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1. Introduction 

 

Faults detection and their diagnosis play an essen-

tial role in the industry. The search for signatures or fault 

indicators has as a purpose to characterize the operation of 

the system by identifying the type and origin of each of the 

failures. Indeed, they contribute, by a rapid and early de-

tection, to saving points of availability and production to 

the capital invested in the production tool. 

In the last decade, maintaining and diagnosing 

machines is an effective tool for early faults detection and 

continuous tracking of their evolution in time. Machine 

maintenance requires a good understanding of the phe-

nomena related to the onset and development of faults. 

Detecting their occurrence at an early stage and following 

their evolution is of a great interest [1]. It is possible to 

distinguish three types of approach for surveillance, de-

pending on the nature of the monitoring element: analytical 

model methods, data based methods, and knowledge based 

methods.  

Fault diagnosis is considered as the problem of 

multi-classification after the fault data is detected. Various 

approaches developed for this purpose can be mainly di-

vided into two categories. The first is mathematical model-

based, such as multinomial logistic regression and bayesi-

an network (BN). The second is related to the artificial 

intelligence, (i.e. fuzzy classifier, artificial neural networks 

(ANN), SVM and ELM) [2].  

The structure and relationship of components are 

complicated in rotary complex machines, and the graphical 

construction of (BN) can be tedious and difficult, a fault 

tree is considered to simplify determining causality be-

tween components. The construction of the Fault tree al-

lows constructing a bayesian network for exploit the mass 

of existing data. Which means that any fault tree can be 

transformed into a corresponding bayesian network by 

creating a binary bayesian network node for each event in 

the fault tree? Moreover, in the context of transforming the 

fault tree into a bayesian network, several works have been 

carried out (more details on these transformation steps are 

given in reference) [3].  

Bayesian network probabilistic graphical models 

have been widely used to solve various problems (for ex-

ample diagnosis, failure prediction and risk analysis, clas-

sification) [4]. Modelling by using bayesian network is 

performed in two steps: the quantitative step (estimating 

the probability distribution tables) and the qualitative step 

(construction of the network or the graph).  

The phase of the quantitative analysis in the con-

struction of bayesian networks is considered a very diffi-

cult task in estimating the a prior marginal and conditional 

probabilities of each node of the network. A prior probabil-

ity is based on the knowledge provided by expert of the 

process or obtained by learning methode or algorithm from 

an experimental or experience feedback database [5].  

The priori information, the posterior information 

and the likelihood in bayesian probability theory are repre-

sented by probability distributions. The prior probabilities 

represent the distribution of knowledge or belief concern-

ing a subject or a variable before any relevant evidence 

taken into account.  A   posterior probability is the condi-

tional probability on collected data by a combination of a 

prior probability and likelihood via Bayes' theorem. The 

likelihood is a parameter function of a statistical model, 

reflecting the possibility of observing a variable when 

these parameters have a value [6]. On the other side, in 

fault tree method the probability of occurrence of the top 

event, intermediaries vents are governed by their basic 

events; the occurrence of the latter can be modeled by var-

ious statistical distributions (Exponential, Normal, 

Lognormal, Weibull, Gamma ...) [7].  

The method of fault tree is widely used in the 

field of the reliability. It offers a framework privileged to 

the deductive and inductive analysis by means of a tree 

structure of logical gates [8].  

The procedure that uses fault trees for diagnosis 

purposes is abductive, focusing first on adverse events and 

then identifying their causes. A fault tree is established as a 

logical diagram and has the undesirable event at the top. 

The immediate causes that produce this event are then hi-

erarchized using logical symbols "AND" and "OR". To 

perform a correct diagnosis from the fault trees, these must 

largely represent all the causal relationships of the system, 

capable of explaining all possible fault scenarios.  

In FT Analysis, the analysis is realized in two 

steps: a quantitative step in which, on the basis of the 

probabilities assigned to the failure events of the basic 

components, the probability of occurrence of the top event 

(and of any internal event corresponding to a logical sub-

system) is calculated; a qualitative step in which the logical 

expression of the top event is derived in terms of prime 

applicants (the minimal cut-sets) [3].  

Works on bayesian network and system safety 

have recently been developed by [3] in 2005; explaining 

how the fault tree can be achieved using bayesian network 

static. Moreover, works which concern applications to reli-

ability are numerous; [9] in 2003, [10] in 2006 provide also 

mailto:malakmedkour@yahoo.fr;%20m.medkour
mailto:ouafae.bennis@univ-orleans.fr
http://dx.doi.org/10.5755/j01.mech.23.6.17281
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the use of bayesian network for modelling purpose of the 

cause-and-effect relationships between the degradation, the 

causes and consequences, and calculation, alike, of the 

reliability of complex mechanical systems. Bayesian net-

works can also take a dynamic dimension, [11] describes 

the representation of dynamic fault trees by dynamic 

bayesian networks.  

The advantage of probabilistic graphical models 

is interesting graphical representation of models, easy to 

understand and analyze. In addition, the probabilistic fail-

ure analysis evaluates the probability of failure of a com-

plex system that its weak points can be identified.  

Bayesian network are increasingly used in various 

fields and applications such as operating safety, risk analy-

sis, maintenance, as well as finance [4], and the field of 

image processing [12].  

Bayesian network and fault tree have a probabilis-

tic aspect. The main objective of the present work is to 

show the strong contribution of these tools in the field of 

fault diagnosis and enhance the knowledge in the area of 

ensuring reliability and maintaining of mechanical systems 

among simulated scenarios. 

 

2. Methodology of work 

 

The main purpose of this works is to give a meth-

odological approach based on the transformation method 

of fault tree into bayesian network to model a complex 

system.  This work is divided into: 

 Qualitative exploitation of events for the fault tree 

representation. 

  Define the undesired event to be analyzed; ex-

plicitly shows all the different relationships that 

are necessary to result in the top event. 

  Exploits the existing data (historical data base) of 

the system under study, to quantify the failures 

probability. 

 Estimate the failures probability of events by us-

ing Weibull model (failure probabilities of events 

are normalized to become prior failure probabili-

ties). 

  Deriving the graphical structure of the bayesian 

network via transforming the Fault Tree into 

bayesian network according to the proposed 

methodology. 

In order to diagnose industrial system and evalu-

ate their reliability, in the absence of analytical model, it is 

possible to carefully analyze the history of their behavior 

over time. At the end of this study, a fault diagnosis of 

strategic motor pump at the Annaba ARCOLOR-METAL 

(Algeria) is presented. 

 

2.1. Bayesian network  

 

A Bayesian network is a probabilistic graphical 

model that represents a set of random variables represented 

by nodes, bounded by oriented arcs and accompanied by 

their conditional independencies. In a formal way, a 

Bayesian network is defined by [13]:  

 Its graphical component represented by a graphe G di-

rected acyclic (DAG) comprising nodes X , and arcs

E ,  E,XG  . 

 Its quantitative component X represented by probabil-

ity tables (PT) for parent nodes and conditional proba-

bility tables (CPT) for descendant’s nodes, arcs 

   ))(/( iii XparentsXPXX  .
.
 

 A set of random variables associated with nodes, arcs 

 nXXXX ,.., 21 , and the joint distribution function 

arcs  XP
 
consisting of: 

 

    



n

i

iin XC/XpX,....,X,Xp
1

21
,

 

(1) 

 

where  iXP  is the set of causes (parents) of iX  on the 

graphe G . 

BN used Bayes theorem to update the prior belief 

of variables given observations of other variables. For tow 

event 
1

X  and
2

X , provided that arcs   02 XP consisting 

the relationship of joints probability to conditional and 

marginal probability are written as: 
  

 

 
   

 
1 2 1

1 2

2

/
/

P X P X X
p X X

P X
 . (2) 

 

with  
1

Xp  is Priori probability (or marginal, or occur-

rence probability) of event 
1

X it is prior in the sense that it 

does not take into account any information about 
2

X , 

 
2

Xp  is Marginal probabilities of event 
2

X ,  
21

X/Xp

is Posterior probability (or conditional probability) of 
1

X

knowing 
2

X ,  
12

X/Xp  is Likelihood function (or con-

ditional probability) of
2

X knowing
1

X . 

The marginal distribution of  
2

Xp is computed 

by: 

     
2 1 2 12 2 1

/ /p X p X X p X p X X p X
    

     
   

(3) 

2.2. Transformation of fault tree into bayesian network 

methodology 

 

Currently, modern machines and installations are 

becoming more complex and their failures can have severe 

consequences on production, at the same time; the graph-

ical construction of bayesian network can be tedious and 

difficult. We can then simplify based on fault tree to de-

termine causality between components. Fault tree construc-

tion allows building a bayesians network.  This step allows 

deriving the graphical structure of the bayesian network 

that represents the causal relationship between the different 

events of the system under study and exploits the mass of 

existing data.  

Building bayesian network from the fault tree   is 

to transform the graphical representation of the fault tree 

into bayesian network. Events and logic Gates (AND, OR) 

are the basic elements for the fault tree. However, the 

bayesian network use as basic elements nodes that repre-

senting events and arcs that model the dependences be-

tween events and relations causes - effect.  

There are several transformation methods of fault 

tree into bayesian network that consist to transforming the 

logical gates to nodes on the network, this methodes incre- 
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ase the nodes number and make complicated calculation. 

For this, the adopted method in this works consists to 

transform the different kinds of events of the fault tree to 

nodes in the associated bayesian networks, and the logic 

gates (AND, OR) not participating in the form of the 

graphical structure of the networks [3, 6]. 

 

 
 

Fig. 1 Graphical and digital transformation of Fault tree into Bayesians network 

 
Next, the construction of a bayesian network from 

a fault tree lies in the estimation (quantification) of proba-

bilities, it consists in this step to assign probabilities of 

occurrence of basic events (primaries) of fault tree to node 

roots as probabilities a priori, but in case of induced events 

(intermediate) and final events (dreaded) associated proba-

bilities will be estimated on the basis of calculation of con-

ditional probabilities. In addition, in the subject of the 

transformation of fault tree into bayesian network multiple 

works have-been performed (more details on this transfor-

mation steps shown in reference [3, 6]), the transformation 

algorithm of fault tree into bayesians network is displayed 

in Fig. 1.  

 

3. Functional analysis of the motor-pump and  

application result  

 

3.1. Description and system modeling  

 

Modeling by using BN is performed in two steps:  

 Qualitative analysis of failures: construction of 

the network or the graph. 

 Quantitative analysis of failures: deriving or esti-

mating the probability distribution tables. 

Qualitative step allows deriving the graphical 

structure of the bayesian network that represents the causal 

relations ship between the different events in the motor 

pump G18A. 

As part of preventive maintenance, the motor- 

pump G18A plays a strategic role in the cooling of the iron 

rods getting out from the electric oven; its failures influ-

ence directly the continuity of service.  

After the functional decomposition of defects 

which affect the proper functioning of the motor pump 

(qualitative phase), the failure modes are classified into 

three main types (M: Mechanical, E: Electric, H: Hydrau-

lic), this qualitative analysis allows identifying failure 

modes and construction fault tree as shown in Fig (1), by 

transforming the fault tree into bayesian network. Each 

variable corresponds to a node. Model of Cause-effect and 

its generic structure are shown in Fig (2), and it is split into 

three levels:  

 Top Event (S) is the motor-pump is in field state (un-

desired event). 

 Basic undesirable events are (H111, H112, H113.  

H114, H21, H22, H23, H24, E41 E42, E11, M11, 

M12, M221, M222, M51, M52). 

 Intermediate events are the remaining nodes (conse-

quences). 

 The hypothesis used in our modeling concerns quanti-

tative analysis of   fault tree analysis is to assume that 

components corresponding to basic events follow adjusted 

Weibull law. This means that: 

t=tj,…tn; Times between failures following Weibull model, 

and the probability of having component (X) faulty at time 

t (alternatively the probability of occurrence of the basic 

event X= faulty)  is : 

 

 P (X= faulty, t) =   1
t

F t exp





 
 

     
  
 

. (4) 

 

Where: t  represent time between failures. 

The shape parameter   and the scale parameter, 

 , of the Weibull pdf are obtained by maximizing the fol-

lowing log-verisimilitude: 

 

 

1

1

, ,
n

i i

i

i

t t
L t ln exp

 


 

  





      
      

       

  (5)  

 

3.2. Inference and conditional probabilities 

 

Bayesian inference is the process or the logic to 

calculate or revise the probability of belief (hypostasis). 

After describing the bayesian network, which will 

be used in the follow-up diagnosis of the motor pump, the 

failure probabilities of components are normalized to be-

come prior failure probabilities and reported in Table1.  
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When the BN structure is defined, the probabili-

ties are assigned (prior probabilities for the root nodes 

from Eq. (4), and conditional probabilities tables “CPTs” 

for their child node are given according to the gate types), 

the bayesian inference can then be conducted. It allows the 

computation of the marginal probability of a node (compo-

nent or event) by taking into account the interactions be-

tween the nodes of the network.  

The estimation of the Weibull parameters with the 

MATLAB function “wblfit” gives   = 3.21 and  

 =2681.22. 

 

 
 

Fig 2 Qualitative analysis by fault tree for the motor-pump system 

 
 

Fig. 3 Bayesian network of the motor-pump used in fault diagnosis 
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Table1 

Events and their priors and posteriors probability  
 

 

The model for characterizing the defects of the 

motor pump according to the principle of total probability 

theorem and bays law is given by: 

 

   HEMPSP  , (6) 

 

     , , , / , , , ,P S M E H P S M E H P M E H , (7) 

     
 SP

MPM/SP
S/MP  , (8) 

 

     
 SP

HPHSP
SHP

/
/  , (9) 

     
 SP

EPESP
SEP

/
/  . (10) 

Events of motor pump G18 A 
Nodes 

 
t, h 

F(t) 

 

Priori 

probability 

Posteriori 

probability 

  undesirable  

events 

motor-pump failed state S 

 

 Gate OR 18.9 

Mechanical defects M 
 

Gate OR 99.20 

 

 

 

 

 

 

 

 

 

 

 

 

Out of balance M5 
 

Gate OR 11.30 

Bending rotor M51 4464 0.9941 99.41 99.41 

Break of vanes M52 3552 0.9151 91.51 91.51 

Heating M1 
 

GATE OR 84.00 

Landing axial trust M11 1896 0.2802 28.02 28.02 

Wear of  motor  bearings M12 2520 0.5593 55.93 55.93 

Defect on the sealing ring M3 2016 0.3299 32.99 32.99 

Change of the mechanical seal M4 1776 0.2339 23.39 23.39 

Vibration M2 
 

Gate OR 97.90 

Mechanical noise M22 
 

Gate OR 85.10 

Change of valve M221 1728 0.2165 21.65 21.65 

Rolling fault at the pump  side M222 2808 0.6864 68.64 68.64 

Passage to the vibration limited value M21 792 0.0197 1.97 1.97 

Hydraulic defects H 
 

Gate OR 83.00 

 

Leakage H1 
 

Gate OR 83.2 

Leakage at the pump H11 
 

Gate OR 95.2 

Leakage at the mechanical  seal H111 2760 0.6662 66.62 66.62 

Leakage  at the Volute H112 1752 0.2252 22.52 22.52 

Leakage at the sealing ring H113 3696 0.9393 93.93 93.93 

Leakage at the seal H114 2040 0.3402 34.02 34.02 

Leakage at the pipe H12 1608 0.1761 17.61 17.61 

Increase of temperature H2 
 

GATE OR 81.4 

Degraded  lubrication oil H21 3048 0.7789 77.89 77.89 

Oil change H22 2328 0.4703 47.03 47.03 

Valve service defeat H23 2640 0.6138 61.38 61.38 

Filter filling in H24 3192 0.8262 82.62 82.62 

Loss of lubrication H3 1824 0.2520 25.20 25.20 

Electrical defects E 
 

GATE OR 98.3 

 

Short circuit E5 3168 0.8188 81.88 81.88 

Overloads E4 
 

GATE AND 49.1 

Activated contactor relay E41 1944 0.2297 22.97 22.97 

Expansion of bimetallic elements 

at the relay 
E42 2064 0.3506 35.06 35.06 

Electrical over-speed E3 2304 0.4591 45.91 45.91 

Grounding fault E2 1512 0.1470 14.70 14.70 

Overvoltage E1 2664 0.6245 62.45 62.45 

Beating at the rotor E11 2664 0.6245 62.45 62.45 
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We start by building a probability space on the in-

itiative knowledge, and we will see how beliefs vary.  

Subsystems probabilities of failures are normal-

ized to become prior probabilities and tow modalities will 

be kept: 

 

 Presence of defects (T : true) 

 Absence of defects (F: false) 

 Different questions arise: example, what is the 

probability that the motor-pump still works knowing that 

there is a mechanical fault? 

Table2 

Conditional probabilities of variables M, E, H,  

express the knowledge that the presence of different defaults in the motor-pump 
 

 TM  FM  

TE  FE  TE  FE  

TH  FH  TH  FH  TH  FH  TH  FH  
TS  1 1 1 1 1 1 1 0 

FS  0 0 0 0 0 0 0 1 

 

The achieved calculations from the equations (7), 

(8), (9) and (10) are presented in Fig. 4.   

We proceed firstly, that the inference makes it 

possible to propagate any probability instantiated or a pri-

ori on the belief of the other nodes. A new table of beliefs 

(probabilities) is obtained on each node, a kind of new 

state of the premises. In reality a model of probabilistic 

behavior is realized by the bayesian networks on the mo-

tor-pump. 

 

 
 

Fig. 4 Bayesian network of the motor-pump  

 

Fig. 4 shows the inference permit to obtain a new 

table of beliefs on each node. 

The high probabilities of failures of the motor-

pump (Top event) are in the order of 18.9%.  

The probabilities of failures of the motor-pump 

respectively mechanical, electrical and hydraulic knowing 

that there is a malfunction in the motor-pump equal to 

99.4, 98.3 and 83%; these allow us to update the beliefs to 

priori probability. 

 

3.3. Fault diagnosis 

 

According to the values of the posterior probabil-

ity in Table 1, the presence of defects in the motor-pump is 

mainly caused by event M51.which summarizes the out of 

balance (M51) defect is the most likely source to stop the 

motor-pump.  

The objective of this application is to make a di-

agnosis on the out of balance defect of the motor-pump 

(we will be interested on the presence or absence of the 

defect of bending rotor).  

The diagnosis in this application consists to com-

puting probabilities of new observations described in the 

following scenarios. 

Scenarios 1: this scenario is related to the 

system’s nominal operating condition. In this step, given 

the fact that there is no observed fault on the motor pump, 

the joint probability is equal to one. The BN corresponding 

to this scenario is given in Fig. 5. 

 

 
 

Fig. 5 Scenario 1: nominal operating condition 

 

Fig. 5 Shows that the probability of occurrence of 

the top event P (motor-pump failed state) = P(S) = 0.189, 

which are worth 18.9%and that the bending rotor, the 

break of vanes and the Out of balance remain in their 

respective nominal case (presence state defect) ),  with 

probabilities equal to 99.4, 91.5 and 9.03% respectively. 

These probabilities are quantitatively unacceptable, also 

since the machine is strategic and in order to optimize the 

operation security, it is mandatory to seek for identification 

of the faults’ root causes of the system to better plan the 

maintenance actions and to identify the preventive 

solutions to minimize this percentage.  

The high probability 99.4% means that the 

bending rotor (M51) is the most likely event to stop the 

motor-pump and should be treated as a priority. 

Scenario 2: (Absence of fault on the out of bal-

ance) one tends then to believe that the presence of the out 
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of balance could have been caused by a fault on the bend-

ing rotor or break of vanes and this scenario will lead to: 

 

 

(a) Absence a fault on the bending rotor 

 

(b) Absence a fault on the break of vanes 

Fig. 6 Scenario 2: Absence a fault on the out of balance 

 

 We suppose that the fault on the bending rotor 

(P(S  = false) = 1). With a probability value of P(S = true 

|M51 = false) =0.022). 

Fig. 6, a illustrates the probability of the event P(M5= 

false/ M51=true) = 8.50%. 

 We suppose that the fault on the bending rotor and 

break of vanes (P(S = false) = 1). With a probability value 

of P(S = true |M51 = false, M52 = false) =0.012). 

Fig. 6, b illustrates the probability of the event 

P(M5= false/ M51=true, M52=true) = 0%. 

According to this scenario the probability of 

occurrence of the top event P (motor-pump failed state) 

(P(S) is equal to 0.012). The result justifies the decrease in 

the probability value (from 18 to 1.2%) that the out of 

balance would be the cause of the unreliability of the 

motor pump, and this result is practically more credible 

giving the number of elements and components that are 

participated in its function and which can produce this 

faulty situation (motor-pump failed state).  

To improve the results analysis, uncertainties on 

the parameters "  " and " " have been taken into account. 

The associated 95 % confidence intervals for   and   

obtained using the Matlab function “wblfit” are [2.3984, 

4.3015] and [2356.4, 3050.8], respectively. We considered 

five values, uniformly generated, for each parameter:   

[ 1 , 2 , 3 , 4 , 5
 ] = [2.398, 2.874, 3.349, 3.825, 4.301]; 

[ 1 , 2 , 3 , 4 , 5 ] = [2356.42, 2530, 2703.58, 2877.17, 

3050.75]. 

The results obtained for both scenarios 1 and 2 are 

summarized in Table 3, 4 and 5 respectively. 

Table3 

Posterior probability of the top event for  

the first scenario with uncertainty on   and 
 


 

  
1  2  3  4  5  

1
  0.267 0.231 0.196 0.178 0.156 

2
  0.248 0.219 0.191 0.167 0.146 

3  0.237 0.260 0.178 0.152 0.131 

4  0.227 0.191 0.161 0.135 0.113 

5  0.206 0.175 0.144 0.116 0.095 

 

Table4 

Posterior probability of the top event for the absence a 

fault on the bending rotor with uncertainty on   and 
 


 

  
1  2  3  4  5  

1  0.01 0.08 0.012 0.015 0.013 

2  0.044 0.038 0.032 0.018 0.017 

3  0.005 0.04 0.024 0.016 0.015 

4  0.026 0.03 0.021 0.015 0.014 

5  0.017 0.009 0.017 0.013 0.012 

 

Table5 

Posterior probability of the top event for the absence a 

fault on the break of vanes with uncertainty on   and 
 


 

  
1  2  3  4  5  

1  0.009 0.005 0.002 0.004 0.003 

2  0.012 0.011 0.009 0.006 0.005 

3  0.002 0.015 0.009 0.006 0.004 
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We should notice that bending rotor (M51) is still 

the most likely event to stop the motor-pump for each 

couple (   , ).  

In order to characterize the uncertainty related to 

the posterior probabilities, we give hereafter the mean (𝜇) 

and the standard deviation (𝜎) for each scenario.    

- Scenario 1: 𝜇 = 0.1808, 𝜎 = 0.0474.  

- Scenario 2 (a): 𝜇 = 0.0221, 𝜎 = 0.0157. 

- Scenario 2 (b): 𝜇 = 0.0068, 𝜎 =0.0041. 

 

4. Conclusion 

 

This paper presents the application of bayesians 

networks and fault tree to diagnose motor- pump defects.  

The construction of the graphical model of the 

motor-pump (variable identification and their modes, caus-

al relationship, quantification of probabilities, etc.) was 

performed according to historical data.  

According to the fault tree results and the values 

of conditional probability, the presence of defects in the 

motor-pump are mainly caused by the event M51, which 

indicates that the defect of unbalance (M5) is the most 

likely source to stop the motor-pump.  

Fault tree method allows thanks to its qualitative 

and quantitative aspects, an event scenario leading to top 

undesirable events (motor-pump failed state). For diagno-

sis or to model multi-state variable system, bayesian net-

work is well adapted.  

Bayesian inferences permit to calculate the joint 

posterior probability of the different variables which can 

overcome the limitations of fault tree regarding the diagno-

sis.  

According to the scenarios modeled in this work 

the probability of occurrence of the top event P (motor-

pump failed state) = P(S) = 1.2%. This result is practically 

credible giving the number of elements and components 

that participate in its function and which can produce this 

faulty situation (motor-pump failed state).  

The Analysis of the obtained results by the meth-

odology of converting the fault tree into bayesian networks 

allowed to identify the undesirable and critical compo-

nents, and contributed in using the targeted preventive 

maintenance in order to increase the system’s reliability 

and availability. Thus, in order to optimize the availability 

of this motor pump rigorous monitoring of its behavior and 

an effective supervision must be carried out.  
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M. Medkour, L. Khochmane, A. Bouzaouit, O. Bennis 

 

TRANSFORMATION OF FAULT TREE INTO 

BAYESIAN NETWORK METHODOLOGY FOR 

FAULT DIAGNOSIS 

 

S u m m a r y 

 

In this article, we have shown an application of a 

decision support tool which is the FTBN. The combination 

of bayesian network (BN) with fault tree (FT) is an inter-

esting approach to diagnose mechanical systems. Bayesian 

networks provide robust probabilistic methods of reason-

ing under uncertainty, widely used in the field of reliability 

and fault diagnosis. Fault tree is a method of deductive 

analysis based on the realization of an arborescence used to 

identify combinations of failures. Since both tools have a 

probabilistic aspect, the main purpose of this work is to 

give a methodological approach based on the transfor-

mation method of fault tree into bayesian network to model 

a mechanical system, more specifically the fault diagnosis. 

Fault tree construction allows building a bayesi-

ans network.  Deriving the graphical structure of the bayes-

ian network will represent the causal relationship between 

the different events, and exploits the mass of existing data 

(experience feedback database) of the system under study. 
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In this paper a methodology approach is used to 

conduct quantification of conditionals probabilities of this 

network, and performed a diagnosis on the out of balance 

trough modeled scenarios. The proposed methodology in 

our paper is centred on the presence or absence of the out 

of balance of the motor-pump. Knowing that the source of 

this unbalance is caused by tows essentially events in the 

fault tree: bending rotor and break of vanes. This statement 

remains valid when uncertainties are taken into account.  

 

Keywords: bayesians network; fault tree; Probability; 

inference; modeling; diagnosis; maintenance.  
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