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Abstract. The paper deals with Model Predictive Control synthesis
based on the system output tracking with control and state delays. In-
put and state constraints are taken into account when solving the MPC
problem for systems with unknown input. A prediction is carried out on
the base of object states estimates that is obtained by the Kalman filter.
The criteria function is assumed to be convex quadratic. The proposed
algorithm allows to get around the state space extension.
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1 Introduction

One of the modern formalized approaches to the system control synthesis based
on mathematical methods of optimizadtion is Dynamic object control theory
with predictive models - Model Predictive Control (MPC).

This approach began to develop in the early 1960s. It was destined for the
process control in petrochemical and energy industries for which the application
of traditional synthesis methods was extremely complicated according to math-
ematical models complication. For the last years, field of MPC application has
been considerably extended covering technologic fields for object with time delay
[1-6], inventory control [7-8]; and portfolio control and optimization [9].

The paper is devoted to Model Predictive Control synthesis based on the
system output tracking allowing for input and state delays. It has been suggested
to make a synthesis of predictive control using estimates of unknown input that
can be evaluated on the base of modified LSM [10-12].

A new algorithm proposed in the paper allows to include control and state
delays into the model getting around the state space extension. This reduces the
dimension of the block matrices used in the algorithm significantly.
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2 Problem Statement

Suppose the object can be described by the following system of linear-difference
equations:

xt+1 = Axt +
∑s

i=1 Aixt−i +But−h + Irt + wt,

xk = x̄k, (k = −s, 0), ui = ūi, (i = −h,−1), (1)

ψt = Hxt + vt, (2)

yt = Gxt. (3)

Here xt ∈ Rn is the object state (xk = x̄k, k = −s, . . . ,−1, 0, x̄k is considered
to be given), uk ∈ Rm is the control input (uk = ūk, k = −h, . . . ,−1, ūk is
given), rt ∈ Rq is the unknown input, yt ∈ Rp is the output (to be controlled),
ψt ∈ Rl is the observation (measured output), s, h are the state and conrol input
delay values respectively. Further, the state noise wt and measurement noise vt
are assumed to be Gaussian distributed with zero mean and covariances W and
V respectively, i.e. M{wtw

T
k } = Wδt,k, M{vtvTk } = V δt,k , where δt,k is the

Kronecker delta.
In the simple case, when rt is a zero-mean random vector with the known

variance, the optimal filtering problem for the model (1)-(3) comes to the Kalman
filtering algorithm. If the input rt is a deterministic component and its evolution
in time is governed by the known linear system, the optimal estimates of rt and
xt can be obtained using the extended state Kalman filter. In this paper we
consider the case when prior knowledge about the time evolution of rt is not
available. Vector rt is supposed to be completely unknown.

The model under consideration is used to make predictions about the plant
behavior over the prediction horizon denoted by N using information (measure-
ments of inputs and outputs) up to and including the current time t. The plant
is supposed to operate under the constrained conditions:

a1 ≤ S1xt ≤ a2, (4)

φ1(xt−h) ≤ S2ut−h ≤ φ2(xt−h). (5)

Here S1 and S2 are structural matrices that are composed of zeros and units,
identifying constrained components of vectors xt and ut ; a1, a2, φ1(xt), φ2(xt)
are given constant vectors and vector-functions. The problem is to determine
an acting strategy on the base of the observation ψt according to which the
output vector of the system yt will be close to the reference taking into account
constraints on the state and control input.

3 Prediction

With the Gaussian assumptions on the state and the measurement noise it is
possible to make optimal (in the minimum variance sense) predictions of state
and output using a Kalman filter, see e.g. [13].
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Let x̂i|j and ŷi|j to be estimates of the state and the output at time i giving
information up to and including time j where j ≤ i. Then

x̂t+1|t = Ax̂t|t−1 +
∑s

i=1 Aix̂t−i|t−i−1 +But−h + Ir̂t +Kt(ψt −Hx̂t|t−1),

x̂t|t−1 = x̄k, k = −s, 0,

ŷt+1|t = Gx̂t+1|t,
Kt = APtH

T(HPtH
T + V )−1,

Pt+1 = W +APtA
T +APtH

T(HPtH
T + V )−1HPtA

T, P0 = Px0 , (6)

where Px0 is the given initial value of the variance matrix. Equation (6) for Pt

is known as the discrete-time Riccati-equation.
Evaluate estimates of the unknown input using LSM [10] in order to develop

a pedictive model. In this case there is no need to know a behavioral model of
the unknown input. Let evaluate state predictions as a result of solving a new
optimal control problem where by ”control” we will mean the unknown input
r̂t. The following quadratic function is proposed to use as an optimal criterion:

J(r̂t−1) =

t∑

i=1

{‖ψt −Hx̂i|i−1‖2CR
+ ‖r̂i−1‖2DR

}, (7)

where CR and DR are symmetric positive definite matrices.
Optimization of the criterion (7) up to the current time t comes to the criterion

minimization in each time i = 1, t.

J(r̂t−1) = min
r̂0

min
r̂1

. . .min
r̂t−1

t∑

i=1

{‖ψt −Hx̂i|i−1‖2CR
+ ‖r̂i−1‖2DR

}.

An optimal estimate of the unknown input at the first step (t = 1):

J(r̂0) = min
r̂0

{‖ψ1 −Hx̂1|0‖2CR
+ ‖r̂0‖2DR

}.

Taking into account x̂1|0 = Ax0 +Bu0 + Ir̂0, we get the following:

J(r̂0) = min
r̂0

{‖ψ1 −HAx0 −HBu0 −HIr̂0‖2CR
+ ‖r̂0‖2DR

}. (8)

After some manipulations, we have:

J(r̂0) = min
r̂0

{r̂T0 (ITHTCRHI +DR)r̂0 −
−2r̂T0 I

THTCR(ψ1 −HAx0 −HBu0) + α0},
where α0 - variable independent of r̂0.

An optimal estimate of the unknown input at the 1st instant can be found
from the following condition

∂J(r̂0)

∂r̂0
= 2(ITHTCRHI +DR)r̂0 − 2ITHTCR(ψ1 −HAx0 −HBu0) = 0,
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and have the following expression:

r̂0 = SR(ψ1 −HAx0 −HBu0),

where SR = (ITHTCRHI+DR)
−1ITHTCR. We can get criterion’s value at the

instant t = 1 using the obtained expression for r̂0 in (8), ,

J(r̂0) = (ψ1 −HAx0 −HBu0)
TMR(ψ1 −HAx0 −HBu0),

where MR = CR − 2CRHISR + ST
R(I

THTCRHI +DR)SR.
At the instant t = 2 an optimal estimate of the unknown input is found by

optimizing the following function:

J(r̂1) = minr̂0 minr̂1{‖ψ2 −Hx̂2|1‖2CR
+ ‖r̂1‖2DR

+ ‖ψ1 −Hx̂1|0‖2CR
+ ‖r̂0‖2DR

}.

Expression for J(r̂1) can be rearranged in the following way using the Bellman’s
optimality principle,

J(r̂1) = minr̂1{‖ψ2 −Hx̂2|1‖2CR
+ ‖r̂1‖2DR

+ J(r̂0)} =

= minr̂1{‖ψ2 −HAx̂1|0 −HBu1 −HIr̂1‖2CR
+

+‖r̂1‖2DR
+ ‖ψ1 −HAx0 −HBu0‖2MR

} =

= minr̂1{r̂T1 (ITHTCRHI +DR)r̂1 − 2r̂T1 I
THTCR(ψ2 −HAx̂1|0 −HBu1) + α1},

where α0 - variable independent of r̂1. Differentiate with respect to r̂1 like in the
first step and get the following:

r̂1 = SR(ψ2 −HAx̂1|0 −HBu1),

J(r̂1) = (ψ2 −HAx̂1|0 −HBu1)
TMR(ψ2 −HAx̂1|0 −HBu1).

Applying the Bellman’s optimality principle for the next steps and using a
method of mathematical induction, we get r̂t:

r̂t = SR(ψt + 1−HAx̂t|t−1 −HBut). (9)

So, taking into account expressions for unknow input estimates, state and
output prediction can be performed in accordance with the following formulas

x̂t+i|t = Ai−1x̂t+1|t +
∑i−1

k=1 A
i−k−1But+k−h +

∑i−1
k=1 A

i−k−1Ir̂t+k,

ŷt+i|t = Gx̂t+i|t, i = 1, N, (10)

where ut+k|t - the control input used for prediction, r̂t+k - predicted unknown in-
put estimates that can be obtained on the base of time series forecasting methods
[14].

MPC usually requires estimates of the state and/or output over the entire
prediction horizon N from time t + 1 until time t + N , and can only make
these predictions based on information up to and including the current time
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t. Equations (6) can be used to obtain x̂t+1|t, ŷt+1|t . Optimal state/output
estimates from instant t+ 2 tot+N can be obtained as follows

x̂t+i+1|t = Ax̂t+i|t +
∑s

j=1 Aj x̂t+i−j|t−j−1 +But−h+i|t + Ir̂t+i, (11)

ŷt+i|t = Gx̂t+i|t, i = 1, N. (12)

In the above the notation ut−h+i|t is used to distinguish the actual input at the
instant t + i, namely ut−h+i, from that used for prediction purposes, namely
ut−h+i|t.

Equation (11) can be expanded in terms of the initial state x̂t+1|t and future
control actions ut−h+i|t as follows

x̂t+i|t = Ai−1x̂t+1|t +
∑i−1

k=1 A
i−k−1

∑s
j=1 Aj x̂t+k−j|t−j−1 +

+
∑i−1

k=1 A
i−k−1But−h+k|t +

∑i−1
k=1 A

i−k−1Ir̂t+k, i = 1, N. (13)

Now in terms of predicting the output, equation (12) can be expanded in
terms of the above expression for x̂t+i|t, which results in series of equations that
provide optimal output predictions. The key point to note is that each output
prediction is a function of the initial state x̂t+1|t and future inputs uth+i|t only:

ŷt+i|t = GAi−1x̂t+1|t +G
∑i−1

k=1 A
i−k−1

∑s
j=1 Aj x̂t+k−j|t−j−1 +

+G
∑i−1

k=1 A
i−k−1But−h+k|t +G

∑i−1
k=1 A

i−k−1Ir̂t+k, i = 1, N. (14)

These series of prediction equations can be stated in an equivalent manner
using matrix vector notation. Denote

X̂t =

⎡

⎢
⎣

x̂t+1|t
...

x̂t+N |t

⎤

⎥
⎦ , X̂0

i =

⎡

⎢
⎣

x̂t+1−i|t−i

...
x̂t+N−i|t−i

⎤

⎥
⎦ , i = 1, s, Ŷt =

⎡

⎢
⎣

ŷt+1|t
...

ŷt+N |t

⎤

⎥
⎦ , R̂t =

⎡

⎢
⎣

r̂t+1

...
r̂t+N

⎤

⎥
⎦ ,

Ut−h =

⎡

⎢
⎣

ut−h+1|t
...

ut−h+N |t

⎤

⎥
⎦ ,Ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

En

A
A2

...
AN−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

G
GA
GA2

...
GAN−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ψ0
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0
Ai 0 0 . . . 0
AAi Ai 0 . . . 0
...

...
...

. . .
...

AN−2Ai A
N−3Ai . . . Ai 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,Λ0
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0
GAi 0 0 . . . 0
GAAi GAi 0 . . . 0

...
...

...
. . .

...
GAN−2Ai GAN−3Ai . . . GAi 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0
B 0 0 . . . 0
AB B 0 . . . 0
...

...
...

. . .
...

AN−2B AN−3B . . . B 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0
GB 0 0 . . . 0
GAB GB 0 . . . 0

...
...

...
. . .

...
GAN−2B GAN−3B . . . GB 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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S =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0
I 0 0 . . . 0
AI I 0 . . . 0
...

...
...

. . .
...

AN−2I AN−3I . . . I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0
GI 0 0 . . . 0
GAI GI 0 . . . 0
...

...
...

. . .
...

GAN−2I GAN−3I . . . GI 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (15)

Here En is the n-by-n identity matrix.
The predictive model (13)-(14) in matrix notation is as follows

X̂t = Ψx̂t+1|t +
s∑

i=1

Ψ0
i X̂

0
i + PUt−h + SR̂t,

Ŷt = Λx̂t+1|t +
s∑

i=1

Λ0
i X̂

0
i +ΦUt−h +QR̂t. (16)

4 Model Predictive Control Synthesis

It is proposed to use the following criterion in order to solve the posed problem

J(t) =
1

2

N∑

k=1

{‖ŷt+k|t − ȳt‖2C + ‖ut−h+k|t − ut−h+k−1|t‖2D}, (17)

where weighing matrices C and D are assumed to be symmetric and positive
definite.

In case when the reference trajectory ȳt+k is unknown for k ≥ 0 it is reasonable
to assume that ȳt+k = ŷt , i.e. the same reference point is held throughout the
entire prediction horizon.

The summation terms in (17) can be expanded to offer a quadratic objective
function in terms of x̄t+1|t and Ut−h. Let

Ȳt =

⎡

⎢
⎣

ȳt+1

...
ȳt+N

⎤

⎥
⎦ .

Then using (16) we can get the following expression

1
2

∑N
k=1 ‖ŷt+k|t − ȳt‖2C = 1

2‖Ŷt − Ȳt‖2C̄ = 1
2U

T
t−hΦ

TC̄ΦUt−h +

+UT
t−h[Φ

TC̄Λx̂t+1|t +ΦTC̄
∑s

i=1 Λ
0
i X̂

0
i − ΦTC̄Ȳt] + c1, (18)

where c1 is a constant term that does not depend either on Ut−h or x̂t+1|t; and
C̄ is given by

C̄ =

⎡

⎢
⎢
⎢
⎣

C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

⎤

⎥
⎥
⎥
⎦
.
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In a similar manner rearrange the second term of sum in (17)

1

2

N∑

k=1

‖ut−h+k|t − ut−h+k−1|t‖2D =
1

2
UT
t−hD̄Ut−h − uT

t−h+1|tDut−h + c2, (19)

where c2 is a constant term that does not depend on ut−h+k (k = 1, N); and D̄
is given by

D̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2D −D 0 . . . 0
−D 2D −D . . . 0
...

. . .
. . .

. . .
...

0 . . . −D 2D −D
0 0 . . . −D 2D

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Combining the above, the criteria function can be expressed as

J(t) =
1

2
UT
t−hFUt−h + UT

t−hf + c3. (20)

Here c3 is the combination of previous constant terms c1 and c2 and may be
safely ignored. The terms F and f are given by

F = ΦTC̄Φ + D̄, f = Γ

⎡

⎣
x̂t+1|t∑s
i=1 Λ

0
i X̂

0
i

Ȳt

⎤

⎦−

⎡

⎢
⎢
⎢
⎣

Dut−h

0
...
0

⎤

⎥
⎥
⎥
⎦
,Γ =

[
ΦTC̄ ΛC̄Q −ΦTC̄

]
.

In the absence of constraints an analytical solution of the posed problem can
be obtained from the condition dJ

dUt−h
= 0 using vector derivative formulas, see

e.g. [15]:

∂J
∂Ut−h

= ∂J
∂Ut−h

[
1
2U

T
t−hFUt−h + UT

t−hf + c3
]
=

= 1
2
∂(trFUt−hUt−hT)

∂Ut−h
+ ∂(Ut−hTf)

∂Ut−h
= 1

2 [F
TUt−h + FUt−h] + f = 0. (21)

As the matrix F is symmetric, the equation (21) can be expressed as follows

FUth + f = 0.

So, the criteria function can be rearranged as

U∗
t−h = −(ΦTC̄Φ + D̄)−1(ΦTC̄Λx̂t+1|t +ΦTC̄QR̂t − ΦTC̄Ȳt)−

⎡

⎢
⎢
⎢
⎣

Dut−h

0
...
0

⎤

⎥
⎥
⎥
⎦
,

and the optimal predictive control has the form:

u∗
t−h+1|t =

[
En 0 . . . 0

]
U∗
t−h.

Optimization of the model with constraints (4), (5) can be performed numer-
ically using Matlab function quadprog.
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5 Conclusion

The Model Predictive Control of the system allowing to state and input delays
with unknown input is solved, guaranteeing constraints satisfaction and feasi-
bility. The problem of the MPC synthesis is solved without the extension of the
state space. The extrapolator is offered to use in order to obtain predicted values
of the system output.
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