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Abstract. The paper gives a theoretical justification for the effect of 
increasing permeability of ultra-thin membranes by altering their internal 
material structure, namely through the process of creating one or two 
energy voids within the permeable layer. An effective computing 
technology for solving the stationary Schrödinger equation is also 
described. 

1 Introduction 
Molecular dynamics is widely used in studies of physical processes in nanoporous 
structures [1-15], as well as in studying mechanical behaviour of nanoporous crystals [18-
22]. However, for problems associated with passage of molecules through a barrier, wave 
dynamics appears to be more effective [23, 24]. In multi-barrier systems, in comparison 
with the case of a monolayer, particles are accumulated in a potential well, and thereby 
particle concentration in front of the barrier and behind it is increased. Since all this occurs 
in the wave mode of mass concentration and in the centre of the well there is the maximum 
amplitude of oscillations, the system with energy wells show generation of more intense 
transmitted waves, which drives a great mass over the barrier. Material particles: electrons, 
protons and atoms are associated with the de Broglie wave. If the wave frequency coincides 
with the frequency of one of the energy wells enclosed between two barriers, the system 
shows resonance phenomena which lead to an increase in particle concentration in the 
whole near-barrier area, in particular, behind the barrier, which means that there is an 
increase in the particle transmission coefficient. Since the authors were only interested in 
the final result concerning the integral permeability of the membrane instead of wave 
dynamics as such, all the conclusions reached in the work are based on the results of 
solving the stationary Schrödinger equation. The results of such studies may be interesting 
from the standpoint of technologies for creating effective functional layers with atomic 
selective permeability, as well as gas separation membranes for separation of helium from 
natural gas and others. 
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2 The method for solving the stationary Schrödinger equation
In problems of particle penetration through an energy barrier the following equation is used 
[25, 26]:

2
2

2 ( ) 0d
m U x

dx

� � �� � � � �	 
 . (1)

This equation is commonly called the one-dimensional stationary Schrödinger equation 
and it describes the quantum-mechanical motion of a particle in one dimension. Here, the 
function U(x) is the potential, λ2 is the energy of the particle, and m is its mass. The desired 
function ψ is such that the square of its module determines the density of the probability of 
particle localization at the point x. Equation (1) is written here in the dimensionless 
normalized form, when the potential U(x) and the energy of the particle λ2 are attributed to 
the dimensional value of the potential barrier U0, so that the maximum value of the 
potential U(x) is assumed to be equal to 1. The mass of the particle m in equation (1) is also 
a dimensionless quantity referring to a certain standard value in accordance with the scales 
of the phenomenon under study. Clearly, equation (1) possesses not only a quantum sense. 
It is applicable to many other problems of theoretical physics which may consist in 
determining the resonant frequencies of acoustic or electromagnetic waves within an 
inhomogeneous cavity [27]. Equation (1) plays an important role in solutions of nonlinear 
partial differential equations where the method of inverse scattering is used [28]. In these 
problems it is necessary to restore the potential U(x) when the function ψ(x) is known. 

The general solution of equation (1) can be obtained as a linear combination of two 
linearly independent solutions w1(x) and w2(x) which can be found using the traditional 
Runge-Kutta method by comparing the obtained result with the known exact solutions. The 
accuracy of calculations is controlled by the value of the Wronskian determinant

1 2 2 1( ) ( ) ( ) ( )W w x w x w x w x� �� � , as well as by the accuracy of following the equality
2 2| | | | 1B A� � . The first item on the left side of this equation is the reflection coefficient 

and the second - the transmission coefficient. To meet these criteria in the numerical 
method of the Runge-Kutta type, one has to use a step of calculation which is too small and 
this greatly increases the computational time. In this connection, in this paper we propose to 
use a non-standard operation matrix analysis which is available in modern mathematical 
packages such as MatLab [29] or SciLab. This operation allows finding an orthonormal 
basis (null-space) for rectangular matrices.

For example, let the matrix M consist of 8 rows and 10 columns. Then, by carrying out 
the command B=null(M) we get the rectangular matrix B which has 10 rows and two 
columns each of which is orthogonal to all the rows of the matrix M. Additionally, the 
result is obtained with almost a maximum machining precision. In this method, equation (1) 
must be written in the finite difference form: 
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 . (2)

Next for equation (2) we construct a corresponding three-diagonal matrix, eliminate its 
last two lines and get the matrix H as a result. Calculating the null-space of the matrix H:
w=null(H) gives a numerical representation of the fundamental solutions w1(x) and w2(x) of 
equation (1) in the form of two vector columns. The accuracy of the solution by this method 
is independent of the parameter λ and does not require a small step, which permits reliable 
calculation of both the function ψ(x) and the transmission coefficient D(m,λ)=|A|2 for 
particles passing through potential barriers of complex shapes. 
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2 Examples of calculations
The typical view of the graph |ψ|2(x) obtained by the numerical method is shown in fig.1, 
where the shape of the barrier is marked by a dotted line. 

Fig. 1. Particle of parameters: m=1, λ=0.5 passing single barrier.

The transmission coefficient D in this case is of a little value equal to 0.3140. It would 
seem that addition of new barriers should reduce the general transmission coefficient. But, 
as is clear from fig.2, an increase in the number of barriers, by contrast, leads to an increase 
in the transmission coefficient. This is due to the fact that the density of probabilities |ψ|2 in 
wells reaches its maximum values, which facilitates penetration of particles through the 
barriers. 

Fig. 2. Effect of adding new barriers on distribution of density of probabilities |ψ|2 and particle 
transmission coefficient D(m, λ).

Here we deal with a resonance effect of interaction between bound particles in potential 
wells and an oncoming particle. This phenomenon is observed only for certain values of the 
parameter λ and it is clearly seen on graphs of the function D(λ) for a given shape of the
potential barrier. 

Calculations revealed that the effect of increasing permeability of a composite 
membrane refers only to certain particle energy. Changing the energy of particles falling 
onto the membrane, we inevitably get reduction of permeability for the same barrier 
system. Therefore, in practical problems of gas separation it is necessary to consider the 
Maxwell distribution of particle according to energies. 
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