := {E ∩ F | E ∈ B=F }.

Note that, since B is nontrivial, the cardinality ofM∩ is at
least 2, and all intersections inM∩ are nonempty. Also note
that for any A ∈M∩, we have F ) A and hence F w A.

Example 23. Consider the query

Q1 : ans()← R(a, b, d), R(c, a, d),

S(b, c, d, e), T (e, f), T (f, g).

It is readily verified that the set

B1 = {{a, b, d}, {b, c, d}, {c, a, d}}

forms a block of H(Q1
+). Consider the hyperedge F =

{b, c, d} of this block. Then M∩ = {{b, d}, {c, d}}, result-
ing from the intersections with the hyperedges {a, b, d} and
{c, a, d} respectively.

Next, consider the query

Q2 : ans()← R(a, b, c), R(a, b, d), R(a, c, d), R(b, c, d)

from Example 12. It is readily verified that the set

B2 = {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}

forms a block of H(Q2
+) (cf., e.g., Example 12). Consider

the hyperedge F = {a, b, d} of this block. ThenM∩ is the set
{{a, b}, {a, d}, {b, d}}, resulting from the intersections with
the hyperedges {a, b, c}, {a, c, d}, and {b, c, d} respectively.

We now turn to the construction of unrolldb.

Definition 24 (Unrolled database). Define F to be the set
of functions that contains
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Figure 4: Illustration of the unrolled database construction. (a) illustrates query Q1 of Example 23; (b)
illustrates the unrolling of Q1 with respect to B1 and partial hyperedge F = {b, c, d}. (c) illustrates query Q2

of Example 23; (d) illustrates the unrolling of Q2 with respect to B2 and the partial hyperedge F = {a, b, d}.

• clrvar(B)|X , for each hyperedge X in H(Q+) such that
F 6w X, and

• clrA|X , for each set A ∈M∩, and each hyperedge X ∈
H(Q+) such that either F w X or A 6wF X.

The database unrolldb is built from these functions as fol-
lows.

unrolldb := {f(a) | a ∈ body(Q), f ∈ F ,
var(a) ⊆ dom(f))}.

For an atom a we refer to the facts f(a) with f ∈ F
and var(a) ⊆ dom(f) as the copies of a. Observe that, by
definition of F , the following holds for every atom a that
contains all variables in F (i.e., F ⊆ var(a)). For every
copy of a there exists a set A ∈ M∩ such that all variables
in A ∩ F are colored white, and all variables in F \ A are
colored black. (Recall that A is a strict subset of F by
definition ofM∩.) This property is crucial to establish that
unrolldb has been constructed as desired (in particular, to
establish Proposition 28).

Example 25. Continuing Example 23, Figure 4 shows the
unrolled database of queries Q1 and Q2, with respect to a
particular distinguished edge F . The nodes of the graphs

represent the atoms of the query and the facts of the un-
rolled database. Lowercase letters in a node denote variables.
Edges between atoms (or facts) are labeled with their equal-
ity type (recall Definition 6). For clarity of presentation,
some edges have been suppressed. In particular, self-loops,
and edges that are the inverse of displayed edges are not in-
cluded. Furthermore, edges with labels not present in the
original query graph are suppressed in the illustration of the
unrolled database. In the unrolled database, different styles
of nodes are used to distinguish copies originating from dis-
tinct partial hyperedges of M∩.

For the unrolling 4(b), we consider the block B1 of Exam-
ple 23 and F = {b, c, d}. Observe that variables that are not
in B1 (namely: e, f , and g) are only colored white, and that
the atoms built on these three variables are copied to a sin-
gle fact. Also observe that d only gets colored white, as it is
shared by all the partial hyperedges in M∩. Finally, observe
that, consistent with what we have noted before, for every
copy of the atom S(b, c, d, e) (which contains all the vari-
ables in F ) we can identify A ∈ M∩ such that in the copy
all variables in A are copied white and all variables in F \A
are copied black. Indeed, for the copy S(b◦, c•, d◦, c◦), take
A = {b, d}. For the copy S(b•, c◦, d◦, c◦), take A = {c, d}.

For the unrolling 4(d), we consider the block B2 of Exam-
ple 23 and F = {a, b, d} .The unrolling contains three copies
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of each fact.
Note in particular that it is not possible to embed Q1 (resp.

Q2) into the unrolled database of Q1 (resp. Q2). Indeed,
to construct such an embedding, we would essentially have
to find an edge-label-preserving graph homomorphism of the
graph in Figure 4(a) (resp. Figure 4(c)) to the graph in
Figure 4(b) (resp. Figure 4(d)), which is readily verified to
be impossible.

By definition of Q+, H(Q+) contains a hyperedge X with
var(x) ⊆ X. Now observe that, by construction, F contains
for every hyperedge X of H(Q+) a function f with domain
X. Fix f ∈ F with var(x) ⊆ dom(f) arbitrarily and let
b = f(x).

Let freeze−1 denote the inverse of freeze. The follow-
ing lemmas and propositions show that (canondb, a) and
(unrolldb, b) have been constructed as desired.

Lemma 26. The set S = {f ◦ freeze−1 | f ∈ F} is a
guarded simulation of canondb in unrolldb.

Proof sketch. It suffices to prove that each f ∈ F is a par-
tial homomorphism from body(Q) into unrolldb and that F
satisfies the guarded forth condition. Indeed, since freeze−1

is an isomorphism from canondb to body(Q), S will then be
a set of partial homomorphisms from canondb into unrolldb
that satisfy the guarded forth condition. Establishing that
each f ∈ F is a partial homomorphism is straightforward;
establishing the guarded forth condition is done by a tech-
nical case analysis.

Proposition 27. canondb, a �g unrolldb, b.

Proof. Clearly b = f(freeze−1(a)). Hence canondb, a �g
unrolldb, b since S = {g ◦ freeze−1 | g ∈ F} is a guarded
simulation of freeze in unrolldb by Lemma 26, and since f ◦
freeze−1 ∈ S maps a 7→ b.

Proposition 28. b 6∈ Q(unrolldb).

Proof sketch. The proof is by contradiction. The essential
reasoning (glossing over many important details) is as fol-
lows. Let ans(x) be the head of Q and let unrolldb+ denote
unrolldb ∪ {ans(b)}.

• First, we show that if b ∈ Q(unrolldb) then there must
also exist an embedding h of Q+ in unrolldb+ that maps

x 7→ x◦ or x 7→ x•,

for every x ∈ var(Q). In particular, x will not be mapped
to a colored version of another variable. As a consequence,
we can establish that h maps each atom a ∈ body(Q+) to
a copy of a in unrolldb+, and not to a copy of some other
atom.

• Then, since F is a partial hyperedge ofH(Q+) there exists
some atom a in Q+ that contains all variables in F . Since,
by the first bullet, h maps atoms in body(Q+) to their
copies in unrolldb+, we know in particular that h(a) is a
copy of a. Then, since a contains all variables in F , there
exists some A ∈M∩ such that every variable in A ( F is
colored white in h(a) and every variable in F \A is colored
black in h(a).

• Since A ∈M∩ there exists E1 ∈ B such that A = E1 ∩F .
Moreover, since B is a block of H(Q+), A cannot be an
articulation set of B. As such, there must exist a path
E1, . . . , En, F ∈ B that does not need to traverse any node
in A. That is, (Ei ∩ Ei+1) \ A 6= ∅ for 1 ≤ i < n, and
(En ∩ F ) \A 6= ∅.

• Now, it is possible to establish that h(Ei) consists only of
white colored variables, for all 1 ≤ i ≤ n. This yields the
desired contradiction. Indeed, since (En ∩ F ) \ A is non-
empty there is some variable x that is both in En and F ,
but not in A. Since x ∈ Ei, h must map x 7→ x◦. On the
other hand, since x ∈ F \ A, we have already established
before that h must map x 7→ x•.

Proposition 29. b 6∈ ϕ(unrolldb).

Crux. We already know that b 6∈ Q(unrolldb) by Proposi-
tion 28. Suppose, for the purpose of contradiction, that
there is some other CQ Q′ ∈ ϕ such that b ∈ Q′(unrolldb).
In particular, there exists an embedding h from Q′ into
unrolldb such that h(x) = b. Now, consider the function
decopy : im(h)→ var(Q) such that

decopy(x•) = x for every x• ∈ im(h)

decopy(x◦) = x for every x◦ ∈ im(h).

Observe that by definition of unrolldb, Q contains an atom
decopy(s) for each fact s ∈ unrolldb built over the image of
h. Hence (decopy ◦ h) is a homomorphism of body(Q′) into
body(Q). Furthermore, decopy(b) = x since b = f(x) for
some f ∈ F . By Chandra and Merlin’s classical result [6],
this implies that Q is contained in Q′, contradicting the fact
that ϕ is minimal.

Since canondb, a �g unrolldb, b and a ∈ ϕ(canondb) but
b 6∈ ϕ(unrolldb) we have our desired contradiction: ϕ is not
invariant under guarded simulation. This finishes the proof
of Theorem 5.

4. GUARDED VS FACT SIMULATION
We next present an alternate definition for guarded simu-

lation, called fact simulation, and show that fact simulation
naturally yields approximations that are tightly linked to in-
variance of freely acyclic conjunctive queries whose join tree
is of a specific bounded height.

4.1 Fact simulation

Definition 30. A fact simulation of database db1 in data-
base db2 is a nonempty binary relation F ⊆ db1× db2 be-
tween the facts of db1 and db2 such that for all facts s ∈ db1
and t ∈ db2 with sFt:

• s and t carry the same relation symbol, i.e., rel(s) =
rel(t);

• for all s′ ∈ db1 there exists t′ ∈ db2 with eqtp(s, s′) ⊆
eqtp(t, t′) and s′ F t′.

Example 31. To illustrate, the dotted lines in Figure 2
show a fact simulation F of database db1 in db2. Note that
fact simulation is necessarily total on db1 (i.e., every fact of
db1 occurs in F).

253



Now, let db1 and db2 be two databases, and let s and t
be facts. We say that (db1, s) is fact simulated by (db2, t),
denoted db1, s �f db2, t, if there exists a fact simulation F
of db1 ∪{s} in db2 ∪{t} with sF t. Moreover if a and b are
tuples of data values, then db1, a �f db2, b if db1, ans(a) �f
db2, ans(b) with ans a relation symbol of the same arity as
a and b that does not occur in db1 or db2.

We require the following notions to establish that fact
simulation is equivalent to guarded simulation. Let s � t
denote, for every s = s(a1, . . . , ak) and t = t(b1, . . . , bl), the
relation {(ai, bi) | 1 ≤ i ≤ min(k, l)}. When we are sure that
s � t is a function, we use common notation for functions,
such as (s � t)(a) to denote the unique value associated to
a by the function s � t.

Now define, for a guarded simulation S,

F [S] := {(s, f(s)) | f : X → Y ∈ S, s ∈ db1,

and val(s) ⊆ X}.

Also define, for a fact simulation F ,

S[F ] := {s � t | (s, t) ∈ F}.

For example, the relation (1,Amy,Lex) � (c,Ned,Ned)
is an element of S[F ], for fact simulation F of Example 31.

The following proposition establishes the correspondence
between guarded simulation and fact simulation.

Proposition 32. 1. If S is a guarded simulation of db1
in db2 then F [S] is a fact simulation of db1 in db2.

2. If F is a fact simulation of db1 in db2 then S[F ] is a
guarded simulation of db1 in db2.

It follows that fact simulation provides an alternative def-
inition for guarded simulation, in the following sense.

Theorem 33. For databases db1 and db2 and tuples a and
b it holds that db1, a �g db2, b iff db1, a �f db2, b.

4.2 Approximate fact simulation
In applications of classical simulation in data management

it is known that, if there are few nodes in graph G that are
similar, then the corresponding structural index of G may
be of the same size as G itself, and hence be too large to act
as a succinct summary of the structure of G [18]. In such
situations, it has been proposed to approximate simulations
and to group nodes in the index with respect to these ap-
proximations instead of with respect to full simulation [18].
Towards a suitable approximation of guarded simulation, we
introduce the following version of fact simulation.

Definition 34 (Approximate fact simulation). Let db1 and
db2 be two databases. A depth-k approximation of fact sim-
ulation of db1 in db2, or fact k-simulation for short, is a se-
quence Fk ⊆ Fk−1 ⊆ · · · ⊆ F0 of binary relations such that
F0 consists of all pairs (s, t) ∈ db1× db2 with rel(s) = rel(t)
and eqtp(s, s) ⊆ eqtp(t, t); and the following property holds
for every 1 ≤ j ≤ k and all s and t with sFj t.

• For every s′ ∈ db1 there exists t′ in db2 such that
eqtp(s, s′) ⊆ eqtp(t, t′) and s′ Fj−1 t

′ (Fact Forth).

We say that (db1, s) is k-fact simulated by (db2, t), de-
noted db1, s �kf db2, t, if there exists a fact k-simulation
Fk ⊆ Fk−1 ⊆ · · · ⊆ F0 from db1 ∪{s} to db2 ∪{t} with
sFk t. The notion of k-fact similarity between (db1, a) and

(db2, b) with a and b tuples is now defined in the obvious
way.

Observe that db1, s �f db2, t iff db1, s �kf db2, t for every
k ≥ 0.

We now link approximate guarded simulation to indistin-
guishability by FACQs of bounded height. Here, the height
of a FACQ is defined as follows. Recall that in graph the-
ory, the distance between two connected nodes u and v in an
undirected graph G is the length of a shortest path between
u and v. The eccentricity of u in G, denoted ecc(u,G) is
the maximum distance of u to any other node to which it is
connected.

Example 35. Consider, for instance, the join tree T of
Figure 3. The eccentricity of R(a, b) in T is 2 while the
eccentricity of R(g, h) in T is 3.

Definition 36. Let A be a set of atoms. When A is acyclic,
the eccentricity of atom a ∈ A, denoted ecc(a, A) is the
minimum eccentricity of a among all join trees T for A.
The height of a FACQ Q is the eccentricity of head(Q) in
body(Q+).

In other words, the height of Q is the minimum height
of any join tree T for body(Q+), when considered as being
rooted at head(Q).

Example 37. Continuing Example 35, query Q of Example
9 has a height of 3.

Proposition 38. Let k ≥ 0 be a natural number. The fol-
lowing are equivalent.

(1) db1, a �kf db2, b

(2) For all FACQs Q of height ≤ k, if a ∈ Q(db1) then
b ∈ Q(db2).

Note that Proposition 38 implies Proposition 18 (yet the
converse is not true).

Closing remark. We close this section with the following
important remark. It is obviously possible to define approx-
imations of guarded simulation in an analogous way as ap-
proximations of fact simulation: a depth-k approximation
is a sequence Sk ⊆ Sk−1 ⊆ · · · ⊆ S0 of partial homomor-
phisms such that each Si satisfies the guarded forth property
to Si−1, for i ≥ 1. While full guarded simulation coincides
with fact simulation (cf. Theorem 33), their approximations
do not. In particular, �0

g is distinct from �0
f . Indeed, con-

sider db1 = {r(a, b), r(b, a)} and db2 = {r(1, 2)}. Note that
there is no partial homomorphism from db1 to db2 with do-
main {a, b}. Therefore, db1 is not guarded 0-simulated by
db2. Yet, db1× db2 is a fact 0-simulation of db1 in db2.

5. GUARDED STRUCTURAL INDEXING
Recall from the Introduction that in graph data manage-

ment, a structural index is a compact representation of a
data graph. Typically, this compact representation is ob-
tained by grouping the nodes in the input graph that are
similar or bisimilar. Structural characterizations of query in-
variance then enable efficient retrieval of the relevant nodes
of the graph for various graph query languages.

In this section we analogously define guarded structural
indexes as compact representations of relational data ob-
tained by grouping facts according to guarded similarity.
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Our structural characterization of FACQ invariance then
provides the means to answer strict ACQs directly on the
index.

Towards a formal definition of a guarded simulation-based
structural index, we first define guarded similarity, and ap-
proximations thereof. Hereto, recall from Section 4 that fact
simulation is an alternative definition to guarded simulation.
For our definition of the index we will therefore work exclu-
sively with fact simulation.

Definition 39. (db1, s) is called fact similar to (db2, t), de-
noted db1, s ∼f db2, t if both db1, s �f db2, t and db2, t �f
db1, s.

The approximate version, called k-fact similarity, denoted
db1, s ∼kf db2, t is defined analogously.

Note that, when applied to the same database db, fact
simulation (i.e., the relation {(s, t) | s, t ∈ db and db, s �f
db, t}) is a preorder and fact similarity (i.e., the relation
{(s, t) | s, t ∈ db and db, s ∼f db, t}) is an equivalence
relation. The same holds for the approximations.

Definition 40. A guarded structural index (or guarded in-
dex for short) for a database db is a pair (db↓, lab) with db↓
a database and lab: db↓ → 2db a function that maps each
fact of db↓ to a subset of db.

The intuition in this definition is that facts in db↓ will
serve as the summary of the structure of facts in db, and
that lab associates the facts in db↓ to the facts in db that
they summarize.

The guarded index based on (full) guarded simulation,
denoted simg(db), is then defined as follows.

Definition 41. The guarded simulation index for db is a
guarded structural index simg(db) = (db↓, lab) such that:
(1) db↓ is the smallest database such that for every t ∈ db

there exists a fact u ∈ db↓ with db, t ∼f db↓,u.
(2) lab is the function that maps each fact u ∈ db↓ to the

set {s ∈ db | db, s ∼f db↓,u}.

The k-th approximation of this index is analogously de-
fined by replacing ∼f in the definition above by ∼kf , and

is denoted simkg(db). Note that the size of db↓ in simg(db)

and simkg(db) is always bounded by the size of db, but is
potentially much smaller.

The following proposition shows that strict ACQs can be
answered directly on the guarded-simulation structural in-
dex. It follows almost directly from Proposition 38 and the
fact that strict ACQs are freely acyclic. Analogous state-
ments hold for the approximations.

Proposition 42 (Cover). Let Q(x) be a strict ACQ, let
db be a database, and let simg(db) = (db↓, lab). Since Q is
strict there exists some a ∈ body(Q) with x ⊆ var(a). Let
i1, . . . , in be natural numbers such that x = (a.i1, . . . ,a.in).
Then,

Q(db) = {(s.i1, . . . , s.in) | µ embedding of Q in db↓,

s ∈ lab(µ(a)}.

Since the size of db↓ in simg(db) is always bounded by the
size of db, evaluating Q by calculating the right-hand side
is potentially much faster than evaluating Q on db directly,
provided that lab is efficiently implemented.

In companion work [24,25], we show that a variant of the
above index structure and a more elaborate evaluation strat-
egy can improve the efficiency of evaluating not only strict
ACQs, but arbitrary conjunctive queries (that cannot be an-
swered directly from the index). The crux to this evaluation
strategy is given by the following observation. Analogous
statements hold for the depth k-approximations with k ≥ 1.

Proposition 43. Let Q be an arbitrary CQ, let db be a
database, and let simg(db) = (db↓, lab). Let µ : V → U be a
valuation. The following are equivalent.

(1) Valuation µ is an embedding of Q in db.

(2) There exists an embedding µ↓ of Q in db↓ such that
µ(a) ∈ lab(µ↓(a)), for each atom a ∈ body(Q).

Proposition 43 allows us to prune the space that we nor-
mally need to search to establish embeddings of a conjunc-
tive query Q in db. To illustrate this claim, let us first in-
troduce the following notation. Let JaKdb denote the set of
valuations {µ : var(a) → U | µ(a) ∈ db}, for any atom
a. Define the join Ω1 1 Ω2 of two sets Ω1 and Ω2 of
valuations to be the set of valuations µ1 ∪ µ2 where µ1 ∈
Ω1, µ2 ∈ Ω2, and µ1(x) = µ2(x) for all common variables
x ∈ dom(µ1) ∩ dom(µ2).

Now observe that, to construct the embeddings of a CQ Q
with body a1, . . . ,an in database db we essentially compute
Ja1Kdb 1 · · · 1 JanKdb. Proposition 43 tells us, however, that
we do not need to consider joining the entire sets JaiKdb. In
particular, in a pre-processing step we can first evaluate Q
on db↓ to find all embeddings of Q in db↓. If db↓ is small,
this can be done quickly compared to the evaluation of Q on
the entire database db. Then, for each obtained embedding
µ↓ we compute Ja1Klab(µ↓(a1)) 1 · · · 1 JanKlab(µ↓(an)) and

add it to the final result. Note that the sets JaiKlab(µ↓(ai)) to
be joined are potentially much smaller than the original sets
JaiKdb. Also note that we typically need to perform multiple
such joins (one for each µ↓). When done eagerly and naively,
this approach may therefore actually slow query processing.
Fortunately, however, classical cost-based optimizers can be
modified in order to ascertain when this approach is benefi-
cial [24,25].
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APPENDIX
A. GUARDED BISIMULATION

The definition of guarded bisimulation due to Andréka et
al. [2] is recalled here for completeness. Given two sets A
and B of facts and atoms, a function f : X → Y is a partial
isomorphism from A to B if it is bijective and f(A|X) =
B|Y .

Definition 44 (Guarded bisimulation). Let db1 and db2
be databases. A guarded bisimulation from db1 to db2 is
a nonempty set I of finite partial isomorphisms from db1
to db2 such that the following forth and back conditions are
satisfied.

• For every f : X → Y ∈ I and for every set X ′ guarded
in db1, there exists a partial isomorphism g : X ′ → Y ′ ∈
I such that g and f agree on X ∩X ′. (Guarded Bi-
simulation Forth).

• For every f : X → Y ∈ I and for every set Y ′ guarded
in db2, there exists a partial isomorphism g : X ′ → Y ′ ∈
I such that g−1 and f−1 agree on Y ∩ Y ′. (Guarded
Bisimulation Back)
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