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Comparison of terrain-based drift models to improve 
the quality of soil predictive mapping at a field scale

The ecological, economic, and agricultural benefits of accurate interpolation of 
spatial distribution patterns of soil properties are well recognized. In the present study 
different approaches to build the drift model for the regression kriging are analyzed and 
compared for estimating the spatial variation of humus and physical clay at soil depth 
(0-20 cm) in Tatarstan, Russian Federation. The soil sampling was performed according 
to an agrochemical sampling design: the field was divided into 60 sections; within each 
section 12-15 sampling points were taken using a hand auger at the depth of 10-20 cm 
to produce one mixed sample. Three terrain-based drift models: principal component 
regression (PCR), partial least squares (PLS), and random forest were used to predict 
the spatial distribution of humus and physical clay. Cross-validation was applied to 
evaluate the accuracy of interpolation methods through mean error (ME), root mean 
square error (RMSE), root mean square standardized error (RMSSE), and ratio of the 
observed and the predicted variances (RVar). The results indicate that ordinary kriging 
(OK) is superior when the data have strong spatial dependence. But in other cases, the 
PLS approach had the best prediction performance.

The article contains 4 Figures, 5 Tables, 29 References.
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Introduction

Spatial variability of soil properties is an important indicator of soil quality, 
and it is important in ecological modeling, environmental prediction, precision 
agriculture, and natural resource management [1]. Revealing the characteristics 
of spatial patterns will provide the basis for evaluating soil fertility, and assist in 
the development of sound agricultural management policies. So, there is a need 
for adequate information about spatio-temporal behavior of soil properties over 
a region and accurate interpolation at unsampled locations is needed for better 
planning and management.

In general, there are two major approaches to predict soil properties at 
unsampled location. Methods of “classic” statistics use linear and non-linear 
regression models to predict dependent variable using auxiliary data. Remote 
sensing data, topographic and morphologic attributes, climate, land-use and 
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geology are auxiliary parameters commonly used for the calibration of predictive 
models. For example, Rodriquez-Lado and Martinez-Cortizas used multiple 
linear regression, e.g. principal component regression and partial least squares, 
for modeling and mapping organic carbon content of topsoil using climatic and 
geological data as independent variables [2].

The second approach is geostatistics, which has been rapidly developing 
for last decades [3; 4]. Geostatistics is an efficient method for studying spatial 
allocation of soil characteristics and their inconsistency and reducing the variance 
of assessment error and execution costs [5]. Geostatistical methods model the local 
uncertainty about the attribute value at any particular location through the set of 
possible realizations of the random variable at that location [6]. Earlier researchers, 
who applied geospatial techniques to evaluate geographical changeability of soil 
characteristics, reported that ordinary kriging in most cases was the best method 
for prediction of the spatial distribution of soil properties [7; 8]. 

And there is the third, hybrid approach that uses advantages of the first two. And 
the typical example is regression kriging (RK) that uses regression models to explain 
deterministic part of spatial variation using auxiliary data and kriging technique to 
interpolate the residuary, stochastic part of spatial variation. In RK, the deterministic 
part can be explained using various statistical techniques. Many authors suggest 
the relative accuracy advantage of the RK compared to OK, and this prediction 
performance depends on the relationship between the target variable and the 
explanatory co-variables [9; 10]. The present study was undertaken to compare the 
accuracy of various approaches to model the deterministic part of regression kriging.

Materials and methods

2.1. Study area and sampling design
The study was carried out in the national crop testing field (CTF) that is 

located in the southeastern part of the Republic of Tatarstan (Russian Federation, 
55°05’56.0”N 52°02’24.0”E). The relief of the field is flat in the northern part and 
changes to the gentle slope in the southern and south-eastern parts. The soil cover 
is represented by leached, silt loamy chernozems with varying rates of erosion. 
The most eroded chernozem is located in the eastern and south-eastern parts of the 
field. The soft eroded soils are located in the northern part of the CTF. Parent rocks 
are represented by fine loamy and clayey calcareous deluvium, underlined by the 
ancient alluvial deposits in the eastern part. Particle size distribution, according to 
the Russian classification by NA Kachinsky, is fine loamy [11]. 

The soil sampling was performed according to an agrochemical sampling 
design: the field was divided into 60 sections; within each section 12-15 sampling 
points were taken using a hand auger at the depth of 10-20 cm to produce one 
mixed sample (Fig. 1).

For geostatistical analysis the mixed samples were georeferenced into centers 
of the corresponding sections. The following soil properties were measured: humus 
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content by the Tyurin method and the particle size distribution by the Kachinsky-
Robinson-Kehl pipet method [12]. As an indicator of the particle size distribution, 
the sum of particles <0.01 mm was used. In Russian classification, this range of 
particle sizes is called “physical clay”, and this term is used henceforward.

Fig.1. Study area showing the location of the sampling points

2.2. Terrain variables
Terrain analysis was based on a 30-m grid digital elevation model (DEM). In 

order to model the distribution of soil properties, we considered a set of 34 GIS-
based geographic covariates in the form of raster maps. As many terrain indices 
as possible were calculated because a large set of predictors can compensate 
unaccounted variables [13]. A full set of used terrain indices can be found in Fig 
3. All terrain variables were averaged within the section of the mixed sample. The 
terrain analysis was performed using SAGA GIS software [14]. 

2.3. Interpolation techniques
2.3.1. Ordinary kriging
OK is a geostatistical interpolator of the kriging family. Here the predictions 

are based on the model:
( ) '( )Z s s= µ + ε ,                                                       (1)

where μ is the stationary mean of the local neighborhood; ε'(s) is the spatially 
correlated stochastic part of variation [6]. 

The spatial structure is quantified by the experimental variogram, which is the 
plot of the semivariance γ (2) against the distance between points. Semivariance 
is an important concept in geostatistics; it represents the differences between the 
neighboring values:

21( ) [( ( ) ( )) ]
2 i ih E z s z s hγ = - + ,                                         (2)
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where z(si) is the value of a target variable at a sampled location, z(si+h) is the 
value of the neighbor at distance h [15]. 

The kriging procedure gives weightings to sample data based on the relationship 
between distance and semivariance [16]. The ordinary kriging results were used 
as a baseline to assess the performance of other interpolation techniques.

2.3.2. RK with Principal Component Regression
The regression kriging is similar to OK and the main difference is that the 

stationary mean is replaced with a linear function of secondary variables. These 
secondary variables should be available at all primary data points and at all points 
of the region of interest [17].

( ) ( ) '( ) ''Z s m s s= + ε + ε                                             (3)

In the regression kriging the drift function and residuals can be fitted separately 
and then summed afterwards [18; 19]. Because of this appears a big advantage of 
the RK over other methods of spatial interpolation: it can be easily combined with 
different statistical modeling techniques [20].

Hengl et al. proposed a generic framework for spatial interpolation based 
on regression kriging [21]. This approach predicts a soil property at unvisited 
location by summing the predicted drift m(s) and residuals that are interpolated 
using ordinary kriging. In this article the different drift modeling approaches were 
used. 

During the calibration of linear models, multicollinearity often occurs when 
using a large set of auxiliary data, leading to problems of overfitting. PCR was 
proposed as an effective technique when the evidence of multicollinearity exists. 
The principal component regression approach is based on the principal component 
analysis. It involves the summarizing of auxiliary data into new uncorrelated 
principal components, and then using these components as the predictors in a 
linear regression model that is fit using least squares [22]. These components are 
linear combinations of the original covariates, and retain the maximum amount of 
their variability. Then, the scores from the PCA decomposition are regressed onto 
the response data for prediction purposes.

2.3.3. RK with Partial Least Squares 
Partial Least Squares is a technique similar to PCR. Like PCR, PLS combines 

features from principal component analysis and multiple linear regression. 
But PLS uses the response in order to identify new components that not only 
approximate the auxiliary data well, but are also related to the response [23].

2.3.4. RK with Random Forest
Random Forest (RF) is the special case of bootstrap aggregation of regression 

trees. In RF, a number of regression trees are built on bootstrapped training samples. 
When building these decision trees, each time a split in a tree is considered, a 
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random sample of m predictors is chosen as split candidates from the full set of p 
predictors. The split is allowed to use only one of those sampled predictors [22]. 
This tweak decorrelates the bootstrapped regression trees and makes the average 
of the resulting trees less variable and more reliable. The optimal value of m was 
chosen with respect to the Out-of-Bag error estimate [24].

2.4. Accuracy assessment
The spatial interpolation models were compared using leave-one-out cross-

validation (LOOCV). In LOOCV each sampling point oi is removed sequentially. 
The spatial interpolation model is fit on n-1 observation, and a prediction pi is 
made for the excluded observation, using its X values. Several error measurements 
were calculated using the difference oi–pi:

Mean error is given by

1
1 ( )n

i i iME p o
n == -∑                                              (7)

Root mean square error is given by

2 1/2
1

1[ ( ) ]n
i i iRMSE p o

n == -∑                                            (8)

Root mean square standardized error is given by

2 1/2
1

1[ ( ) ]n
i si siRMSSE p o

n == -∑
                                           

(9)

Ratio of the observed and the predicted variances is given by

[ ]
[ ]

Var pRVar
Var o

=
                                                          

(10)

Li and Heap made a review of several criteria for using error measurements 
to judge the performance of the spatial interpolation methods [25]. The model is 
better if ME is closer to zero and RMSE is smaller. RMSSE should be close to 1. If 
RMSSE>1, the method underestimates the depended variable, and if RMSSE<1, 
it overestimates the depended variable. The closer RVar is to 1, the better the 
ability of a spatial interpolation method to preserve the observed variance.

2.5. Software
All statistical analyses here presented were performed within the statistical 

environment R [26]. The PCR and PLS approaches were performed using the “pls” 
package [27]. The random forest models were fitted using the “randomForest” 
package [28].
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Results and discussion

3.1. Spatial structure of the raw data
The investigated field was characterized by a high content of humus with 

high variability. The density function skewed toward higher values. The particle 
size distribution of the topsoil was fine loamy with a low coefficient of variation 
(Table 1). Both, humus and physical clay content, had nonnormal distribution 
of values, but, because of no effect on the experimental variograms, no data 
transformation were performed.

T a b l e  1
Summary statistics of raw data

Variable min Mean Median max var skewness kurtosis
Humus 3.95 6.86 6.87 8.05 0.73 -0.84 3.72
Ph. clay 35.47 50.72 52.93 58.17 28.37 -1.21 3.53

The presence of spatial anisotropy was assessed using the variogram maps 
and directional variograms with a horizontal tolerance of ±20°. Parameters of the 
fitted variogram models are presented in Table 2.

T a b l e  2
Parameters of the fitted variogram models

Variable Model SSErr Range С0 С1 С0+С1 С0/(С0+С1)
Raw data

Humus Sph 4.6E-05 800.5* 0.03 0.59 0.6 0.05
Ph. clay Sph 3.9E-02 791.9 16.36 11.55 27.9 0.59

PCR residuals
Humus Sph 1.7E-07 307.0 0.12 0.19 0.3 0.38
Ph. clay Nug - - 14.50 - - 1

PLS residuals
Humus Sph 2.0E-07 296.5 0.13 0.16 0.3 0.45
Ph. clay Nug - - 7.90 - - 1

Random Forest residuals
Humus Sph 3.1E-06 205.6 0.17 0.14 0.3 0.54
Ph. clay Nug - - 16.00 - - 1

* The range for the main direction (45°).

The spatial structure of the humus content showed the presence of a geometric 
anisotropy, the direction of which corresponds to the sampling grid orientation 
(45°). The autocorrelation range in a minor direction (315°) is 0.6 times less. The 
nugget/sill ratio showed the high spatial dependence of the humus values [29]. 
The physical clay content had an isotropic spatial structure with a medium spatial 
dependence. The fitted variograms were used to perform the ordinary kriging 
interpolation (Fig. 4, a, b).
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                                         a                                                                           b

Fig. 2. The fitted variogram models. Green line - Raw data; blue - Residuals after the 
PCR; purple - Residuals after the PLS; brown - Residuals after the random forest

3.2. RK with Principal Component Regression
The principal component analysis effectively deals with high collinearity in 

high dimensional data. After the PCA, seven principal components (PC) with 
the cumulative proportion of variance of 93% were selected for the following 
regression modeling. The number of PCs was selected using the screeplot. The 
regression models were fitted on the principal components using the forward 
stepwise selection approach, therefore only significant PCs were included. As 
shown in Table 3, the first two PCs explained 54% of the humus variation; and the 
first, the second and the fourth PC explained 47% of the physical clay variation.

T a b l e  3
Parameters of the PCR models

Response Explanatory Coefficient Adj. R-sq.

Humus
Intercept 6.86

0.54PC1 0.09
PC2 0.18

Ph. Clay
Intercept 50.72

0.47PC1 0.40
PC2 0.99
PC4 -1.14

Inclusion of the terrain variables into the model of regionalization explained the 
part of spatial variation of the response, which was reflected on the experimental 
variograms of the model residuals (Fig. 2, a). The PCR drift model eliminated 
the geometric anisotropy and reduced the autocorrelation range and the overall 
spatial dependence of the humus values (Table 2). In the case of physical clay, 
relief-based PCR model fully explained the spatially dependent variation. The 
resultant variogram had a pure "nugget-effect" form (Fig. 2, b). The final humus 
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and physical clay maps were produced as the sum of the PCR function and the 
interpolated residuals (Fig. 4, c, d).

3.3. RK with Partial Least Squares 
Like PCR, partial least squares compute the latent vectors (LV) which are linear 

combinations of the original predictors. The number of LV was determined by the 
RMSE, obtained by leave-one-out cross-validation. The lowest cross-validation 
error occurred when only one LV was used to predict the humus content and when 
six LVs was used to predict the physical clay content. In comparison with PCR, 
the PLS models explained higher amount of the response variations (Table 4). 
This is because the PLS, in contrast to PCR, searches for directions that explain 
variance in both the predictors and the response.

T a b l e  4
Parameters of the PLS models

Response Explanatory Coefficient Adj. R-sq.
Humus intercept 6.86 0.57LV1 0.21

Ph. Clay

intercept 50.72

0.69

LV1 1.17
LV2 1.11
LV3 0.38
LV4 0.98
LV5 0.95
LV6 1.94

The PLS drift models was also reflected on the experimental variograms of 
the residuals. When compared with the variograms of the PCR residuals a strong 
decrease in the random spatial variability was observed.

3.4. RK with Random Forest
The random forest regression was performed with 10000 bagging sampling 

iterations, to ensure that every input row got predicted at least a few times. The 
number of variables randomly sampled as candidates at each split was set to 11. 

The results of the random forest technique is less interpretable than the 
results of ordinary regression trees, nevertheless it is possible to obtain an overall 
summary of the importance of each predictor (Fig. 3). The variable importance 
graph shows the total decrease in node impurities from splitting on the variable, 
averaged over all trees. Impurity was measured as the total amount that the RSS 
was decreased due to splits over a given predictor, averaged over all 10000 trees.

The residuals showed large variances relatively to the over drift modeling ap-
proaches (Table 2). Random Forest drift model effectively eliminated the spatial 
dependence of the physical clay data. It also resulted in a great explanation of the 
spatial dependence of the humus (Fig 2).
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                                 a. Humus                                                    b. Physical clay

Fig. 3. Variable importance as measured by a random forest

3.8. Performance of spatial interpolation approaches
Because of the lack of additional sampling points, the accuracy of the 

interpolation approaches was assessed using internal cross-validation. By the 
ratio of the predicted and the observed variance of the physical clay, there was a 
doubling of the preserved variability in the case of PCR, relative to the ordinary 
kriging. The PLS drift model with the regression kriging showed the best ability 
to preserve the observed variance (Table 5). Inclusion of the relief information 
conversely smoothed the variability of the humus values. 

T a b l e  5
Cross-validation results

Variable ME RMSE RMSSE RVar
OK

Humus -0.015 0.476 0.579 0.626
Ph. Clay 0.007 4.104 0.837 0.257

PCR+RK
Humus -0.005 0.513 0.632 0.622

Ph. Clay -0.024 4.017 0.828 0.494
PLS+RK

Humus -0.006 0.543 0.674 0.607
Ph. Clay 0.024 3.994 0.778 0.841

randomforest+RK
Humus -0.004 0.574 0.719 0.586

Ph. Clay 0.062 3.981 0.818 0.368

In the case of humus all methods overestimated the observed values, and the 
bias reduces in the following order: OK>PLS>PCR>RF. But all the drift-models 
increased the RMSE of the predictions.
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a) Humus, OK b) Ph. clay, OK

c) Humus, PCR+RK d) Ph. clay, PCR+RK

e) Humus, PLS+RK f) Ph. clay, PLS+RK

g) Humus, RF+RK h) Ph. clay, RF+RK
Fig. 4. Interpolated maps with different drift models
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In the case of the physical clay, the highest bias observed for the random 
forest drift model, and the lowest for the OK model. Root mean square error 
reduced in the order: OK>PCR >PLS>RF, although the OK showed the lowest 
overestimation rate.

Although, the RF approach showed the lowest RMSE, the interpolated map 
obtained by this method was very noisy (Fig. 4, h). In contrast, the OK produced a 
very smoothed surface with the lowest ratio of preserved variance. This is a well-
known feature of the OK interpolator in the presence of strong “nugget effect”. 
Apparently, the PLS was the best approach to predict the physical clay content. With 
only slight increase in bias, the PLS prediction had the highest RVar and the second 
lowest error rate. Withal, the PLS residuals showed the lowest random variation 
among the five methods (Fig. 2, b). The map, obtained by the PLS was not so noisy 
as the RF case and contained a well-detailed spatial variation related to the terrain.

The raw humus data had very low “nugget effect” and very strong spatial 
dependence (Fig. 2, a). Inclusion of the drift models, cleared the spatial dependence 
and removed the geometric anisotropy, but, at the same time, the residuals of 
the all three drift models showed the higher amount of random, unexplained 
variation. This explained the highest performance of the OK method, which 
showed the highest amount of the preserved variance, and the lowest RMSE. 
Because of accurate variogram modeling, the humus map, interpolated by the 
OK, contained information about local variation (Fig. 4, a). The maps, produced 
by the regression kriging with terrain-based drift model, can still be useful, as they 
well reflected the humus erosion path in the central part of the field (Fig. 4, c, e, g).

Conclusion

The study shows that OK interpolator is superior than regression kriging with 
various drift models if the original data have a strong spatial dependence with low 
rate of “nugget effect”. And vice versa, if the data have high amount of random 
variation, the inclusion of auxiliary data can increase the prediction performance. 
Among the three drift models, the PLS method is the most optimal to use within 
regression kriging. A set of significant auxiliary variables and corresponding 
parameters of the relief models is unique for different mapping sites and 
depends on the content and spatial structure of the target soil property, terrain 
heterogeneity of the field, etc. Nevertheless, our findings on the performance of 
the interpolation techniques are applicable for other sites. Finally, the results guide 
to the amplification of trustworthy maps of soil properties which can significantly 
contribute to proper application of agricultural modeling. 
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