
Combinational Circuits without False Paths*

A. Matrosova
Department of Applied

Mathematics and Cybernetics
Tomsk State University

Tomsk, Russia
mau11@yandex.ru

D. Kudin
Gorno-Altaisk State

University,
Gorno-Altaisk, Russia
dvkudin@gmail.com

E. Nikolaeva
Department of Applied

Mathematics and Cybernetics
Tomsk State University

Tomsk, Russia
nikoleve-ea@yendex

Abstract

It is known that identifying false paths allows

improving a circuit performance but finding false paths
is associated with large calculations. In this paper we
suggest methods of combinational circuit design that
guarantee an absence of false paths in the resulting
circuits. Some design methods keeping the
specification formulae are considered. The sufficient
condition of an absence of false paths in a
combinational circuit is formulated. It is shown that
the certain types of specification formulae together
with the proper design methods keeping the formulae
provide this condition for resulted circuits. Examples
of the circuits without false paths are given.

Keywords: path delay fault (PDF), irredundant sum

of products (irredundant SoP), disjoint sum of products
(DSoP), binary decision diagram (BDD), Reed-Muller
expression, false path.

1. Introduction

It is known that identifying false paths allows

improving a circuit performance but finding false paths
is associated with large calculations. Efforts have been
made to minimize these calculations [1-3]. In this
paper we suggest methods of combinational circuit
design that guarantee an absence of false paths in the
resulting circuits. Our approach is based on connection
of circuit path with ENF literal properties. In particular
if the certain path is false then there is no test pattern
both for stuck-at one and stuck at zero fault of the
corresponding literal of ENF. On the other hand, if
there exists a test pattern either for stuck-at one fault or
stuck-at zero fault for the literal of ENF, the
corresponding path is not false. We analyze
expressions generated by combinational circuit (system
Fc). They differ from ENFs corresponding to the circuit

outputs by an absence of sequences of numbers of
gates that comprise the circuit paths. Stuck-at one and
stuck-at zero faults of literals of such expressions are
considered. We derive the sufficient condition of an
absence of false paths in a combinational circuit. It is
connected with the property of system Fc literals. Some
types of expressions that fulfill the sufficient condition
are considered. It means that if a combinational circuit
originates such type of expressions then this circuit has
no false paths. It is shown that some well-known
synthesis methods may originate such expressions and
consequently combinational circuits derived with using
these methods have no false paths.

In the Section 2 the problem of keeping
specification formulae (system F) that are used during
design of a combinational circuit by the system Fc
extracted from the resulting circuit is discussed. In the
Section 3 some design methods that keep the
specification formulae are considered. In the Section 4
the sufficient condition for an absence of false paths in
a combinational circuit is formulated, also its
implementation for the different synthesis methods and
the corresponding specification formulae is illustrated.

 2. Keeping specification formulae

A combinational circuit design as a rule consists of

the several stages.
Firstly we obtain the system of incompletely

specified Boolean functions.
Then this system is changed for the minimized

system F of completely specified Boolean functions
represented by the system of SoPs or the system of
Reed-Muller expressions or other formulae. Here we
will consider only systems of SoPs and systems of
Reed-Muller expressions. Notice that we consider
Reed-Muller expressions in which the products are
pairwise orthogonal (products are connected each other
by the operation + (XOR)). Call the system F as
specification formulae for a combinational circuit

IEEE EWDTS, Kiev, Ukraine, September 26-29, 2014 179

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287487054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

design or simply specification formulae. The number
of formulae of the system F is equal to the number of
the combinational circuit outputs.

Next the system F is implemented by a
combinational circuit C consisting of gates. The circuit
structure depends on applied synthesis method. In this
paper we deal with the synthesis methods that keep the
specification formulae.

 Consider a combinational circuit C that is derived
from the system F. The structure of the circuit C i.e. its
gates and their connections are known. Here
combinational circuit consists of either from gates OR,
AND, NOR, NAND, NOT or from gates XOR, AND,
NOT. In the last case, the gate NOT is used only for
input variables. Having this information, we extract
from the circuit C, the system Fc of SoPs or the system
Fc of Reed-Muller expressions in the following way.

1. Move from the output of the circuit C to its
inputs.

2. Substitute gate formulae instead of the proper
internal variables of the circuit C. Each formula may
depend on both internal and input variables of the
circuit. Use De Morgan rules for circuits from the gates
OR, AND, NOR, NAND, NOT so that inversions
appear only on input variables

3. Eliminate brackets using the distributive law:

() a b c ab ac∨ = ∨ for a circuit from the gates OR,

AND, NOR, NAND, NOT and distributive law:

() a b c ab bc+ = + for a circuit from XOR, OR, NOT

gates. Here the operation “+” means XOR.
During eliminating brackets the operations of a

formula simplification: ab b b∨ = , ab ab b∨ = ,

ab ac ab ac bc∨ = ∨ ∨ , 1a a∨ = , 0aa = , a a a∨ = ,

aa a= are forbidden.

4. Having executed steps 1-3 for each output of the
circuit C we get system Fc of formulae.

Let fc be the formulae of Fc corresponding to the
one output sub-circuit of C.

Theorem 1. Each literal of fc corresponds to the
certain path correlating with one output sub-circuit of
C and for each path of the sub-circuit there is at least
one literal in the formula fc.

Proof. Formula fc differs from ENF of the same sub-
circuit only by sequences of numbers of elements
comprising the paths corresponding to ENF literals

when applying the distributive law () a b c ab ac∨ = ∨

and except using the operation EXOR instead of AND
between products when applying the distributive law

() a b c ab bc+ = + . It means that the proposal being

right for ENF is right for fc. The theorem is proved.
Consider the examples of the circuits of Fig. 1,

Fig 2. Let their specification formulae be known and

consists of formulae for one output circuits. For the
circuit of Fig. 1 we have

 f abe bcde abc ad= ∨ ∨ ∨ (1)

e
b

a

c

d

f1

2
3

7

4

8

5

9

6

Figure 1. Combinational circuit from the gates
OR, AND, NOR, NAND, NOT

For the circuit of Figure 2 we have

1 2 3 1 2 3 4 5 1 2 3 4 5

1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5

f x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x

= + + +

+ + +

+ + + +

+

+

 (2)

x2

x3

x4

x5

x1
Figure 2. Combinational circuit from gates

XOR, AND, NOT

For the circuit of Fig. 1 we extract the expression

 cf abe bcde abc acd abd add= ∨ ∨ ∨ ∨ ∨ . (3)

For the circuit of Fig. 2 we extract the expression:

1 2 3 1 2 3 4 5 1 2 3 4 5

1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5

cf x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x

= + + +

+ + + +

+ + + +

+

 (4)

Thus the specification formula f (1) of the circuit
of Fig. 1 and the formula fc (3) extracted from the
circuit structural description with using the rules 1-3
are different. As for the circuit of Fig. 2 its
specification formula and the formula extracted from
the structural description are the same: f = fc. We will
say that the circuit of Fig.2 keeps its specification
formula but the circuit of Fig.1 does not keep its
specification formula.

For the multi output circuit we will say that a circuit
keeps its specification formulae if the formulae of the
system Fc extracted from the circuit structural
description with using rules 1-4 coincide with the
specification formulae of the system F: F = Fc
.Otherwise the circuit does not keep the specification
formulae.

* This work is partly supported by the TSU Competitiveness
Improvement Program.

180 IEEE EWDTS, Kiev, Ukraine, September 26-29, 2014

Consider some of design methods that provide
keeping the specification formulae.

3. Design methods keeping the specification
formulae

3.1. Multilevel synthesis method based on
algebraic division

Specification formulae represent system F of m
SoPs. Here m is the number of the circuit C outputs.
Each SoP is an algebraic expression i.e. for any two
products k1, k2 from a SoP neither k1 ≤ k2 nor k2 ≤ k1

take place. For example ab ad cdef∨ ∨ is algebraic

SoP but ab ad cdef∨ ∨ is not algebraic SoP.

A multiplication of algebraic SoPs D1and D2 is an
algebraic multiplication if sets of D1, D2 variables

don’t intersect. For example if 1D ab bc ac= ∨ ∨ and

2D d e= ∨ then ()()1 2 D D ab bc ac d e= ∨ ∨ ∨ is

algebraic multiplication.
Representation of a SoP D as D = D1D2 v D3 is a

division of a SoP D. If D1D2 is algebraic
multiplication, D3 is a reminder that contains the least
number of products and after excluding brackets during
multiplication we get the formula that coincides with
the SoP D then this division is called a weak division.

Consider a weak division so that D1 cannot be
represented as D1 = k1D4 where k1 is a product and D2 =
k where k is also a product. In that case D = D1k v D3.
Then D1 is a kernel of the SoP D and k is a co-kernel of
the SoP D. For the same D it is possible to execute
several weak divisions and consequently find several
kernels and co-kernels.

 The idea of multilevel synthesis method is as
follows. Kernels (sometimes co-kernels) are changed
for the new variables. As a result, new SoPs are added
to the previous System of SoPs but new system of
SoPs is simpler than the previous one by the number of
literals.

Theorem 2. Multilevel synthesis method keeps the
specification formulae.

Proof. Consider current step of extracting kernel
or/and co-kernel from some SoP. Notice that finding
kernels and co-kernels is based on the weak division. It
means that changing kernel or/and co-kernel for the
proper SoP or the product we obtain the same previous
SoP. Consequently multilevel synthesis method keeps
the circuit specification formulae, that is F = Fc. The
theorem is proved.

3.2 Two level synthesis methods

Specification formulae represent system F of SoPs.
Two level synthesis methods are based on choosing a
set of product factors and SoPs factors.

A product factor of the system F is derived from the
certain product of the system F by elimination of some
literals from the product. After getting a set of product
factors each system F product is covered by the certain
factors from this set.

They say that the certain factors cover the product k
if a multiplication of these factors gives rise to all
literals that are present in the product k. If at least one
literal appears two or more times under multiplication
then such covering is called redundant otherwise the
covering is called irredundant.

A SoP factor of the system F is derived from the
certain SoP of the system F by elimination of some
products from the system SoP. After getting a set of
SoPs factors each SoP of the system F is covered by
the certain SoP factors from this set.

They say that the certain factors cover the SoP f of
the system F if disjunction of these factors gives rise to
all products that are present in the SoP f. If at least one
product appears two or more times under disjunction
then such covering is called redundant otherwise the
covering is called irredundant.

As a result of covering the products and the SoPs of
the system F by the chosen factors we get the
combinational circuit C.

We restrict our consideration of two level synthesis
methods in which only irredundant covering products
and SoPs of the system F are acceptable. Call such
methods as two level synthesis methods based on
irredundant covering.

 Theorem 3. Two level synthesis method based on
irredundant covering keeps the specification formulae.

 Proof. If we use two level synthesis method based
on irredundant covering then during extraction SoPs fc
from the structural description of the circuit C we
obtain only products of the system F and only its SoPs,
that is F = Fc. The theorem is proved.

3.3. ROBDD based synthesis methods

3.3.1. Direct gate covering SBDD. Let a
combinational circuit C behavior is described by the
system of ROBDDs that are merged into Shared
ROBDD (SBDD). SBDD is obtained from separate
ROBDDs, corresponding to the different outputs of the
circuit C as follows. All 1-terminal (0-terminal) nodes
of ROBDDs are merged into one 1-teminal (0-
terminal) node. If two or more internal nodes are roots
of the isomorphic graphs then these graphs are merged
into one internal node of SBDD. As a result we get
graph (SBDD) with m roots and two terminal nodes.
Here m is the number of the circuit C outputs. Notice
that SBDD is compact representation of the system of
the Disjoint Sum of Products (DSoPs). In Disjoint Sum
of Products the cubes corresponding to any two

IEEE EWDTS, Kiev, Ukraine, September 26-29, 2014 181

products don’t intersect. Each DSoP may be extracted
from SBDD. System F of DSoPs extracted from SBDD
call specification formulae.

Let each node but the terminal one is covered with
the gate sub-circuit of Figure 3. This sub-circuit
implements the Shennon decomposition formula that is
used under construction of ROBDD.

f

Figure 3. .An implementation of the Shennon

decomposition formula

After covering we get the circuit C. Call this
synthesis method as method of direct covering SBDD
nodes by the corresponding sub-circuit from gates or
simply the method of direct covering of SBDD by
gates. Extract the system Fc of DSoPs from the circuit
C of Fig. 2 in above mentioned way (Section 2).

Theorem 4. Synthesis method of direct covering
SBDD by gates keeps the specification formulae.

Proof. Take into consideration that extraction of
formula for the certain output of the circuit C using its
structural description is similar to extraction of the
DSoP from the corresponding ROBDD of SBDD. It
means that extracted formula is the DSoP which
belongs to the specification formulae, that is f = fc and
consequently F = Fc. The theorem is proved.

Consider ROBDD of Fig. 4. For the simplicity we
consider one output circuit whose SBDD coincides
with ROBDD. Its specification formula is as follows:

1 2 3 1 2 3 4 5 1 2 3 4 5

1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5

f x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x

∨ ∨ ∨

∨ ∨ ∨ ∨

∨ ∨ ∨ ∨

=

∨

 (5)

x2

x3

x4

1

x5x5

x2

x3

0

x1

Figure 4. ROBDD

x2

x3

x4

x5

x1
Figure 5. Combinational circuit obtained by

direct covering ROBDD

Direct covering ROBDD by gate sub-circuit of Fig.
3 gives rise to the circuit of Fig.5 that keeps the
specification formula (5).
3.3.2 Special gate covering SBDD. Change the system
F of DSoPs corresponding to SBDD for the system F*.
Each formula f*of F* is derived from the formula of F
by changing the operation ∨ (disjunction) for the
operation + (XOR). Notice that formulae from F* are
Reed-Muller expressions. Take into consideration that
the functions f, f*of the systems F, F* corresponding to
the same circuit C output are equal. Consequently
systems F, F* are also equal. It is because of pairwise
orthogonality of products of the formulae f, f*.

Let F* be specification formulae. We have SBDD
that originates the system F*. Use this SBDD and
cover each its node but terminal one by the sub-circuit
of Fig.6. As a result we derive the combinational
circuit C of Fig.2.

fc

Figure 6. Special gate sub-circuit

For this circuit we have the formula fc

1 2 3 1 2 3 4 5 1 2 3 4 5

1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5

cf x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x

= + + +

+ + + +

+ + + +

+

Theorem 5. Special gate covering SBDD keeps the
specification formulae.

Proof. Take into consideration that extracting the
formula for a certain output of the circuit C using its
structural description is similar to extracting Reed-
Muller expression from the corresponding ROBDD of
SBDD. It means that extracted formula is the Reed-
Muller expression which coincides with the

182 IEEE EWDTS, Kiev, Ukraine, September 26-29, 2014

specification formulae, that is fc = f* and consequently
Fc = F* .The theorem is proved.

Thus we considered the certain synthesis methods
that keep specification formulae. Such synthesis
methods may be applied for providing useful circuit
properties on the stage of forming specification
formulae that is on the stage of a description of a
circuit behavior. In this paper in particular we will
provide an absence of false paths in combinational
circuits for account of properties of specification
formulae. It is possible to develop other synthesis
methods that keep specification formulae. But this
problem is out of our consideration.

4. Properties of some specification
formulae that guarantee an absence of
false paths

4.1. The sufficient conditions of a false path
absence

It is known that that both robust or non robust
detectable PDF demands test pair v1, v2 for its
manifestation. In the paper [4] it is shown that a test
pattern v2 is a test pattern either for stuck-at one fault
(for falling transition of the path) or stuck at zero fault
(for rising transition of the path) of ENF literal
corresponding to the considered fault path of the circuit
that gives rise to the ENF. Notice that stuck-at one
(stuck-at zero) fault means that each appearance of this
literal in ENF products changes for the constant 1 (0).
Finding a test pattern v2 is reduced to looking through
the products that contain the literal. If there is now test
pattern both for stuck-at one and stuck at zero faults of
the same path then this path is false one [4].
Alternately if there is a test pattern either for stuck-at
one or for stuck-at zero fault of the ENF literal
corresponding to the considered path then this path is
not false.

Take into account that formula fc corresponding to
the one output sub-circuit of a circuit C differs from
the ENF of the same sub-circuit only by the sequences
of numbers of elements comprising the paths
corresponding to ENF literals. For a while we consider
only fc representing either SoP or DSoP. Each literal of
fc corresponds to the certain path of the one output sub-
circuit of the circuit C. Similar literals of the different
products of fc may be correlated either with the same
path of the sub-circuit or the different paths. For
example for the circuit of Fig. 1 we have ENF as
follows:

1459 59 59 59 23459 3459 59

14689 789 234689 14689 234689 789

14689 789 34689 14689 34689 789

Е a b e b c d e

a b c a c d

a b d a d d

= ∨ ∨

∨ ∨ ∨

∨ ∨

This ENF originates the formula fc after excluding
the index sequences.

cf abe bcde abc acd abd add∨ ∨ ∨ ∨ ∨=

In the formula fc the literal d corresponds to the

same path 34689 in the fifth and sixth products. This
repeated literal in the sixth product corresponds to the

path 789 and the same literal d in the fourth and fifth

products corresponds to the different paths. The literal
e in the different products of fc corresponds to the only
circuit path. . Now we may formulate the sufficient
condition of an absence of false paths in the following
way.

If each literal of the system Fc has a test pattern
either for its stuck-at one fault or stuck-at zero fault
then the corresponding circuit C has no false paths

Consider examples of such systems.

4.2. System of Irredundant SoPs

Examine irredundant SoP consisting of prime
implicants. Call b-fault of SoP [6] changing the literal
from one product for the constant 1 that is disappearing
literal in the product of the SoP. Call a-fault of SoP [6]
changing the literal from one product for the constant 0
that is disappearing the certain product that contains
this literal.

It is known that for each a (b)-fault of an
irredundant SoP consisting from prime implicants there
is a test pattern [6]. It means that if fc for one output
sub-circuit of circuit C is irredundant SoP consisting of
prime implicants then there is no false paths in this
sub-circuit.

If Fc consists of irredundant SoPs then there are no
false paths in the circuit C as a whole.

Thus if we have the system F consisting of the
irredundant SoPs and we use either multilevel
synthesis method or two level synthesis method based
on irredundant factorization then we get the circuit C
without false paths.

Notice that if any circuit C gives rise to Fc
(irrespective of the method used to design) that is a
system of the irredundant SoPs consisting of prime
implicants then this circuit has no false paths. For
example the circuit in the Roth paper [7] has no false
paths.

IEEE EWDTS, Kiev, Ukraine, September 26-29, 2014 183

4.3. Irredundant system

Consider an irredundant system F of Boolean
functions consisting of prime system implicants. Let
this system be for example an implementation of a
system of incompletely specified Boolean functions.
Each system implicant consists of a product and its
characteristic enumerating functions for which the
product is valid. Notice that in irredundant system of
Boolean functions any function from characteristic of a
system product cannot be excluded. It means that it is
impossible to exclude any product from a SoP derived
from F (A SoP from F may contain not only prime
implicants). Thus a-fault of any literal of the system F
is detectable that is there is a test pattern for this fault.

Therefore if a system F is irredundant system of
Boolean functions and either multilevel synthesis
method or two level synthesis method based on
irredundant factorization is used for deriving
combinational circuit C, then there is a test pattern for
a-fault of each literal of the SoP created by the sub-
circuit of the circuit C. It means that circuit C has no
false paths.

Notice that if any circuit C gives rise to Fc that is an
irredundant system (irrespective of the method used to
design circuit C) then this circuit has no false paths.

4.4 System of DSoPs

Consider a system F of DSoPs. Any a-fault of a
DSoP is detectable because of pairwise orthogonality
its products. If circuit C is derived from SBDD by
direct covering of its nodes with sub-circuits
implementing Shannon decomposition in above
mentioned way then Fc is the system of DSoPs. It
means that circuit C has no false paths.

Notice that if any circuit C gives rise to Fc that is a
system of DSoPs (irrespective of the method used to
design circuit C) then the circuit C has no false paths

4.5 System of Reed- Muller expressions

Consider a system F* of Reed-Muller expressions.
In the paper [5] is shown that each a(b)-fault of a
formula f*(f* from F*) is detectable. Be reminiscent
that for each path of the circuit C there is at least one
literal in the corresponding fc if the circuit C is derived
by using special gate covering SBDD nodes. In this
case f* = fc). It means that circuit C has no false paths

One of the insights is that we cannot expand these
results to a combinational part of a sequential circuit.
The matter is that if we have a test pattern v2 for stuck-
at fault of the literal corresponding to the certain path
there is no guarantee of delivering the proper v1 even

for non robust PDF because of a presence of state
variables in a combinational equivalent. In this case the
problem of false paths verification becomes essentially
more complex in comparison with combinational
circuits.

5. Conclusion

In this work it is shown that some well-known
synthesis methods may be used to obtain
combinational circuits without false paths. For that it is
necessary to apply the proper specification formulae
describing a circuit behavior. These specification
formulae are also used in practice. One of the insights
is that we cannot directly expand these results to a
combinational part of a sequential circuit. The last
problem demands additional efforts.

6. References

[1] H. Chang, J. Abraham “VIPER: An Efficient Vigorously
Sensitizable Path Extractor”, Proceedings of 30th ACM/IEEE
Design Automation Conference, pp. 112-117, 1993.

[2] J. Bhadra, M. S. Abadir, J. A. Abraham. “A Quick and
Inexpensive Method to Identify False Critical Paths Using
ATPG Techniques: an Experiment with a PowerPC
Microprocessor”, Proceedings of 36th ACM/IEEE Design
Automation Conference, pp. 737-741, 1999

[3] R. Raimi, J. A. Abraham. “Detecting False Timing Paths:
Experiments on PowerPC(TM) Microprocessors”,
Proceedings of IEEE 2000 Custom Integrated Circuits
Conference, pp. 71-74, May. 2000.

[4] A. Matrosova, V. Lipsky, A. Melnikov, and V. Singh,
“Path delay faults and ENF”, Proceeding of EW&DT
Symposium, 2010, pp. 164-167.

[5] A. Yu. Matrosova, D. V. Kudin, E. A. Nikolaeva,
E.V. Roumjantseva, “Providing full delay testability for
circuits obtained by covering BDDs,” Vestnik of Tomsk State
University. Control, Computers and Informatics, 2013, no. 2,
pp. 130-139 (in Russian).

[6] Kohavi I., Kohavi Z. “Detection of Multiple Faults in
Combinational Logic Networks”, IEEE Trans. On
Computers. 1972. v.C-20, pp. 556-568.

[7] J.P. Roth, “Diagnosis of Automata Failures: A Calculus
and a Method”, IBM Journal of Research and Development,
vol. 10, No.4, pp.278-291, July, 1966.

184 IEEE EWDTS, Kiev, Ukraine, September 26-29, 2014

