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Abstract 
 
It is known that identifying false paths allows 

improving a circuit performance but finding false paths 
is associated with large calculations. In this paper we 
suggest methods of combinational circuit design that 
guarantee an absence of false paths in the resulting 
circuits. Some design methods keeping the 
specification formulae are considered. The sufficient 
condition of an absence of false paths in a 
combinational circuit is formulated. It is shown that 
the certain types of specification formulae together 
with the proper design methods keeping the formulae 
provide this condition for resulted circuits. Examples 
of the circuits without false paths are given. 

 
Keywords: path delay fault (PDF), irredundant sum 

of products (irredundant SoP), disjoint sum of products 
(DSoP), binary decision diagram (BDD), Reed-Muller 
expression, false path. 

 

1. Introduction 
 
It is known that identifying false paths allows 

improving a circuit performance but finding false paths 
is associated with large calculations. Efforts have been 
made to minimize these calculations [1-3]. In this 
paper we suggest methods of combinational circuit 
design that guarantee an absence of false paths in the 
resulting circuits. Our approach is based on connection 
of circuit path with ENF literal properties. In particular 
if the certain path is false then there is no test pattern 
both for stuck-at one and stuck at zero fault of the 
corresponding literal of ENF. On the other hand, if 
there exists a test pattern either for stuck-at one fault or 
stuck-at zero fault for the literal of ENF, the 
corresponding path is not false. We analyze 
expressions generated by combinational circuit (system 
Fc). They differ from ENFs corresponding to the circuit 

outputs by an absence of sequences of numbers of 
gates that comprise the circuit paths. Stuck-at one and 
stuck-at zero faults of literals of such expressions are 
considered. We derive the sufficient condition of an 
absence of false paths in a combinational circuit. It is 
connected with the property of system Fc literals. Some 
types of expressions that fulfill the sufficient condition 
are considered. It means that if a combinational circuit 
originates such type of expressions then this circuit has 
no false paths. It is shown that some well-known 
synthesis methods may originate such expressions and 
consequently combinational circuits derived with using 
these methods have no false paths.  

In the Section 2 the problem of keeping 
specification formulae (system F) that are used during 
design of a combinational circuit by the system Fc 
extracted from the resulting circuit is discussed. In the 
Section 3 some design methods that keep the 
specification formulae are considered. In the Section 4 
the sufficient condition for an absence of false paths in 
a combinational circuit is formulated, also its 
implementation for the different synthesis methods and 
the corresponding specification formulae is illustrated.  

 

 2. Keeping specification formulae 
 
A combinational circuit design as a rule consists of 

the several stages.  
Firstly we obtain the system of incompletely 

specified Boolean functions.  
Then this system is changed for the minimized 

system F of completely specified Boolean functions 
represented by the system of SoPs or the system of 
Reed-Muller expressions or other formulae. Here we 
will consider only systems of SoPs and systems of 
Reed-Muller expressions. Notice that we consider 
Reed-Muller expressions in which the products are 
pairwise orthogonal (products are connected each other 
by the operation + (XOR)).  Call the system F as 
specification formulae for a combinational circuit 
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design or simply specification formulae. The number 
of formulae of the system F is equal to the number of 
the combinational circuit outputs. 

Next the system F is implemented by a 
combinational circuit C consisting of gates. The circuit 
structure depends on applied synthesis method.  In this 
paper we deal with the synthesis methods that keep the 
specification formulae.  

 Consider a combinational circuit C that is derived 
from the system F. The structure of the circuit C i.e. its 
gates and their connections are known. Here 
combinational circuit consists of either from gates OR, 
AND, NOR, NAND, NOT or from gates XOR, AND, 
NOT. In the last case, the gate NOT is used only for 
input variables. Having this information, we extract 
from the circuit C, the system Fc of SoPs or the system 
Fc of Reed-Muller expressions in the following way. 

1. Move from the output of the circuit C to its 
inputs.  

2. Substitute gate formulae instead of the proper 
internal variables of the circuit C. Each formula may 
depend on both internal and input variables of the 
circuit. Use De Morgan rules for circuits from the gates 
OR, AND, NOR, NAND, NOT so that inversions 
appear only on input variables  

3. Eliminate brackets using the distributive law: 

( )  a b c ab ac∨ = ∨  for a circuit from the gates OR, 

AND, NOR, NAND, NOT and distributive law: 

( )  a b c ab bc+ = +  for a circuit from XOR, OR, NOT 

gates. Here the operation “+” means XOR. 
During eliminating brackets the operations of a 

formula simplification: ab b b∨ = , ab ab b∨ = , 

ab ac ab ac bc∨ = ∨ ∨ , 1a a∨ = , 0aa = , a a a∨ = , 

aa a=  are forbidden. 

4. Having executed steps 1-3 for each output of the 
circuit C we get system Fc of formulae. 

Let fc be the formulae of Fc corresponding to the 
one output sub-circuit of C.  

Theorem 1. Each literal of fc corresponds to the 
certain path correlating with one output sub-circuit of 
C and for each path of the sub-circuit there is at least 
one literal in the formula fc. 

Proof. Formula fc differs from ENF of the same sub-
circuit only by sequences of numbers of elements 
comprising the paths corresponding to ENF literals 

when applying the distributive law ( )  a b c ab ac∨ = ∨  

and except using the operation EXOR instead of AND 
between products when applying the distributive law 

( )  a b c ab bc+ = + . It means that the proposal being 

right for ENF is right for fc. The theorem is proved. 
Consider the examples of the circuits of Fig. 1, 

Fig 2. Let their specification formulae be known and 

consists of formulae for one output circuits. For the 
circuit of Fig. 1 we have 

 f abe bcde abc ad= ∨ ∨ ∨   (1)  
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Figure 1. Combinational circuit from the gates 
OR, AND, NOR, NAND, NOT 

For the circuit of Figure 2 we have 

1 2 3 1 2 3 4 5 1 2 3 4 5

1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5

f x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x

= + + +

+ + +

+ + + +

+

+

    (2) 
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Figure 2. Combinational circuit from gates 

XOR, AND, NOT 

For the circuit of Fig. 1 we extract the expression 

  cf abe bcde abc acd abd add= ∨ ∨ ∨ ∨ ∨  .   (3) 

For the circuit of Fig. 2 we extract the expression:  

1 2 3 1 2 3 4 5 1 2 3 4 5

1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5

cf x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x

= + + +

+ + + +

+ + + +

+

     (4) 

Thus the specification   formula f (1) of the circuit 
of Fig. 1 and the formula fc (3) extracted from the 
circuit structural description with using the rules 1-3 
are different. As for the circuit of Fig. 2 its 
specification formula and the formula extracted from 
the structural description are the same: f = fc. We will 
say that the circuit of Fig.2 keeps its specification 
formula but the circuit of Fig.1 does not keep its 
specification formula.  

For the multi output circuit we will say that a circuit 
keeps its specification formulae if the formulae of the 
system Fc extracted from  the circuit structural 
description with using rules 1-4 coincide with the 
specification formulae of the system F: F = Fc 
.Otherwise the circuit does not keep the specification 
formulae.  

* This work is partly supported by the TSU Competitiveness 
Improvement Program. 
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Consider some of design methods that provide 
keeping the specification formulae. 

3. Design methods keeping the specification 
formulae 

3.1. Multilevel synthesis method based on 
algebraic division 

Specification formulae represent system F of m 
SoPs. Here m is the number of the circuit C outputs. 
Each SoP is an algebraic expression i.e. for any two 
products k1, k2 from a SoP neither k1 ≤ k2 nor k2 ≤ k1 

take place. For example ab ad cdef∨ ∨  is algebraic 

SoP but ab ad cdef∨ ∨  is not algebraic SoP. 

A multiplication of algebraic SoPs D1and D2 is an 
algebraic multiplication if sets of D1, D2 variables 

don’t intersect. For example if 1D ab bc ac= ∨ ∨   and 

2D d e= ∨  then ( )( )1 2  D D ab bc ac d e= ∨ ∨ ∨  is 

algebraic multiplication.  
Representation of a SoP D as D = D1D2 v D3 is a 

division of a SoP D.  If D1D2 is algebraic 
multiplication, D3 is a reminder that contains the least 
number of products and after excluding brackets during 
multiplication we get the formula that coincides with 
the SoP D then this division is called a weak division.    

Consider a weak division so that D1 cannot be 
represented as D1 = k1D4 where k1 is a product and D2 = 
k where k is also a product. In that case D = D1k v D3. 
Then D1 is a kernel of the SoP D and k is a co-kernel of 
the SoP D. For the same D it is possible to execute 
several weak divisions and consequently find several 
kernels and co-kernels.  

 The idea of multilevel synthesis method is as 
follows. Kernels (sometimes co-kernels) are changed 
for the new variables.  As a result, new SoPs are added 
to the previous System of SoPs but new system of 
SoPs is simpler than the previous one by the number of 
literals.   

Theorem 2. Multilevel synthesis method keeps the 
specification formulae.  

Proof. Consider current step of extracting kernel 
or/and co-kernel from some SoP. Notice that finding 
kernels and co-kernels is based on the weak division. It 
means that changing kernel or/and co-kernel for the 
proper SoP or the product we obtain the same previous 
SoP. Consequently multilevel synthesis method keeps 
the circuit specification formulae, that is F = Fc. The 
theorem is proved. 

3.2 Two level synthesis methods 

Specification formulae represent system F of SoPs. 
Two level synthesis methods are based on choosing a 
set of product factors and SoPs factors. 

A product factor of the system F is derived from the 
certain product of the system F by elimination of some 
literals from the product. After getting a set of product 
factors each system F product is covered by the certain 
factors from this set.  

They say that the certain factors cover the product k 
if a multiplication of these factors gives rise to all 
literals that are present in the product k. If at least one 
literal appears two or more times under multiplication 
then such covering is called redundant otherwise the 
covering is called irredundant. 

A SoP factor of the system F is derived from the 
certain SoP of the system F by elimination of some 
products from the system SoP. After getting a set of 
SoPs factors each SoP of the system F is covered by 
the certain SoP factors from this set.  

They say that the certain factors cover the SoP f of 
the system F if disjunction of these factors gives rise to 
all products that are present in the SoP f. If at least one 
product appears two or more times under disjunction 
then such covering is called redundant otherwise the 
covering is called irredundant.    

As a result of covering the products and the SoPs of 
the system F by the chosen factors we get the 
combinational circuit C. 

We restrict our consideration of two level synthesis 
methods in which only irredundant covering products 
and SoPs of the system F are acceptable. Call such 
methods as two level synthesis methods based on 
irredundant covering. 

 Theorem 3. Two level synthesis method based on 
irredundant covering keeps the specification formulae. 

 Proof. If we use two level synthesis method based 
on irredundant covering then during extraction SoPs fc 
from the structural description of the circuit C we 
obtain only products of the system F and only its SoPs, 
that is F = Fc. The theorem is proved. 
 

3.3. ROBDD based synthesis methods 
 
3.3.1. Direct gate covering SBDD. Let a 
combinational circuit C behavior is described by the 
system of ROBDDs that are merged into Shared 
ROBDD (SBDD). SBDD is obtained from separate 
ROBDDs, corresponding to the different outputs of the 
circuit C as follows. All 1-terminal (0-terminal) nodes 
of ROBDDs are merged into one 1-teminal (0-
terminal) node. If two or more internal nodes are roots 
of the isomorphic graphs then these graphs are merged 
into one internal node of SBDD. As a result we get 
graph (SBDD) with m roots and two terminal nodes. 
Here m is the number of the circuit C outputs. Notice 
that SBDD is compact representation of the system of 
the Disjoint Sum of Products (DSoPs). In Disjoint Sum 
of Products the cubes corresponding to any two 
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products don’t intersect. Each DSoP may be extracted 
from SBDD. System F of DSoPs extracted from SBDD 
call specification formulae. 

Let each node but the terminal one is covered with 
the gate sub-circuit of Figure 3. This sub-circuit 
implements the Shennon decomposition formula that is 
used under construction of ROBDD. 

f

 
Figure 3. .An implementation of the Shennon 

decomposition formula 

After covering we get the circuit C. Call this 
synthesis method as method of direct covering SBDD 
nodes by the corresponding sub-circuit from gates or 
simply the method of direct covering of SBDD by 
gates. Extract the system Fc of DSoPs from the circuit 
C of Fig. 2 in above mentioned way (Section 2).  

Theorem 4. Synthesis method of direct covering 
SBDD by gates keeps the specification formulae. 

Proof. Take into consideration that extraction of 
formula for the certain output of the circuit C using its 
structural description is similar to extraction of the 
DSoP from the corresponding ROBDD of SBDD. It 
means that extracted formula is the DSoP which 
belongs to the specification formulae, that is f = fc and 
consequently F = Fc. The theorem is proved. 

Consider ROBDD of Fig. 4. For the simplicity we 
consider one output circuit whose SBDD coincides 
with ROBDD. Its specification formula is as follows: 

1 2 3 1 2 3 4 5 1 2 3 4 5

1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5

   

   

      

f x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x

∨ ∨ ∨

∨ ∨ ∨ ∨

∨ ∨ ∨ ∨

=

∨

 (5) 
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Figure 4. ROBDD 

x2

x3

x4

x5

x1  
Figure 5. Combinational circuit obtained by 

direct covering ROBDD 

Direct covering ROBDD by gate sub-circuit of Fig. 
3 gives rise to the circuit of Fig.5 that keeps the 
specification formula (5).  
3.3.2 Special gate covering SBDD. Change the system 
F of DSoPs corresponding to SBDD for the system F*. 
Each formula f*of F* is derived from the formula of F 
by changing the operation ∨ (disjunction) for the 
operation + (XOR). Notice that formulae from F* are 
Reed-Muller expressions. Take into consideration that 
the functions f, f*of the systems F, F* corresponding to 
the same circuit C output are equal. Consequently 
systems F, F* are also equal. It is because of pairwise 
orthogonality of products of the formulae f, f*. 

Let F* be specification formulae. We have SBDD 
that originates the system F*. Use this SBDD and 
cover each its node but terminal one by the sub-circuit 
of Fig.6. As a result we derive the combinational 
circuit C of Fig.2. 

fc

 
Figure 6. Special gate sub-circuit 

For this circuit we have the formula fc  

1 2 3 1 2 3 4 5 1 2 3 4 5

1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 5

cf x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x

= + + +

+ + + +

+ + + +

+

 

Theorem 5. Special gate covering SBDD keeps the 
specification formulae. 

Proof. Take into consideration that extracting the 
formula for a certain output of the circuit C using its 
structural description is similar to extracting Reed-
Muller expression from the corresponding ROBDD of 
SBDD. It means that extracted formula is the Reed-
Muller expression which coincides with the 
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specification formulae, that is fc = f* and consequently 
Fc = F* .The theorem is proved. 

Thus we considered the certain synthesis methods 
that keep specification formulae. Such synthesis 
methods may be applied for providing useful circuit 
properties on the stage of forming specification 
formulae that is on the stage of a description of a 
circuit behavior. In this paper in particular we will 
provide an absence of false paths in combinational 
circuits for account of properties of specification 
formulae. It is possible to develop other synthesis 
methods that keep specification formulae. But this 
problem is out of our consideration. 
 

4. Properties of some specification 
formulae that guarantee an absence of 
false paths 
 

4.1. The sufficient conditions of a false path 
absence  
 

It is known that that both robust or non robust 
detectable PDF demands test pair v1, v2 for its 
manifestation. In the paper [4] it is shown that a test 
pattern v2 is a test pattern either for stuck-at one fault 
(for falling transition of the path) or stuck at zero fault 
(for rising transition of the path) of ENF literal 
corresponding to the considered fault path of the circuit 
that gives rise to the ENF. Notice that stuck-at one 
(stuck-at zero) fault means that each appearance of this 
literal in ENF products changes for the constant 1 (0). 
Finding a test pattern v2 is reduced to looking through 
the products that contain the literal. If there is now test 
pattern both for stuck-at one and stuck at zero faults of 
the same path then this path is false one [4]. 
Alternately if there is a test pattern either for stuck-at 
one or for stuck-at zero fault of the ENF literal 
corresponding to the considered path then this path is 
not false.  

Take into account that formula fc corresponding to 
the one output sub-circuit of a circuit C differs from 
the ENF of the same sub-circuit only by the sequences 
of numbers of elements comprising the paths 
corresponding to ENF literals. For a while we consider 
only fc representing either SoP or DSoP. Each literal of 
fc corresponds to the certain path of the one output sub-
circuit of the circuit C. Similar literals of the different 
products of fc may be correlated either with the same 
path of the sub-circuit or the different paths. For 
example for the circuit of Fig. 1 we have ENF as 
follows: 

1459 59 59 59 23459 3459 59

14689 789 234689 14689 234689 789

14689 789 34689 14689 34689 789

Е a b e b c d e

a b c a c d

a b d a d d

= ∨ ∨

∨ ∨ ∨

∨ ∨

 

This ENF originates the formula fc after excluding 
the index sequences. 

cf abe bcde abc acd abd add∨ ∨ ∨ ∨ ∨=   

In the formula fc the literal d  corresponds to the 

same path 34689 in the fifth and sixth products. This 
repeated literal in the sixth product corresponds to the 

path 789 and the same literal d  in the fourth and fifth 

products corresponds to the different paths. The literal 
e in the different products of fc corresponds to the only 
circuit path. . Now we may formulate the sufficient 
condition of an absence of false paths in the following 
way. 

If each literal of the system Fc has a test pattern 
either for its stuck-at one fault or stuck-at zero fault 
then the corresponding circuit C has no false paths 

Consider examples of such systems. 
 

4.2. System of Irredundant SoPs 
 

Examine irredundant SoP consisting of prime 
implicants. Call b-fault of SoP [6] changing the literal 
from one product for the constant 1 that is disappearing 
literal in the product of the SoP. Call a-fault of SoP [6] 
changing the literal from one product for the constant 0 
that is disappearing the certain product that contains 
this literal.  

It is known that for each a (b)-fault of an 
irredundant SoP consisting from prime implicants there 
is a test pattern [6]. It means that if fc for one output 
sub-circuit of circuit C is irredundant SoP consisting of 
prime implicants then there is no false paths in this 
sub-circuit.  

If Fc consists of irredundant SoPs then there are no 
false paths in the circuit C as a whole. 

Thus if we have the system F consisting of the 
irredundant SoPs and we use either multilevel 
synthesis method or two level synthesis method based 
on irredundant factorization then we get the circuit C 
without false paths. 

Notice that if any circuit C gives rise to Fc 
(irrespective of the method used to design) that is a 
system of the irredundant SoPs consisting of prime 
implicants then this circuit has no false paths. For 
example the circuit in the Roth paper [7] has no false 
paths. 
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4.3. Irredundant system 
 

Consider an irredundant system F of Boolean 
functions consisting of prime system implicants. Let 
this system be for example an implementation of a 
system of incompletely specified Boolean functions. 
Each system implicant consists of a product and its 
characteristic enumerating functions for which the 
product is valid. Notice that in irredundant system of 
Boolean functions any function from characteristic of a 
system product cannot be excluded. It means that it is 
impossible to exclude any product from a SoP derived 
from F (A SoP from F may contain not only prime 
implicants). Thus a-fault of any literal of the system F 
is detectable that is there is a test pattern for this fault.   

Therefore if a system F is irredundant system of 
Boolean functions and either multilevel synthesis 
method or two level synthesis method based on 
irredundant factorization is used for deriving 
combinational circuit C, then there is a test pattern for 
a-fault of each literal of the SoP created by the sub-
circuit of the circuit C. It means that circuit C has no 
false paths. 

Notice that if any circuit C gives rise to Fc that is an 
irredundant system (irrespective of the method used to 
design circuit C) then this circuit has no false paths. 
 

4.4 System of DSoPs 
 

Consider a system F of DSoPs.  Any a-fault of a 
DSoP is detectable because of pairwise orthogonality 
its products. If circuit C is derived from SBDD by 
direct covering of its nodes with sub-circuits 
implementing Shannon decomposition in above 
mentioned way then Fc is the system of DSoPs. It 
means that circuit C has no false paths. 

Notice that if any circuit C gives rise to Fc that is a 
system of DSoPs (irrespective of the method used to 
design circuit C) then the circuit C has no false paths 
 

4.5 System of Reed- Muller expressions 
 

Consider a system F* of Reed-Muller expressions. 
In the paper [5] is shown that each a(b )-fault of a 
formula f*(f* from F*) is detectable. Be reminiscent 
that for each path of the circuit C there is at least one 
literal in the corresponding fc if the circuit C is derived 
by using special gate covering SBDD nodes. In this 
case f* = fc). It means that circuit C has no false paths 

One of the insights is that we cannot expand these 
results to a combinational part of a sequential circuit. 
The matter is that if we have a test pattern v2 for stuck-
at fault of the literal corresponding to the certain path 
there is no guarantee of delivering the proper v1 even 

for non robust PDF because of a presence of state 
variables in a combinational equivalent. In this case the 
problem of false paths verification becomes essentially 
more complex in comparison with combinational 
circuits. 
 

5. Conclusion  
 
In this work it is shown that some well-known 
synthesis methods may be used to obtain 
combinational circuits without false paths. For that it is 
necessary to apply the proper specification formulae 
describing a circuit behavior. These specification 
formulae are also used in practice.   One of the insights 
is that we cannot directly expand these results to a 
combinational part of a sequential circuit. The last 
problem demands additional efforts. 
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