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Abstract. This paper presents a notion of reduction where a WF net is transformed into a smaller
net by iteratively contracting certain well-formed subnets into single nodes until no more of such
contractions are possible. This reduction can reveal the hierarchical structure of a WF net, and since
it preserves certain semantic properties such as soundness, can help with analysing and understand-
ing why a WF net is sound or not. The reduction can also be used to verify if a WF net is an AND-OR
net. This class of WF nets was introduced in earlier work, and arguably describes nets that follow
good hierarchical design principles.

It is shown that the reduction is confluent up to isomorphism, which means that despite the inherent
non-determinism that comes from the choice of subnets that are contracted, the final result of the
reduction is always the same up to the choice of the identity of the nodes. Based on this result, a
polynomial-time algorithm is presented that computes this unique result of the reduction. Finally, it
is shown how this algorithm can be used to verify if a WF net is an AND-OR net.

1. Introduction

Petri nets [18] are one of the most popular and well studied formalisms for modelling processes. Their
graphical notation is easy to understand, but at the same time concrete and formal, which allows for
reasoning over the complex systems that are being modelled. Petri nets are especially useful for business
processes and business workflows for which a specific class of Petri nets, called workflow nets, was
introduced [27, 28]. Even though other notations are used in most industrial process modelling tools
like Business Process Modeling Notation (BPMN) [17], Business Process Execution Language (BPEL)
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or Event-driven Process Chain (EPC) [13], the control flow aspect of the models expressed in those
notations can be translated to workflow nets. At the same time workflow nets are considered to be the
goto formalism for workflow analysis, like detecting possible problems, e.g., existence of deadlocks or
livelocks, and for investigating the principles of workflow modelling without focusing on a particular
language.

Workflow models that lack those problems are called sound, and the first definition of workflow-net
soundness was proposed by van der Aalst in [27]. Quickly several alternative definitions of soundness
emerged, varying in strictness and verification difficulty. Examples of these are weak soundness [14, 15],
relaxed soundness [6], lazy soundness [21], k-soundness and generalised soundness [32, 31], up-to-k-
soundness [30] and substitution soundness [23]. Informally, the original notion of soundness guarantees
two properties of the net. First, that if we initiate the workflow net correctly, then no matter how the
execution proceeds, we can always end up in a proper final state. Second, that every subtask can be
potentially executed in some run of the workflow. An overview of the research on the different types of
soundness of workflow nets and their decidability can be found in [29].

In earlier research [23] we have proposed a new notion of soundness, namely the substitution sound-
ness or sub-soundness for short. It is similar to k- and *-soundness studied in [32], but captures exactly
the conditions necessary for building complex workflow nets by following a structured approach where
subsystems with multiple inputs and outputs are used as building blocks of larger systems. As was shown
in that research, it is not enough for such subsystems to be classically sound by themselves. It may be the
case, for example, that if a sound WF net is used inside another sound WF net, then the nested WF net
is used to execute several simultaneous computations which can interfere and cause the whole WF net to
become unsound. Or it can be that partial results, represented by tokens in the output places of the nested
WF net, are consumed prematurely by the containing WF net before the nested WF net has finished
properly which disrupts it. This is prevented by the notion of substitution soundness (or sub-soundness),
which is informally defined as follows: a WF net is sub-sound iff after initiating it with k tokens in every
input place and letting it execute it will always be able to finish by producing k tokens for every output
place even if during the run the output tokens are removed by some external transitions.

Although stronger soundness properties may be desirable, they are often also more difficult to verify.
For this reason, a method is introduced in [23] for systematically constructing workflow nets so that they
are guaranteed to satisfy the sub-soundness property. This method is in principle, and in effect, similar
to methods employed in software engineering, where complexity is tackled by separation of concerns
and encapsulation, and systems are divided into building blocks such as modules, objects and functions,
which in turn can be decomposed further.

We follow those good practices in the context of workflow nets where they, like in software engi-
neering, allow to avoid common pitfalls. Similarly to general programming languages, also for workflow
nets, patterns and anti-patterns have been published [28, 25]. Also similarly to general programming, it
is beneficial to organise the workflow models in a structured way. In programming the ideas of using
macros, subroutines, procedures, functions, and later on, classes, proved that even extremely complex
systems can be programmed and maintained in a practical and effective manner. Such structurisation was
successfully applied to designing complex Petri nets [37, 24, 7, 1, 8, 19] and workflow nets [2, 26, 23].
As with general programming, the system is composed of small, separated fragments, which are easier
to understand and maintain. Fragments can include invocations of other fragments, which can include
other nested fragments, and so on.

The class of nets we introduced in [23] is called the class of AND-OR nets (see Section 3). This class
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is larger and more general than other classes of workflow nets generated with a similar type of structural
approach, as presented for example in [32, 2]. Apart from studying conditions necessary for structured
workflow systems to be *-sound, it was shown in [23] that all AND-OR nets indeed are sub-sound. In this
paper we continue this line of research and introduce a method to determine the hierarchical structure of
a WF net, or parts of it, that was not necessarily designed in such a structured way. In [23] the AND-OR
nets were defined as all the nets that can be constructed with a top-down refinement procedure, by using
nets of certain basic classes similar to S/T systems. In this paper we show that at the same time AND-
OR nets that were not necessarily constructed in such a way, can be analysed to determine a refinement
hierarchy with a bottom-up reduction procedure that contracts subnets of the basic AND-OR classes.
Moreover, it is shown that finding occurrences of such subnets can be done in polynomial time.

A key result in this paper is that the procedure of contracting subnets of the basic AND-OR classes is
confluent and therefore the reduction will always return the same result, independent of how the subnets
where selected for contraction. This can be used to turn the procedure into a polynomial algorithm and
therefore a tractable method for determining an AND-OR refinement tree. Next to that, it can also be
determined if a net is an AND-OR net by checking if the reduction procedure reduces it to a one-node
WF net. If a net is positively identified as an AND-OR net, it is consequently also guaranteed to be
sub-sound and consequently *-sound, i.e., can be used as a building block of larger systems. An example
application of this result would be a scenario where a process modeller constructs a complex model from
sub-models published in some repository. He or she may want to make sure that the sub-models follow
good design principles and are sub-sound, which means that they can be safely used as building blocks
of a composite model. The repository can contain models for subunits in some organisational structure,
e.g., models for faculties of an university or departments of a company or even models from some global
repository of socially shared workflows, which appear in e-science [5].

The reduction algorithm not only can be used for AND-OR nets, but also for the analysis of the
soundness and the structure of other workflow nets. It can help the user with finding problems causing
unsoundness. More concretely, if the result of AND-OR verification is negative, then the reduction algo-
rithm stops without reaching a one-node WF net. This resulting net can serve as a condensed version of
the original net and point the user to the source of the problem in the design. Note that a WF net may be
not an AND-OR net, but still be *-sound or sub-sound. We conjecture, but have not proven, that to verify
*-soundness or sub-soundness of an arbitrary net, it is enough to verify *-soundness or sub-soundness
of the net resulting from AND-OR verification procedure. The contractions used in our algorithm would
have to be proven to preserve *-soundness or sub-soundness, similarly as for example rules of [16] pre-
serve liveness and boundedness. This would give a symmetric and probably similarly laborious result to
[23], where it was shown that substitutions of AND-OR nets into AND-OR nets preserve sub-soundness,
from which it follows that they also preserve *-soundness. The reduced net, resulting from AND-OR net
verification procedure, could then undergo a proper soundness verification with similar methods as in
[35, 36, 20, 9]. Furthermore, limiting the size of the verified net with hierarchical methods can be helpful
for users struggling with understanding the reasons for unsoundness of workflow nets. That this is often
a problem, even when using automated verification tools, as for example reported in [10].

Finally, the result of the reduction procedure can be helpful in better understanding the workflow.
Similar benefits are discussed in [11] for control flow graphs which are well-known representation of
the sequential control flow structure of programs and have multitude of applications. Graph reductions
make it easier for software engineers to analyse the control flow in large graphs representing functions,
sets of function or even complete programs. Furthermore, as a byproduct of a successful reduction of
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a workflow net, a tree structure describing the nesting of the fragments of the net can be determined.
As with similar methods [2, 4, 3], which deal with workflow net class which is a proper subclass of
AND-OR nets, such a tree structure can be used for modelling recovery regions or determining sound
markings, or just for better understanding the structure of the workflow net and its properties. The latter
can for example help with determining how parts of the workflow can best be distributed to independent
organisational units or to different servers in case of workflows representing computations, e.g., as in
scientific workflows.

There has already been similar work where a set of heuristics is proposed to find appropriate decom-
position boundaries, which results in a refinement tree for a given graph. In [34] it is however purely
syntax-based, where our method is linked to particular notions of soundness. Moreover, it concentrates
on workflow nets with only one input node and one output node, where we allow there to be more. There
have also several results where similar methods were used to do or speed up classical soundness vali-
dation. In [36] structural reductions were used as pre-processing which reduces the net size and then
S-coverability analysis as well as a form of state space exploration based on coverability trees for sound-
ness validation. In [20] the nets are decomposed based on connectivity property of graphs. Then, the
discovered compositional structure of a model is used for reasoning on soundness of the whole system.
The paper also reports on findings from applying such approach to validate soundness of an industry
model collection. Finally, [9] reports on investigation of three approaches implemented in three differ-
ent tools based on 735 industrial business process models. The goal of the case study was to validate
soundness and report the problems with workflow design to the user. All the discussed methods used
some form of decomposition to deal with the complexity. As with [33] also [36, 20, 9] concentrate on
workflow nets with only one input node and one output node and the results do not easily generalize to
nets not limited in this way. Also the classical notion of soundness is used in all the cases which is more
limited that the *-soundness and sub-soundness we use here.

The outline of the remainder of this paper is as follows. In Section 2 the basic terminology of WF
nets and their semantics is introduced. In Section 3 the class of AND-OR nets is introduced, based on
the notions of place and transition substitution, where a node is replaced with a WF net. In Section 4 the
notion of the reduction of a WF net is introduced, which is a procedure where where repeatedly certain
well-formed subnets of WF nets are contracted into single nodes. It is discussed how this reduction
process is confluent in the sense that it returns a unique result up to the choice of the identity of the
nodes. This is based on the observation that the process is locally confluent, and since the proof of this
observation is quite involved, it is presented separately in Section 5. In Section 6 a concrete polynomial
algorithm for computing the result of the reduction is presented, and it is shown how it can be used
to verify if a WF net is an AND-OR net. Finally, in Section 7 a summary of the results is given, and
potential future research directions are discussed.

2. Basic terminology and definitions

Let S be a set. A bag (multiset) m over S is a function m : S → N. We use + and − for the sum and
the difference of two bags and =, <, >, ≤, ≥ for comparisons of bags, which are defined in the standard
way. We overload the set notation, writing ∅ for the empty bag and ∈ for the element inclusion. We
list elements of bags between brackets, e.g. m = [p2, q] for a bag m with m(p) = 2, m(q) = 1, and
m(x) = 0 for all x /∈ {p, q}. The shorthand notation k.m is used to denote the sum bag m of k times.
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The size of a bag m over S is defined as |m| = Σs∈Sm(s).
A Petri net is defined as usual as a tuple N = (P, T, F ) where P is a finite set of places, T is a finite

set of transitions such that P ∩ T = ∅ and F ⊆ (T × P ) ∪ (P × T ) the set of flow edges. We will refer
to the elements of P ∪ T also as nodes in Petri net. We say that the type of a node is place or transition
if it is in P or T , respectively.

A path in a net is a non-empty sequence (n1, ..., nm) of nodes where for all i such that 1 ≤ i ≤ n−1
it holds that (ni, ni+1) ∈ F . Markings are states (configurations) of a net and the set of markings of
N = (P, T, F ) is the set of all bags over P and is denoted as MN. Given a transition t ∈ T , the preset •t
and the postset t• of t are the sets {p | (p, t) ∈ F} and {p | (t, p) ∈ F}, respectively. In a similar fashion
we write •p and p• for pre- and postsets of places, respectively. To emphasise the fact that the preset
(postset) is considered within some net N , we write •Na, a•N . We overload this notation by letting •a
(a•) also denote the bags of nodes that (1) contain all nodes in the preset (postset) of a exactly once and
(2) contains no other nodes. A transition t ∈ T is said to be enabled at marking m iff •t ≤ m. For a net
N = (P, T, F ) with markings m1 and m2 and a transition t ∈ T we write m1

t−→N m2, if t is enabled
at m1 and m2 = m1−•t+ t•. For a sequence of transitions σ = (t1, . . . , tn) we write m1

σ−→N mn+1,
if m1

t1−→N m2
t2−→N . . .

tn−→N mn+1, and we write m1
∗−→N mn+1, if there exists such a sequence

σ ∈ T ∗. We will write m1
t−→ m2, m1

σ−→ mn+1 and m1
∗−→ mn+1, if N is clear from the context.

We now introduce the notion of Workflow net, which is a Petri net where certain places and transitions
are marked as input and output nodes. An I/O net is a tuple N = (P, T, F, I, O) where (P, T, F ) is a
Petri net with a non-empty set I ⊆ P ∪ T of input places and a non-empty set O ⊆ P ∪ T of output
places. In our setting we will restrict ourselves to I/O nets where input and output nodes are either all
places, or all transitions. We will call such nets I/O consistent. As is usual for Petri nets that model
workflows, we will also require that all nodes in the net can be reached from an input node, and from all
nodes in the net an output node can be reached and call such nets well-connected.

Definition 1. (Workflow net)
A Workflow net (WF net) is an I/O net N = (P, T, F, I, O) that is I/O consistent and well-connected.

The I/O type of a WF net is the type of its input and output nodes, i.e., it is place if it is pWF net, and
transition if it is a tWF net.

Note that input places can have incoming edges in a workflow net, and that output places can have
outgoing edges. We will refer to the nodes in I∪O as the interface nodes of the net. We will call a work-
flow net a one-input workflow net if I contains one element, and a one-output workflow net ifO contains
one element. Often, as in [27], workflow nets are restricted to one-input one-output place workflow nets.
We generalise this in two ways: first by allowing also nets with input and output transitions rather than
input and output places, and second by allowing multiple input and output places/transitions. For these
generalised workflow nets we define the corresponding one-input one-output pWF net as follows. The
place-completion of a tWF net N = (P, T, F, I, O) is denoted as pc(N) and is a one-input one-output
pWF net that is constructed from N by adding places pi and po such that pi• = I and •po = O and
setting the input set and output set as {pi} and {po}, respectively. This is illustrated in Figure 1 (a). In
such diagrams we will indicate nodes in I with an unconnected incoming arrow and nodes in O with an
unconnected outgoing arrow. The transition-completion of a pWF net N = (P, T, F, I, O) is denoted
as tc(N) and is a one-input one-output tWF net that is constructed from N by adding transitions ti and
to such that ti• = I and •to = O and setting the input set and output set as {ti} and {to}, respectively.
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This is illustrated in Figure 1 (b).

N

N

Nti to

tc(N)

(b)

N

N

Npi po

pc(N)

(a)

Figure 1. A place-completed tWF net and transition-completion pWF net

In this paper we discuss a particular kind of soundness, namely the soundness that guarantees the
reachability of a proper final state [23]. We generalise this for the case where (1) there can be more than
one input place and (2) these contain one or more tokens in the initial marking. We also provide a gen-
eralisation of soundness for tWF nets, which intuitively states that after k firings of all input transitions
the computation can end in an empty marking while firing each of the output transitions exactly k times.

Definition 2. (k and *-soundness)
A pWF netN = (P, T, F, I, O) is said to be k-sound if for each markingm such that k.I ∗−→ m it holds
that m ∗−→ k.O. We call N *-sound if it is k-sound for all k ≥ 1. We say that these properties hold for
tWF net N if they hold for pc(N).

By definition place-completion does not affect the *-soundness. However, as we observed in [23, 22],
for transition-completion this is only true in one direction as every pWF net N is *-sound if tc(N) is
*-sound but not vice versa.

3. Definition of AND-OR nets

In this section we introduce the AND-OR nets by recalling some definitions from [23, 22]. These are
based on the notions of place substitution and transition substitution, where a place is replaced with a
pWF net, and a transition is replaced with a tWF net.

Definition 3. (Place substitution, Transition substitution)
Consider two disjoint WF nets N and M , i.e., if N = (P, T, F, I, O) and M = (P ′, T ′, F ′, I ′, O′), then
(P ∪ T ) ∩ (P ′ ∪ T ′) = ∅. We then define substitition as follows. If p is a place in N , and M is a pWF
net, then N ⊗pM is the result of substituting p in N with M , which is defined as follows:

• The node p is removed, and replaced with the nodes and edges of M .

• Each incoming edge (m, p) of p is removed, and replaced with the edges (m, p′) for each p′ ∈ I ′.

• Each outgoing edge (p,m) of p is removed, and replaced with the edges (p′,m) for each p′ ∈ O′.

• If p ∈ I then it is removed from I and all p′ ∈ I ′ are added to I .

• If p ∈ O then it is removed from O and all p′ ∈ O′ are added to I .
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Analogously, transition substitution is defined when t is a transition in N and M is a tWF net, in which
case N ⊗tM is the result of substituting t in N with M defined analogously.

The results of a place substitution and transition substitution are illustrated in Figure 2 (a) and (b),
respectively. It is not hard to see that for all WF nets N and M and n a node in N such that N ⊗n M
is defined, it is again a WF net. It also holds for all WF nets A, B and C that (A ⊗n B) ⊗m C =
A⊗n (B ⊗m C), and (A⊗n B)⊗m C = (A⊗n C)⊗m B if n and m are different nodes in A.

M

N ⊗pMM

(a)

M

N ⊗tM M

(b)

t

N

p

N

Figure 2. Illustration of place substitution and transition substitution (adapted from [23])

We will generate nets by starting from some basic classes C of nets and allowing substitutions of
places with pWF nets and transitions with tWF nets in nets in this class. For that we use the notion of
substitution closure of C denoted as S(C) and defined as the closure of C under transition substitution
and place substitution, i.e., the smallest superclass S(C) of C that satisfies the following two rules for
every two disjoints nets N and M in S(C): (1) if M is a pWF net and p a place in N then N ⊗pM is a
net in S(C) and (2) if M is a tWF net and t a transition in N then N ⊗tM is a net in S(C).

The motivation for using the concept of substitution closure is that we can prove certain properties
of these nets, such as a certain kind of soundness, by showing that these properties (1) hold for the initial
class of nets and (2) are preserved by substitution. As was shown in earlier work [23], *-soundness is not
always preserved by substitution, but substitution does preserve a stronger property called substitution
soundness. The intuition behind this notion of soundness is that the execution of a net, when started
with the same number of tokens in all input places, should always be able to finish properly, even if
the execution is interfered with by removing at some step an identical number of tokens from all output
places. More precisely, if we start the net with k tokens in all its input places, and somewhere during
the execution remove k′ tokens from each of the output places, then the net should be able to finish with
k − k′ tokens in each of its output places.
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Definition 4. (Substitution soundness)
A pWF net N = (P, T, F, I, O) is said to be substitution sound if for all 0 ≤ k′ ≤ k and every marking
m′ ofN such that k.I ∗−→ m′+k′.O it holds thatm′ ∗−→ (k−k′).O. A tWF net is said to be substitution
sound if its place-completion is substitution sound.

It is easy to see that substitution soundness implies *-soundness, since *-soundness only considers
the cases where k′ = 0, and so every substitution sound net is also a *-sound net.

The choice for the initial classes is made such that these are indeed substitution sound. They are based
on acyclic marked graphs (T-nets) and state machines (S-nets), as considered in [32]. The basic idea of
T-nets is that during executions no choices are made about who consumes a token and all transitions fire
in the execution of a workflow. This is captured by the syntactic restriction that places have exactly one
incoming edge and one outgoing edge, where being an input node or output node counts as an additional
incoming edge or outgoing edge, respectively. We will call this the AND-property of a WF net.

Definition 5. (AND property)
A WF net N = (P, T, F, I, O) is said to have the AND property if for every place p ∈ P it holds that (1)
p ∈ I ∧ | • p| = 0 or p /∈ I ∧ | • p| = 1 and (2) p ∈ O ∧ |p • | = 0 or p /∈ O ∧ |p • | = 1.

The basic idea of S-nets is that they represent a state machine, with the state represented by a single
token that is in one of the places. This is captured by a restriction that says that transitions have exactly
one incoming edge and one outgoing edge, where being an input node or output node counts as an
additional incoming edge or outgoing edge, respectively. We will call this the OR-property of a net.

Definition 6. (OR property)
A WF net N = (P, T, F, I, O) is said to have the OR property if for every transition t ∈ T it holds that
(1) t ∈ I ∧ | • p| = 0 or t /∈ I ∧ | • t| = 1 and (2) t ∈ O ∧ |t • | = 0 or t /∈ O ∧ |t • | = 1.

Unfortunately not all WF nets with the AND property or the OR property are substitution sound.
Consider for example a net with the AND property containing a cycle of transitions and places. All
places in this cycle will have no other incoming and leaving edges than those of the loop. In such a net
the transitions in the cycle can never fire, since that would require a token in their preceding place, but
such a token can only be generated by firing a transition in the cycle. To remedy this, we will define
AND nets as WF nets that not only satisfy the AND property but are also acyclic, which leads to the
following definitions of AND and OR nets.

pAND net tAND net pOR net tOR net

Figure 3. Examples of a pAND, tAND, pOR and tOR nets (adapted from [23])
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Definition 7. (AND net)
An AND net is an acyclic WF net that satisfies the AND property. An AND net that is a pWF net is
called a pAND net, and if it is a tWF net it is called a tAND net.

Definition 8. (OR net)
An OR net is a WF net that satisfies the OR property. An OR net that is a pWF net is called a pOR net,
and if it is a tWF net it is called a tOR net.

For some examples of AND and OR nets see Figure 3. The classes of pOR nets, pAND nets, tOR
and tAND nets will be referred to as pOR, pAND, tOR and tAND. In addition we will prefix the
name with 11 if the class contains only nets with one input node and one output node.

The purpose of the AND and the OR nets is to define an initial class of substitution sound nets.
Unfortunately, although all pAND and tOR nets are substitution sound, this is not the case for all tAND
and pOR net. The cause of this is illustrated by the tAND net in Figure 3. Recall that the soundness of
a tWF net is defined as the soundness of its place-completion which adds a single place before the input
transitions and a single place after the output transitions. So if we put a single token in the first place
in this place-completion, then only one of the first transitions can fire, after which the net can no longer
correctly finish. A similar problem occurs in the pOR net in Figure 3. If it starts with a token in each of
its input places, then it cannot finish correctly if it moves the token of the upper input place to the place
in the middle of the net. Both types of problems are solved if we only consider one-input one-output
versions of tAND and pOR nets, which can all be shown to be substitution sound nets. We will refer to
these classes of nets as 11tAND and 11pOR, respectively.

Given the previous considerations, we will for the purpose of generating substitution sound nets only
consider the classes pAND, 11tAND, 11pOR and tOR. We will refer to these classes as the basic AND-
OR classes, and to the class that is obtained by combining them by substitution as the class of AND-OR
nets.

Definition 9. (AND-OR net)
The substitution closure S(pAND∪11tAND∪11pOR∪tOR) is called the class of AND-OR nets.

An example of the generation of an AND-OR net is shown in Figure 4, with on the left the hierarchi-
cal decomposition and on the right the resulting net.

Figure 4. An example of the generation of an AND-OR net (adapted from [23])
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4. The AND-OR reduction

We now proceed with presenting the AND-OR net verification procedure. Informally, the procedure can
be described as reversing the generation process. This means that we try to find subnets that might have
been generated by a substitution and reverse the substitution. This process is repeated until we can find
no more such subnets, and if then the resulting net is a single node, the original net is concluded to be an
AND-OR net.

Definition 10. (Subnet)
A subnet in a larger workflow net M = (PM , TM , FM , IM , OM ) is identified by a non-empty set of
nodes S ⊆ PM ∪ TM . With S we associate a net M [S] = (PS , TS , FS , IS , OS) that is the restriction
of M to the nodes in S, i.e., (1) PS = PM ∩ S, (2) TS = TM ∩ S and (3) FS = FM ∩ (S × S).
Moreover, the input nodes of M [S] are the nodes in S that are input nodes of M plus the nodes in S
that have in M incoming edges from outside S, i.e., (4) IS = (IM ∩ S) ∪ {n2 | (n1, n2) ∈ FM , n1 ∈
((PM ∪TM ) \S), n2 ∈ S)} and analogously (5) OS = (OM ∩S)∪{n1 | (n1, n2) ∈ FM , n1 ∈ S, n2 ∈
((PM ∪ TM ) \ S)}. A subnet consisting of exactly one node will be called a trivial subnet.

Not every subnet of a WF net is again itself a WF net, but it is straightforward to show that it will
always be a well-connected I/O net, which follows from the way how input and output nodes are defined.
It then follows that a subnet of WF net is itself a WF net iff it is I/O consistent.

We now proceed with defining the notion of contraction, i.e., a contraction of a subnet S of a WF net
M into a single new node n.

Definition 11. (Contraction)
Given a WF net M = (P, T, F, I, O) and a subnet S of M such that M [S] is a pWF net, we define the
result of contracting S into a place node n 6∈ (P ∪T )\S as the I/O netM ′ which is identical toM except
that (1) all places and transitions in S and the edges between them are replaced with the single place n,
(2) all edges (n1, n2) in M from a node not in S to a node in S are replaced with an edge (n1, n), (3) all
edges (n1, n2) in M from a node in S to a node outside S are replaced with (n, n2), (4) if any node in
S is an input node of M then n is an input node of M ′ and (4) if any node in S is an output node of M
then n is an output node of M ′. The result of contracting a subnet S such that M [S] defines a tWF is the
same except that the new node n is a transition.

Observe that the result of a contraction is indeed a Petri net. This is because, if a new edge inM ′ connects
n to an old node n′ then there must have been an edge in M between n′ and an input or output node of
M [S]. It follows that n′ is a transition if n is a place, and a place if n is a transition.

It is also not hard to see thatM ′ is I/O consistent and that the type of its input (and output) nodes will
be the same as that of M . After all, the new node n becomes only an input (output) node if one of the
nodes in S is an input (output) node of M . This node in S, say n′, is by definition also an input (output)
node of M [S], and so a transition if M [S] is a tWF net and a place if it is a pWF net. In the first case n
is a transition, and so of the same type as n′, and in the second case n is a place, and so then also of the
same type as n′. Since M ′ is I/O consistent, it follows that n is of the same type as all the other input
(output) nodes of M ′, which were already input (output) nodes of M .

Like for the usual notion of contraction in graph theory, it is clear that paths are preserved, i.e., if
there was a path between two nodes in a WF net then there will still be a similar path in the result of
a contraction where all maximal substrings of nodes in the contracted subnet are replaced with the new
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node. This ensures that the result is again well-connected, and together with the observations that the net
remains a Petri net and that the types of the input and output nodes will remain the same, it follows that
the result of a contraction in a pWF (tWF) net is again a pWF (tWF) net.

During the reduction we will search for non-empty subsets of nodes S in a workflow netM such that
their associated net M [S] is a non-trivial basic AND-OR net, and contract them into a single new node.
Such a contraction should be the inverse of a substitution of this new node with M [S] in the sense that
if we apply the contraction, and then the substitution, we should again have the same WF net. However,
applying that substitution may not always give back M , as is illustrated in Figure 5 (a) and (b). If in a
WF net (a) we first contract the net indicated by the cloud and identified by S = {p1, p2, t3, p3, p4}, and
then substitute the contracted net again, we obtain the net shown in (b). The difference can be understood
by considering the external preset and external postset of nodes in the contracted net, i.e., the subset of
the preset not in S and the subset of the postset not in S. After a substitution it always holds that all input
nodes of the substituted net of the same external preset. For example, in (b) the nodes p1 and p2 have
both {t1, t2} as their external preset. Similarly, all output nodes of the substituted net will all have the
same external postset. For example, in (b) the nodes p3 and p4 have both the external postset {t4, t5}.
We will call this property concerning the external presets and external postsets the well-nestedness of a
subnet. It is easily observed that the subnet in (a) does not satisfy it since the external presets of p1 and
p2 are {t1} and {t1, t2}, respectively, and in addition the external postsets of p3 and p4 are {t4} and {t5}.
It is not hard to see that well-nestedness of a subnet is both a necessary and sufficient requirement for
a substitution to undo a contraction. We now proceed with the formal definition of the well-nestedness
condition.

p2

p1

p4

p3

t2

t1
t3

t5

t4

(a)

p2

p1

p4

p3

t2

t1
t3

t5

t4

(b)

Figure 5. Example of a non-well-nested subnet (a) and a well-nested subnet (b)

Definition 12. (Well-nested subnet)
A subnet S is said to be well-nested in M (or for short M [S] is well-nested) if it holds that (1) for any
two input nodes n1, n2 in M [S] we have •Mn1 \S = •Mn2 \S and (2) for any two output nodes n1, n2
in M [S] we have n1•M \ S = n2•M \ S.

A subnet that is well-nested, and where the associated net M [S] is WF/pWF/tWF net, will be called a
well-nested WF/pWF/tWF net.

Definition 13. (Contractible)
We will call a subnet of M contractible if it is (1) a basic AND-OR net, (2) well-nested in M and (3)
non-trivial.
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Recall from Section 3 that the basic AND-OR classes are pAND, 11tAND, 11pOR and tOR. Based
on this we define the contraction relation which will form the basis of the reduction process.

Definition 14. (Contraction relation)
The contraction relation is the binary relation  over WF nets such that M  M ′ expresses that (1)
there is a contractible WF net N in M and (2) the contraction of N in M results in M ′. The reflexive
and transitive closure of is denoted as ∗.

Based on this, we now define the notion of an AND-OR reduction of a WF net, in this paper simply
referred to as a reduction of a WF net, which describes the result of reducing a WF net by applying
contractions until no more such contractions are possible.

Definition 15. (Reduction)
A reduction of a WF net M is a WF net M ′ such that (1) M  ∗ M ′ and (2) there is no WF net M ′′ such
that M ′  M ′′.

The main result of this paper is that the reduction of a WF net is uniquely defined up to isomorphism,
i.e., all results are identical up to the choice of the identity of the nodes. We write M ∼ M ′ to indicate
thatM andM ′ are isomorphic, and [M ] to denote the equivalence class of all WF nets isomorphic toM .
The main theorem then can be formulated as follows:

Theorem 16. (Unique result up to isomorphism of the reduction)
Let M1 and M2 be both reductions of a WF net M , then M1 ∼M2.

The proof of this theorem will be based on showing that the reduction procedure is locally confluent
up to isomorphism, and then showing that from this we can conclude that the reduction procedure is
globally confluent up to isomorphism. We first state the theorem describing local confluence up to
isomorphism.

Theorem 17. (Local confluence up to isomorphism of the contraction relation)
For all WF nets M , M1 and M2 it holds that if M  M1 and M  M2, then there are isomorphic WF
nets M3 and M4 such that M1  ∗ M3 and M2  ∗ M4.

Since the proof of this theorem is rather involved, we will describe it separately in Section 5. Based on
this theorem we can then give the proof of Theorem 16:

Proof:
(of Theorem 16) Based on the contraction relation we can define a class-based contraction relation over
equivalence classes of WF nets such that [M1] ⇒ [M2] iff for some M ′1 ∈ [M1] and some M ′2 ∈ [M2]
it holds that M ′1  M ′2. Let a class-based reduction of a class [M ] then be a class [M ′] such that (1)
[M ]⇒∗ [M ′] and (2) there is no WF net M ′′ such that [M ′]⇒ [M ′′].

We can first make the observation that contractions respect isomorphisms in the sense that if M  
M1 and M ′ and M are isomorphic then there is an M2 isomorphic to M1 such M ′  M2. Because
of this, it follows from the local confluence up to isomorphism for  , as stated in Theorem 17, that
there is local confluence for ⇒, i.e., for all WF nets M , M1 and M2 it holds that if [M ] ⇒ [M1] and
[M ] ⇒ [M2], then there is a WF net M3 such that [M1] ⇒∗ [M3] and [M2] ⇒∗ [M3]. It is clear that
the class-based contraction relation is well-founded, since each contraction reduces the number of nodes
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with at least one. So it follows by Newman’s Lemma (sometimes also called the diamond Lemma, see
[12]) that⇒ is globally confluent, i.e., the class-based reduction of a WF net class is unique.

Now, assume that M1 and M2 are both reductions of a WF net M . Then it holds that (1) M  ∗ M1

and there is no M3 such that M1  M3 and (2) M  ∗ M2 and there is no M4 such that M1  M4. By
induction on the number of contractions and the definition of⇒, it follows that (1) [M ] ⇒∗ [M1] and
there is no M3 such that [M1]⇒ [M3] and (2) [M ]⇒∗ [M2] and there is no M4 such that [M1]⇒ [M4].
Therefore [M1] and [M2] are class-based reductions of [M ], and since⇒ is globally confluent it follows
that [M1] = [M2], or in other words M1 ∼M2. ut

5. Local confluence up to isomorphism of contractions

In this section we show the local confluence up to isomorphism of the contraction relation as stated by
Theorem 17. To simplify the presentation of the proof, we will at first restrict ourselves to contractions
that do not involve input and output nodes of the larger net, i.e., where S ∩ IM = S ∩OM = ∅. It is easy
to see that for such contractions the sets of input and output nodes of the larger net do not change, i.e., if
M ′ is the result of the contraction then IM ′ = IM and OM ′ = OM , which simplifies the definition of the
result of the contraction. We will call such contractions internal contractions, and a well-nested WF net
that does not share input nor output nodes with the larger WF net will be called an internal well-nested
WF net. We will call an internal well-nested non-trivial net that is of one of the basic AND-OR classes
internal contractible. We let int denote the restriction of where only internal contractions are used.

The restriction to internal contractions is interesting because the general reduction process can be
simulated by the one restricted to internal contractions. More precisely, there is a generation contraction
from M to M ′ iff there is an internal contraction from the completion of M to the completion of M ′.
It can then be shown with induction that a WF net M ′ is the result of a general reduction applied to
M iff the completion of M ′ is the result of a reduction with only internal contractions starting from the
completion of M .

Since in the remainder of this section we will talk mostly about internal contractions, we will refer to
internal contractions, internal well-nested subnets, and internal contractible nets simply as contractions,
well-nested subnets and contractible nets, respectively, unless stated otherwise.

The basic idea of the proof for local confluence is roughly that if there are two contractible subnets
then (1) we can contract them in any order, i.e., after contracting one net the other remains contractible,
and (2) regardless of the contraction order we obtain the same result up to isomorphism. This is clearly
true if the two nets are separated as defined by the flow relation, but becomes more complicated to see if
they are connected by some edges or even overlap. For the latter possibilities we distinguish four cases
which are illustrated in Figure 6. In this figure we use clouds such as S1 and S2 to indicate subnets and
rounded rectangles such as n1 and n2 to represent nodes that can be either places or transitions. The
cases we distinguish are as follows:

(A) The subnets S1 and S2 do not share nodes, but nodes in S1 might be connected to nodes in S2: In
this case the contraction of one subnet will not change the other subnet, but it might change the
edges connected to it. However, as will be shown, this subnet will remain well-nested and therefore
contractible. Note that there might be multiple edges between S1 and S2, but after contracting the
subnets defined by them into n1 and n2, there will be at most one edge from n1 to n2, and vice
versa.
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(C) Overlap, but not nested, same I/O type
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S1 \ S2 n2

 

n1

(D) Nesting

Figure 6. The four cases considered in the confluence proof

(B) The subnets S1 and S2 overlap, but are not nested in one another and the I/O type of the two nets is
different: In this case the contraction of one subnet, say S1, removes a part of S2. It must therefore
be shown that after the contraction the remainder of S2, i.e., the subnet S2 \S1 is either a trivial net,
in which case no further contraction is necessary, or a contractible net, i.e.,M [S2 \S1] is non-trivial,
well-nested and belongs to a basic AND-OR class. In fact, it will be shown that it will belong to the
same basic AND-OR class as M [S2]. Note that since M [S1] and M [S2] have different I/O types,
it follows that n1 and n2 have different types, which is required in a Petri net for connected nodes.
Also note that In the case where S2 \ S1 is a trivial net, and therefore non-contractible, the node n2
in the final result is the one node in S2 \S1 and not necessarily the node that S2 is contracted into in
the right-hand sequence of contractions. However, the final results of both sequences contractions
will be isomorphic. It is because of this that we only have here confluence up to isomorphism and
not actual confluence.

It must also be shown that the final result with nodes n1 and n2 is the same up to isomorphism,
independent of whether first S1 or first S2 is contracted. This means that (a) the edges between n1
and n2 must be the same, (b) the edges between n1 and nodes other than n2 must be the same and
(c) the edges between n2 and nodes other than n1 must be the same.

(C) The subnets S1 and S2 overlap, are not nested in one another and the I/O type of the two nets is the
same: In this case we contract in the second step not just the subnet consisting of the remainder of
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the subnet that was not contracted, say M ′[S2 \ S1] where M ′ is the result of the firs contraction,
but the total of that remainder plus the new node, which would be M ′[(S2 \ S1) ∪ {n1}]. Therefore
it must be shown that this subnet is a contractible net. In fact, it will be shown that it will belong to
the same basic AND-OR class as M [S2]. Note that since M [S1] and M [S2] have the same I/O type,
we cannot simply contract S2 \ S1 in M ′, since that would result in a node of the same type as n1.

It must also be shown that the final result with node n3 is the same, independent of whether first S1
or first S2 is contracted. This means that n3 must be participating in the same edges.

(D) The subnet S1 contains the subnet S2: The first option is to contract S1 into n1, in which case S2
completely disappears. The second option is to contract S2 into n2. It will be shown that after this
step the subnet defined by the remainder of S1 plus the new node n2, i.e., (S2 \ S1) ∪ {n2}, is
contractible in the net resulting from the first contraction. In fact, it will be shown that it will belong
to the same basic AND-OR class as M [S1] in the original workflow net.

It must also be shown that the final result with node n1 is the same, independent of whether first S1
or first S2 is contracted. This means that n1 must be participating in the same edges.

In the following lemmas we will discuss the necessary proofs for the preservation of contractibility of
the non-contracted subnet for each of the mentioned cases in detail.

Lemma 18. (Case (A): preservation of contractibility)
Let M be a WF net with two contractible subnets S1 and S2 such that S1 ∩ S2 = ∅. Then, if M ′ is the
result of contracting M [S1] into n1 then S2 is contractible in M ′.

Proof:
All requirements for contractibility will stay valid for S2, since its nodes and edges are not changed by
the reduction, except that the arriving and departing edges from outside S2 might have changed. So
we need to verify if S2 remains well-nested. Since we are only considering internal contractions, it is
sufficient to show that in M ′ for every input node n of M ′[S2] the set •M ′n \S2 is the same, and that for
every output node n of M ′[S2] the set n•M ′ \S2 is the same. Since the contraction of S1 simply replaces
in both these sets the nodes from S1 with n1, it follows that this indeed still holds in M ′. ut

Lemma 19. (Case (B): preservation of contractibility)
Let M be a WF net with two contractible subnets S1 and S2 such that S1 ∩ S2 6= ∅, S1 * S2, S2 * S1
and M [S1] and M [S2] have different I/O types. Then, if M ′ is the result of contracting S1 into n1 then
in M ′ the subnet S2 \ S1 is either contractible or a trivial subnet.

Proof:
We need to show that M ′[S2 \ S1] is (a) well-nested and (b) a WF net of a basic AND-OR type. For (a)
the argument is as follows. We first consider the input nodes of M ′[S2 \ S1], for which we need to show
that for each such node n′ the set •M ′n′ \ (S2 \ S1) is the same. If all the input nodes of M ′[S2 \ S1] are
also input nodes of M [S2], this is clearly the case since •M ′n′ is equal to •Mn′ except that each node
from S1 is replaced with n. If M ′[S2 \ S1] has an input node n′′ that is not also an input node of M [S2]
then for all input nodes n′ of M ′[S2 \ S1] it can be shown that •M ′n′ \ (S2 \ S1) = {n} as follows.

It can be observed that all output nodes of M [S1] are in S1 ∩ S2. Otherwise, if there was an output
node in S1 \ S2, it would, because of the well-nestedness of S1 in M , have in M an outgoing edge to
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n′′, and so n′′ would already have been an input node of M [S2]. From this observation and the well-
connectedness of S1 in M we can conclude that there must be in M an edge from a node, say n3, in
S1 \ S2 to a node, say n4, in S1 ∩ S2. It then follows that n4 is an input node of M [S2]. We can then
show by contradiction that •M ′n′ \ (S2 \S1) only contains node n. Assume that it contains another node
n5 6∈ S1 ∪ S2. Since n4 is also an input node of M [S2] and M [S2], it follows that n4 has an incoming
edge from n5. But this would make n4 both an input node of M [S1] and of M [S2], which contradicts
the assumption that M [S1] and M [S2] have different I/O types.

The proof for well-nestedness of the output nodes ofM ′[S2\S1] is similar to that for the input nodes,
except that the direction of the edges is reversed and the set of input nodes is replaced with the set of
output nodes.

We now proceed with proof of statement (b), which states that M ′[S2 \ S1] is a WF net of a basic
AND-OR type. We will show that (1) its input and output nodes have the same types as those of M [S2],
(2) it has the AND (OR) property if M [S2] has it, (3) it is acyclic if M [S2] is acyclic and (4) it has the
one-input-one-output property if M [S2] is a 11pOR or 11tAND net. We consider each of these in the
following.

• (1) Preservation of I/O type: We first consider input nodes. Clearly if all input nodes of M ′[S2 \
S1] were already input nodes of M [S2] their type in M ′[S2 \S1] is the same as in M [S2]. For new
input nodes it will hold they have in M ′ an incoming edge from n, and so have the opposite I/O
type of M [S1], which in turn is by assumption the opposite of the I/O type of M [S2], so the new
input node has as its type the I/O type of M [S2]. The argument is similar for output nodes.

• (2) Preservation of the AND property and the OR property: We first consider the AND prop-
erty, and specifically the restriction on input edges for places. For nodes that are not input nodes
of M ′[S2 \S1] this property is preserved from M [S2] since edges and nodes are only removed and
not added. For the same reason the property is also preserved for input nodes of M ′[S2 \ S1] that
in M ′ are not connected to n. Finally, for input nodes in M ′[S2 \S1] that are connected to n, there
must have been in M an edge from a node in S1∩S2 to that node. So if its incoming edges violate
the AND property after the contraction, they would already have done so before the contraction.

The argument for outgoing edges is analogous, and also for the incoming and outgoing edges
violating the OR property.

• (3) Preservation of acyclicity: If there is a cycle in M ′[S2 \ S1] then that cycle would also have
existed in M [S2] since it contains a superset of the edges.

• (4) Preservation of the one-input-one-output property: We show that if M [S2] is a 11pOR net
or a 11tAND net, then M ′[S2 \ S1] also has the one-input-one-output property. We show this by
contradiction. We start with assuming thatM ′[S2 \S1] has at least two input nodes, say n3 and n4,
and then show that M [S2] cannot be a 11pOR net nor a 11tAND net. Clearly this holds if n3 and
n4 were already input nodes of M [S2]. For the case with one of the two nodes, say n3, an input
node of M [S2], and the other n4 not, we can argue as follows. The old input node n3 must have
in M an incoming edge from a node n5 outside S2, and n5 is either in S1 or not. In the first case,
it follows from the well-nestedness of S1 in M and the fact that n4 has in M an incoming edge
from a node in S1 that there is an edge (n5, n4) in M , which contradicts that n4 is not an input
node of M [S2]. In the second case, where n5 6∈ S1, it follows from the well-nestedness of S2 \ S1
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in M ′, as shown earlier in this proof, that there is an edge (n5, n4), which also here contradicts
that n4 is not an input node of M [S2]. Finally, we consider the case where both n3 and n4 are not
input nodes in M [S2]. Since both became input nodes in M [S2 \ S1] and M [S1] is well-nested
there must be a node n5 in S1 ∩ S2 and edges (n5, n3) and (n5, n4) in M . The node n5 is either
a place or a transition. If it is a place, both n3 and n4 are transitions and M [S2] violates the AND
property because n5 is a place with two outgoing edges, so M [S2] is not a 11tAND net. On the
other hand, it is also not a 11pOR net, since n5 is an output node of M [S1], which implies that
M [S1] is a pWF net, and so M [S2] a tWF net. So we have a contradiction with the assumption
that M [S2] is a 11pOR net or a 11tAND net. By an analogous argument it can be shown we get a
similar contradiction if n5 is a transition.

In a similar fashion it can be shown that if we assume M ′[S2 \ S1] has at least two output nodes,
it then follows that M [S2] cannot be a 11pOR net nor a 11tAND net.

Note that from the preservation of the type of the input and output nodes, it follows that M ′[S2 \ S1]
is I/O consistent, and since it is a subnet of a WF net it follows that it is itself a WF net. Since all the
other properties that must hold for a WF net of a basic AND-OR type were also shown to be preserved, it
follows that M ′[S2 \ S1] is a WF net of basic AND-OR type. This net will either contain only one node,
in which case it is trivial, or contain more than one node, in which case it is contractible.

ut
Lemma 20. (Case (C): preservation of contractibility)
Let M be a WF net with two contractible subnets S1 and S2 such that S1 ∩ S2 6= ∅, S1 * S2, S2 * S1
and M [S1] and M [S2] have the same I/O type. Then, if M ′ is the result of contracting S1 into n1 then in
M ′ the subnet (S2 \ S1) ∪ {n1} is a contractible subnet.

Proof:
For succinctness, we will write S′2 for the set (S2 \ S1) ∪ {n1}. We need to show that (a) in M ′ the
subnet S′2 is well-nested and (b) M ′[S′2] is a WF net of a basic AND-OR type. For (a) the argument is as
follows. We first consider the input nodes ofM ′[S′2], for which we need to show that for each such n′ the
set •M ′n′ \ S′2 is the same. As in the proof for case (B) this is clear if all the input nodes of M ′[S′2] are
also input nodes of M [S2]. If M ′[S′2] has an input node n′′ that is not also an input node of M [S2] then
n′′ = n1, since none of the nodes in S1 get in M ′ new incoming edges except from n1. So it remains to
verify that •M ′n′ \ S′2 = •M ′n1 \ S′2 for all input nodes n′ of M ′[S′2], which can be shown as follows.

Clearly this holds for n′ = n1, so we assume that n′ ∈ S2 \ S1. It can now be observed that not
all input nodes of M [S1] are in S1 \ S2. We show this by contradiction, and start with assuming that
all input nodes of M [S1] are in S1 \ S2. Given the well-connectedness of S1 and the non-emptiness of
S1 \ S2, there must be an edge in M from a node in S1 \ S2 to a node, say n2, in S1 ∩ S2. Since n′ is an
input node of M ′[S′2], there is an edge (n3, n

′) in M with n3 6∈ S1 ∪ S2. As n′ ∈ S2 \ S1 it is also an
input node of M [S2] Because M [S2] is well-nested, it follows there is also an edge (n3, n2) in M . But
this means that n2 is an input node of M [S1], which contradicts the assumption that all input nodes of
M [S1] are in S1 \ S2.

Given the previous observation, we can assume that there is an input node n4 of M [S1] in S1 ∩ S2.
Since S1 is contracted into n1 it follows from the semantics of contraction that •Mn4\S1 = •M ′n1\{n1}.
From this it follows that •Mn4 \ (S1 ∪ S2) = •M ′n1 \ ({n1} ∪ S2). Since nodes from S1 no longer
appear in M ′, we get (i) •Mn4 \ (S1 ∪ S2) = •M ′n1 \ ((S2 \ S1) ∪ {n1}) = •M ′n1 \ S′2. Since
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M [S2] and n′ and n4 are both input nodes, •Mn4 \ S2 = •Mn′ \ S2. From this it follows that (ii)
•Mn4 \ (S1∪S2) = •Mn′ \ (S1∪S2). Because n′ 6∈ S1 it follows from the semantics of contraction that
•Mn′\S1 = •M ′n′\{n1}. It follows that •Mn′\(S1∪S2) = •M ′n′\({n1}∪S2). Since nodes from S1 no
long appear inM ′, we can conclude (iii) •Mn′\(S1∪S2) = •M ′n′\((S2\S1)∪{n1}) = •M ′n′\S′2. By
combining (i), (ii) and (iii) we get that •M ′n1 \S′2 = •Mn4 \(S1∪S2) = •Mn′ \(S1∪S2) = •M ′n′ \S′2

The proof for well-nestedness of the output nodes of M ′[S2 \ S1] follows by analogy.
We now proceed with proof of statement (b) that is M ′[S′2] is a WF net of a basic AND-OR type. We

will show that (1) its input and output nodes have the same types as those of M [S2], (2) it has the AND
(OR) property if M [S2] has it, (3) it is acyclic if M [S2] is a pAND net or a 11tAND net and (4) it has
the one-input-one-output property if M [S2] has it. We consider each of these in the following.

• (1) Preservation of I/O type: We first consider input nodes. The only new input node of M ′[S′2]
can be n1 which by construction has the same type as is the I/O type ofM [S1] which by assumption
is equal to the I/O type of S2. The argument is similar for output nodes.

• (2) Preservation of the AND property and the OR property: We first consider the AND prop-
erty, and specifically the restriction on input edges for places. For nodes n′ ∈ S2 \ S1 it is easy to
see that if there are two incoming edges for n′ that violate the AND property inM ′[S′2] and at least
one of them starts from a node in S2 \ S1, then the corresponding edges in M arriving in n′ also
violate the AND property for M [S2]. For nodes n′ ∈ S2 \ S1 that have two incoming edges for n′

that violate the AND property for M ′[S′2] such that neither of them starts from a node in S2 \ S1,
then the corresponding edges arriving in n′ also violate the AND property for M [S2]. First note
that for the AND property to be violated one of the edges has to start from n1 and another from
a node outside of S1 ∪ S2. Then in M [S2] the n′ would also be an input node and the edge from
n1 in M ′ would have a corresponding edge in m from a node in S1. If this edge is from S1 ∩ S2
the AND property would be violated in M [S2] and if it is from S1 \ S2 then the interface nodes
of M [S1] and M [S2] could not be the same. This contradiction proves that the AND property is
preserved for the input nodes.

The argument for outgoing edges is analogous, and also for the incoming and outgoing edges
violating the OR property.

• (3) Preservation of acyclicity: We show that if M [S2] is a pAND net or a 11tAND net, then there
is no cycle in M ′[S′2]. The proof proceeds by contradiction, so we start with assuming that there
is such a cycle. We consider only cycles that go through n1 as any other cycle would also have to
exist in M [S2] because of the way how contraction of M [S1] is defined. For a cycle going through
n1 there would be a corresponding cycle inM [S1∪S2] sinceM [S1] andM [S1] is well-connected.
If this corresponding cycle only goes through nodes in S2 we would have a contradiction with the
assumption that M [S2] is acyclic, so we can assume that it goes through at least one node in
S1 \ S2. In this cycle there will be an edge (n3, n4) from S2 \ S1 to S1 and an edge (n5, n6) from
S1 \ S2 to S2 such that the path between n6 and n3 only passes through nodes in S2. Moreover,
the nodes n4 and n6 will be in S1 ∩ S2, since edges between S1 \ S2 and S2 \ S1 are not possible
because M [S1] and M [S2] have the same I/O type. Also note that n4 is an input node of M [S1],
and n6 is an input node of M [S2]. In M the nodes in S1 ∪ S2 must be reachable from input nodes
of M . Since we consider only internal contractions, there must therefore in M be at least one edge
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(n7, n8) such that n7 6∈ S1 ∪ S2 and n8 ∈ S1 ∪ S2. Consider the case where n8 ∈ S2. Because
M [S2] is well-nested, there is inM also the edge (n7, n6). This makes n6 an input node ofM [S1],
and so because of the well-nestedness of M [S1], there is in M an edge (n3, n6). But this leads to
a contradiction with the acyclicity of M [S2] since there is in M [S2] a path from n6 to n3. For the
case where n8 ∈ S1 we cannot use the same argument as the path from n4 to n5 is not guaranteed
to be in S1, but we can derive a contradiction as follows. By the well-nestedness of S1 in M , there
is an edge (n7, n4) in M and n4 would therefore be an input node of M [S2]. We then distinguish
the subcases where M [S2] is a pAND net and where it is a 11tAND net. In the first subcase we
get a contradiction with the AND property of M [S2] since n4 is an input node with an incoming
edge (n3, n4)). In the other subcase, where M [S2] is a 11tAND net, it holds that n4 = n6, since
both are input nodes of M [S2], which has the one-input property. Consequently, the edge (n3, n4)
and the path in M [S2] from n6 to n3 form a cycle in M [S2], which contradicts the acyclicity of
M [S2].

• (4) Preservation of the one-input-one-output property: We show that if M [S2] has the one-
input property, then M ′[S′2] also has it. We show this by contradiction, and so we start with
assuming that M ′[S′2] has at least two input nodes, say n3 and n4, and then show that M [S2] also
has at least two input nodes. Clearly this holds if n3 and n4 were already input nodes of M [S2].
Since only n1 can become a new input node after contracting S1, the only other case to consider
is where one of the nodes, say n3, is equal to n1 and the other node, n4, is an old input node. Note
that n4 ∈ S2 \ S1, and that both n1 and n4 will have an incoming edge from some node not in S′2.
As n1 is obtained by contracting M [S1], it follows that in M the node n4 and all the input nodes
of M [S1] will have an incoming edge from a node not in S1 ∪ S2. If at least one input node of
M [S1] is in S2, then this is also an input node of M [S2]. This input node is distinct from n4 since
n4 is not in S1, and so M [S2] will have at least two input nodes. If, on the other hand, there are no
input nodes of M [S1] in S2, then there must in M [S1] be a path from an input node in S1 \S2 to a
node in S1 ∩ S2, because S1 ∩ S2 is non-empty. It follows that on that path there is an edge from
a node in S1 \ S2 to a node in S1 ∩ S2. The end node of that edge must be an input node of M [S2]
and is distinct from n4 because n4 is not in S1, so M [S2] has at least two input nodes.

In a similar fashion it can be shown that M ′[S′2] cannot have more than one output node.

From the preservation of the type of the input and output nodes, it follows that M ′[S′2] is I/O consistent,
and since it is a subnet of a WF net it follows that it is itself a WF net. Since all the other properties
that must hold for a WF net of a basic AND-OR type were also shown to be preserved, it follows that
M ′[S′2] is a WF net of basic AND-OR type. Since S2 \ S1 is non-empty by assumption, it follows
that M ′[S′2] = M ′[(S2 \ S1) ∪ {n1}] contains at least two nodes, and so is non-trivial, and therefore
contractible. ut
Lemma 21. (Case (D): preservation of contractibility)
Let M be a WF net with two contractible subnets S1 and S2 such that S1 ⊆ S2. Then, if M ′ is the result
of contracting S1 into n1 then in M ′ the subnet (S2 \ S1) ∪ {n1} is a contractible subnet.

Proof:
The proof of this lemma is identical to the proof of Lemma 20 for case (C) except where the assumption
that the I/O types of M [S1] and M [S2] are identical is used to argue that there are in M no edges from
S1 \ S2 to S2 \ S1, which in this proof is derived from the fact that S1 ⊆ S2. ut
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In the preceding lemmas it was shown for the cases (A), (B), (C) and (D) from Figure 6 that for
internal contractions the contractibility of the non-contracted net is preserved. We now combine these
results to show that we have local confluence for every two internal contractions.

Theorem 22. (Local confluence up to isomorphism of the internal contraction relation)
Given a WF net M and two contractions M  int M1 and M  int M2, there are ismorphic WF nets M3

and M4 such that M1  ∗int M3 and M2  ∗int M4.

Proof:
Let M [S1] and M [S2] be the subnets of M that were contracted for M  int M1 and M  int M2,
respectively. We consider all the possible cases as were defined in the beginning of this section for
M [S1] and M [S2]:

(A) They do not share nodes, but there are edges from nodes in one subnet to nodes in another. By
Lemma 18 it holds that after contracting S1 into n1 resulting in M1 the subnet S2 is contractible in
M1. By symmetry the same holds for the subnet S1 if we contract S2 into n2 resulting in M2. It is
also clear that in both case we get identical results where all nodes from S1 have been contracted
into n1 and all nodes from S2 have been contracted into n2.

(B) The subnets share nodes, the corresponding WF nets have different I/O types, and each subnet has
nodes that are not contained in the other. By Lemma 19 it holds that after contracting S1 into n1
resulting in M1 the subnet S2 \ S1 is either trivial or contractible in M1. By symmetry the same
holds for the subnet S1 \ S2 in M2 if we contract S2 into n2 resulting in M2. Moreover, it can be
shown that the result of contracting first S1 into n1 and then, if it is non-trivial, S2 \ S1 into n2, is
isomorphic to the result of first contracting S2 into n2 and then, if it is non-trivial, S1 \ S2 into n1.
This is proven as follows.

We define the WF net M ′3 as equal to M3 except when S2 \ S1 is trivial, in which case the node in
S2 \ S1 is replaced in M3 with n2. Similarly we define the WF net M ′4 as equal to M4 except when
S1 \ S2 is trivial, in which case the node in S1 \ S2 is replaced in M4 with n1. It is easy to see that
M3 ∼M ′3, and M4 ∼M ′4. We will then show that M ′3 = M ′4.

It is easy to see that M ′3 and M ′4 have the same nodes, namely the nodes of M minus the nodes in
S1 ∪ S2 plus the nodes n1 and n2. Moreover, the types of n1 and n2 are the same in M ′3 and M ′4,
namely the I/O types inM of S1 and S2, respectively. It is also clear that the sets of input and output
nodes are the same as in M , since we only consider internal contractions. So it remains to be shown
that the edges incident to n1 and n2 are the same.

We first show that the edges between n1 and n2 are the same in M ′3 and M ′4. Assume there is an
edge (n1, n2) in M ′3. In that case there is an edge (n′1, n

′
2) in M with n′1 ∈ S1 and n′2 ∈ S2 \ S1.

Assume there are no output nodes of M [S1] in S1 \ S2, then all of them must be in S1 ∩ S2. Since
S1 \ S2 is non-empty and M [S1] is well-connected, there must be in M an edge from a node in
S1 \ S2 to S1 ∩ S2, and so there is also the edge (n1, n2) in M ′4. If, on the other hand, we assume
that there is at least one output node of M [S1] in S1 \ S2, then because of the well-nestedness of S1
in M it follows that there is an edge from that output node to n′2, and so there is also in this case the
edge (n1, n2) in M ′4. A similar argument can be used to show that an edge (n1, n2) in M ′4 implies
this same edge in M ′3. Moreover, the same can be shown with an analogous argument for the edge
(n2, n1).



J. Sroka et al. / On Determining the AND-OR Hierarchy in Workflow Nets 21

What remains to be shown is that the remaining edges incident to n1 and to n2 are the same. Note
that there cannot be edges inM between a node in S1∩S2 and a node not in S1∪S2, since otherwise
there would be a node in S1 ∩ S2 that is an input node or output node of both M [S1] and M [S2],
which is not possible since they have different I/O types. It follows that edges in M between nodes
not in S1 ∪ S2 and nodes in S1 ∪ S2, are in fact either incident to a node in S1 \ S2 or S2 \ S1. So if
an edge exists in M ′3 between a node not in {n1, n2} and n1 or n2, then that edge will exist also in
M ′4, and vice versa.

(C) The subnets share nodes, the corresponding WF nets have the same I/O type, and each subnet has
nodes that are not contained in the other. By Lemma 20 it holds that after contracting S1 into n1
resulting in M1 the subnet (S2 \ S1)∪ {n1} is contractible in M1. By symmetry the same holds for
the subnet (S1 \S2)∪{n2} in M2 if we contract S2 into n2 resulting in M2. Moreover, it also holds
that the result of contracting first S1 into n1 and then (S2 \ S1) ∪ {n1} into n3 is the same as when
we first contract S2 into n2 and then (S1 \ S2) ∪ {n2} into n3. This follows from the observation
that in both cases all nodes in S1 ∪ S2 are contracted into n3.

(D) One subnet is contained in the other. Without loss of generality we assume that S2 ⊆ S1. By
Lemma 21 it holds that after contracting S2 into n2 resulting in M2 the subnet (S1 \ S2) ∪ {n2} is
contractible in M2. Moreover, it also holds that the result of contracting S1 into n1 is the same as
when we first contract S2 into n2 and then (S1 \ S2)∪ {n2} into n1. This follows from the fact that
in both cases all nodes in S1 ∪ S2 are contracted into n3.

ut

This brings us to the proof of Theorem 17, which states that the contraction relation has the local
confluence property. We recall its content here before giving its proof.

Theorem 17. (Local confluence of the contraction relation)
For all WF nets M , M1 and M2 it holds that if M  M1 and M  M2, then there are two isomorphic
a WF nets M3 and M4 such that M1  ∗ M3 and M2  ∗ M4.

Proof:
This follows from the local confluence up to isomorphism of the internal contraction relation, as stated
in the preceding Theorem 22, and the observation that internal contractions on place completions and
transition completions of WF nets can simulate general contractions and vice versa. More precisely, if
M1 and M2 are tWF nets and M ′1 and M ′2 their place completions, it holds that M1  M2 iff M ′1  int
M ′2, and the same holds if M1 and M2 are pWF nets and M ′1 and M ′2 their transition completions. This
observation follows straightforwardly from the definitions of (internal) contractions and completions and
how they treat incoming (outgoing) edges from (to) the added nodes in the completion the same as being
input (output) nodes in the original. ut

6. A polynomial-time reduction algorithm

In this section we present a concrete reduction algorithm for computing the reduction of a WF net. When
the reduction is computed in a naive way, where we simply iterate over all subnets to see if one of them
is contractible, this could require exponential time in the size of the input workflow net. We demonstrate



22 J. Sroka et al. / On Determining the AND-OR Hierarchy in Workflow Nets

that this can be done in a more sophisticated manner that leads to a polynomial-time algorithm. In
addition we show how this algorithm can be used to verify if a certain WF net is an AND-OR net.

The algorithm is based on the result of Theorem 16 which states that the result of this reduction is
unique up to isomorphism, no matter how we select the subnets to contract. This allows the algorithm
to proceed without backtracking and essentially just repeat a process where it continues to look for con-
tractible non-trivial subnets, and contract them, until no more such subnets can be found. The efficiency
of this algorithm is improved further by an algorithm for identifying such subnets within polynomial
time. As a result the whole reduction algorithm runs within polynomial time.

Algorithm 1: reduce(M )
Input: a net WF net M = (P, T, F, I, O)
Output: an reduction of M

1 foreach (n1, n2) ∈ (P × P ) ∪ (T × T ) do
2 if n1 = n2 and n1 ∈ P and there exists t ∈ T s.t. t•M = •M t = {n1} then
3 return reduce(contractSubnet(M , {n1, t}));
4 if n1 6= n2 and •Mn1 = •Mn2 and n1•M = n2•M then
5 return reduce(contractSubnet(M , {n1, n2}));
6 if n1 6= n2 and n2 is reachable from n1 then
7 N ← expand(M , n1, n2);
8 if N 6= null then
9 return reduce(contractSubnet(M , N ));

10 return M ;

Non-trivial subnets, i.e., subnets with more than one node, for contraction can be found in the fol-
lowing way. We iterate in line 1 of Algorithm 1 over all the pairs of nodes (n1, n2) of the same type,
i.e., pairs of places or pairs of transitions. We distinguish three cases. We start in line 2 with contracting
loops, where by a loop we mean a place with a transition attached to it such that this transition has exactly
two edges, one incoming from the place and one outgoing to the place. Then in line 4 we contract pairs of
distinct nodes if these share the same incoming and outgoing edges. Finally, in line 6, for the remaining
pairs of nodes we treat one node as an input and the other as an output. We expand forward from the
input node and backward from the output node. While expanding we remember that we can discover
new interface nodes. If we end up with a subnet that is of a basic AND-OR class then we contract it.

It can be shown that if any non-trivial subnet can be contracted, then at least one of our three cases
will also find a subnet. This follows from the observation that for a contractible subnet it holds that either
(1) it has an input node and an output node that is distinct from the input node but can be reached from it
or (2) all input nodes are also output nodes and vice versa. Case (1) is covered by the test on line 6 where
we assume that n1 is an input node and n2 an output node of the subnet we are looking for. For case (2)
we can distinguish the sub-cases (a) there are two or more input/output nodes or (b) there is exactly one
input/output node. In case (a) the test on line 4 will apply. In case (b) it can be observed that the nested
net must be an 11pOR net if it is non-trivial. This is because it then contains a cycle, and so cannot
be an 11tAND or pAND net, and it also cannot be a tOR net since the input/output node has incoming
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and outgoing edges. If it is an 11pOR net then it either satisfies the test on line 2, or the net minus the
input/output place defines a well-nested tOR net containing more then one node and which is covered by
either the tests on line 4 or 6. So we can conclude that if there is a contractible subnet then there is a pair
(n1, n2) that satisfies at lease one of the tests on line 2, 4, or 6.

The loop runs in quadratic time. Each time we do a contraction the number of nodes decreases, so it
suffices to show that we can do the expansion in polynomial time. Observe first that we can easily check
in polynomial time if the output node is reachable from an input node or even enumerate the nodes in
such a way that for each input node we iterate only over the output nodes reachable from it.

The expansion can be done as in Algorithm 2. Given an input and output node pair we traverse the
net as in a breadth or depth-first graph search algorithm. The initial nodes for the traversal are the input
and output nodes provided as parameters, yet we make sure that we traverse forward only if the currently
inspected node is not an output node (see lines 7 through 12) and that we traverse backward only if the
currently inspected node is not an input node (see lines 13 through 18). The newly encountered nodes
are tested to check if they can be input (output) nodes of the subnet we are looking for. This is done by
testing if (1) they have incoming (outgoing) edges from (to) exactly the same nodes as the initial input
(output) node and (2) are input node of M iff the initial input node is an input node of M . When this test
succeeds, the node is added to the input (output) set of the constructed net (see lines 9 and 15).

It is easy to see that during the traversal we discover only nodes that must be in any well-nested
subnet with the provided interface nodes. This holds because, if there is in M an edge (n1, n2), and
n1 is in a subnet that is a WF net, but cannot be an output node of that WF net, then n2 is also in that
subnet. So we argue that the algorithm finds only non-trivial subnets that are well-nested and of a basic
AND-OR class. Otherwise it returns null.

First, observe that in lines 7 and 13 we check if a node has incoming (outgoing) edges from (to)
exactly the same nodes as the initial input (output) node. However, for a well-nested subnet S it is
required that all nodes in IS (OS) must have incoming (outgoing) edges from (to) the same nodes outside
S. We argue that our check is correct, which can be reasoned by examining all the basic AND-OR classes.
For pAND and 11tAND nets no cycles are allowed, so for input (output) nodes all incoming (outgoing)
edges must come from outside. In tOR nets transitions have at most one incoming (outgoing) edges
internally and none if they are input (output) node, so all incoming edges come from outside. Finally, for
11pOR nets only the initial single input and single output nodes are possible and no other internal node
can have edges from outside. Now we know that if a subnet is found, it must be a WF net, since (1) M
is assumed to be a WF net, (2) all the input (output) nodes are guaranteed to be connected to the same
nodes outside and either all input (output) node of M or none, and (3) we include all the nodes reachable
forwards (backwards) from any of the input (output) nodes.

Next, during traversal, we maintain the set of possible basic AND-OR classes that are still compatible
with the discovered net. It is initiated in the lines 3 through 4, can be updated in lines 8 and 14 if the
expanded net is observed to not to be one input one output net, respectively, and in lines 21 and 22 if the
AND or OR properties, respectively, stop to be satisfied. Note that if n′ here satisfies the AND and OR
properties it will continue to do so, since all its predecessors and successors have already been added to
S in the preceding steps on lines 12 and 18 unless it is an input or output node. Finally, on line 23 we
examine the acyclicity property, which is required for AND nets. This guaranties that we know if the
subnet is of a basic AND-OR class. If no compatible basic AND-OR classes are left (see line 24), a null
is returned.

At the end of the algorithm, on line 25 the found subnet is returned, which is spanned by S and
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Algorithm 2: expand(M ,i, o)
Input: a WF net M = (P, T, F, I, O) and nodes i, o ∈ P or i, o ∈ T
Output: a subnet S of M such that M [S] is a well-nested WF net of a basic AND-OR class with at least

one input node i and at least one output node o, or null if such a subnet does not exist

1 (S, IS , OS)← ({i, o}, {i}, {o}); // initialize subnet S and input/output sets of M [S]
2 TBA← {i, o}; // nodes to be analysed
3 if i, o ∈ P then PC ← {11pOR, pAND}; // init. set of possible
4 if i, o ∈ T then PC ← {11tAND, tOR}; // basic AND-OR classes
5 while TBA 6= ∅ and PC 6= ∅ do
6 n′ ← pick and remove from TBA;
7 if •Mn′ = •M i and n′ ∈ I ⇔ i ∈ I then // is n′ input node?
8 if n′ 6∈ IS then PC ← PC \ {11pOR, 11tAND}; // new input
9 IS ← IS ∪ {n′};

10 else
11 TBA← TBA ∪ (•Mn′ \ S); // add predecessors
12 S ← S ∪ •Mn′;
13 if n′•M = o•M and n′ ∈ O ⇔ o ∈ O then // is n′ output node?
14 if n′ 6∈ OS then PC ← PC \ {11pOR, 11tAND}; // new output
15 OS ← OS ∪ {n′};
16 else
17 TBA← TBA ∪ (n′•M \ S); // add followers
18 S ← S ∪ n′•M ;

19 if (n′ 6∈ IS ∧ |•M [S]n
′| 6= 1) or (n′ ∈ IS ∧ |•M [S]n

′| 6= 0) or
20 (n′ 6∈ OS ∧ |n′•M [S]| 6= 1) or (n′ ∈ OS ∧ |n′•M [S]| 6= 0) then
21 if n′ ∈ P then PC ← PC \ {pAND, 11tAND}; // not AND net
22 if n′ ∈ T then PC ← PC \ {tOR, 11pOR}; // not OR net

23 if M [S] cyclic then PC ← PC \ {pAND, 11tAND}; // AND is acyclic
24 if PC = ∅ then return null; // no more possible basic classes?
25 return S;

is a well-nested, internal subnet of M that is in at least one basic AND-OR class. This concludes the
argument for correctness of Algorithm 2.

From the correctness it follows that it can be used to check if a WF net is an AND-OR net by checking
if it is reduced to a trivial WF net. After all, if this happens the reduction of the WF net can be executed
in reverse and defines a way of generating the WF net by substitutions of basic AND-OR nets. Indeed,
it can be shown that for every AND-OR net there is a generation possible that uses only basic AND-OR
nets, and therefore it is reduced to a trivial net by AND-OR reduction. The argument is as follows. Let us
denote the generation of an AND-OR net as a nested expression consisting of the substitution expressions
M⊗nN combined with basic AND-OR nets. As noted earlier, this operation is essentially associative in
the sense thatA⊗n1 (B⊗n2 C) and (A⊗n1B)⊗n2 C produce the same result, if n1 appears inA and n2
appears in B. As a consequence, any expression that describes the generation of an AND-OR net can be
rewritten to an equivalent expression of the form (. . . ((N0 ⊗n1 N1)⊗n2 N3) . . .⊗nk

Nk) where N0 is a
trivial net containing the node n1 and all other Ni are basic AND-OR nets. When read from left to right,
this expression will represent a generation of the AND-OR net while substituting only basic AND-OR
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nets.

7. Summary and Future Research

In this paper we introduce a notion of reduction, which reduces a WF net to a smaller net by iteratively
contracting certain well-formed subnets into single nodes until no more such contractions are possible.
This reduction is interesting for several reasons. The first reason is that it preserves the soundness and
unsoundness of the net, so can be used to help users understand why a WF net is problematic. It might
also give some valuable insights for determining the different possible decompositions, e.g., how parts
of the workflow can be best distributed to independent organisational units or, in case of workflows
representing computations, e.g., as in scientific workflows, to different servers. The second reason is that
it can provide as a side-effect a hierarchical structure of parts, or the whole, of the WF net, which can
help user to understand the structure or large WF nets. The third and final reason is that the reduction
can be used to show that a certain WF net is an AND-OR net, because in that case the net is reduced to
a one-node WF net. This class of WF nets was introduced in earlier work, and arguably describes nets
that follow good hierarchical design principles which can be compared to structured design of programs
and using well nested procedures and functions, rather than unrestricted goto statements. As was shown
in earlier work, these nets have the desired soundness property.

It is shown that the reduction is confluent up to isomorphism, which means that despite the inherent
non-determinism that comes from the choice of subnets that are contracted, the final result of the reduc-
tion is always the same up to the choice of the identity of the nodes. Based on this result, an algorithm is
presented that computes the reduction, and runs in polynomial time.

As a byproduct of the reduction procedure, a refinement tree for the hierarchical structure of the net
can be constructed, like has been done for similar classes of nets [2, 4, 3]. It is worth to investigate
how such refinement trees can be used to determine efficiently sound markings and to model recovery
regions. Moreover, it can be investigated to what extent this hierarchy is unique, or could be made so by
normalising it, since that could make it more effective as a tool for understanding the structure of a net.
For example, in a refinement tree, if a parent and a child both represent contractions of AND nets, then
they can be merged into a single contraction of a larger AND net. Another source of ambiguity comes
from the observation that linear nets are simultaneously AND and OR nets. It would be interesting to
investigate if these types of ambiguity capture all ambiguity.

Finally, another direction for future research is extending the class of sound free-choice nets that
can be generated as AND-OR nets by having additional substitution rules for edges. We could define
ptAND, tpAND, ptOR and tpOR nets where the small letters indicate the type of input and output nodes,
respectively. So an edge from a place to a transition could be replaced with a tpAND or tpOR net.
Note that the original place and transition remains present. If the ptAND is a one-output net, and the
ptOR net is a one-input net, this preserves substitution soundness, and also the free-choice property. It
would be interesting to investigate to what extent this would come close to generating all choice-free
substitution-sound WF nets.
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