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A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO)
is of key importance for accurate predictions of vibrational levels at a high energy range from a
potential energy surface (PES). An efficient method that permits a fast convergence of variational
calculations would allow iterative optimization of the PES parameters using experimental data. In
this work, we propose such a method applied to tetrahedral AB4 molecules for which a use of high
symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set
for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation
of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant
angles) of vibrational KEO without the sin(q)−2 type singularity is derived. The efficient recursive
algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements.
A good basis set convergence for the calculations of vibrational levels of the CH4 molecule is
demonstrated. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913520]

I. INTRODUCTION

The theory and computational modeling of molecular
vibrations is of a major interest for molecular spectroscopy,
theoretical chemistry and related fields. A progress in calcula-
tion of potential energy surfaces (PES) and vibration-rotation
spectra of three-atomic molecules (see Refs. 1–7 and refer-
ences therein) have been followed by advances in computa-
tional methods for nuclear motion in larger molecules includ-
ing high symmetry polyatomics.8–20 Some mathematical as-
pects have been reviewed in Ref. 21.

For ABC3 type molecules, variational calculations have
been applied to CH3F22 and CH3Cl23 molecules using finite
basis representations and full C3v symmetry. The same compu-
tational codes implementing symmetry properties of the C3v
sub-group have been applied to methane molecule.24,25 Other
methods of vibration-rotation spectra computation for AB4
type molecules have been developed by Schwenke8,26 and
by Wang and Carrington27–30 also using exact kinetic energy
operator (KEO). In spite of a considerable number of publi-
cations in this domain, most of those that used exact KEO
did not completely account for the full tetrahedral molecular
symmetry. An accurate convergence in a moderate energy
range can be achieved with a partial account of the symme-
try,8,29 this being also confirmed by the studies of symmetry
breaking isotopic substitutions.31,32 However, a full account

a)Author to whom correspondence should be addressed. Electronic mail:
avn@lts.iao.ru, Tel.: +3822-491111-1208.

of the symmetry properties involves smaller dimensions of
basis sets and is beneficial for handling strict degeneracies
and selection rules, particularly in case of transitions among
highly excited vibration-rotation states and high temperatures
spectra. Variational methods specific for tetrahedral molecules
have been considered by Xie and Tennison33,34 using Radau
coordinates and Jacobi polynomials as the basis functions, but
for bending and stretching states separately.

Some different approaches relied on expansions of the
nuclear KEO and PES in normal mode or symmetry adapted
coordinates using MULTIMODE35–37 or TROVE38 program
suits. Rey et al.39,40 have developed a computational method
for rovibrational calculations using an expansion of Eckart-
Watson Hamiltonian41,42 in terms of irreducible normal mode
Td tensors. Calculations of methane energy levels using per-
turbative or iterative methods have also been reported.43–48

The advances in the dipole moment theory11,49 permitted full
quantum-mechanical methane spectra predictions.40,50,51 A
common challenge for all variational methods is the basis set
convergence of multi-dimensional vibration-rotation calcula-
tions for high energy states.

The aim of the present work is to develop an efficient
method using both full tetrahedral symmetry of AB4 molecules
and the exact KEO in order to achieve a fast convergence of
variational nuclear motion calculations. When using bending
internal coordinates, such as six qi j angles between four radial
vectors, one-dimensional basis functions of these coordinates
are generally not independent and non-orthogonal. If one con-
siders the full Td (M) point group as isomorphic one to a finite
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permutation group (permutations of four identical B atoms),
the construction of the symmetry adapted basis set using the
qi j angles becomes a trivial task. However, a non-trivial issue
is to work out an efficient technique for calculations of multidi-
mensional integrals using this basis. In this study, a symmetry
adapted approach using finite basis representations is applied
to tetrahedral pentatomic molecules to derive straightforward
techniques of matrix elements calculation both for the exact
KEO and for the PES model. A fast spectrum computation
would allow in turn increasing basis sets and accessing higher
energies. Here, we mostly focus on the angular part of the
matrix elements, because the symmetry properties of the radial
part are quite simple and have been worked out in many previ-
ous studies. We also assume that the molecule has a deep PES
minimum corresponding to the re-equilibrium configuration.

Tennyson and Sutcliffe,52 Gatti, Iung, Nauts, Chapuisat
et al.,53,54 Mladenovic’55,56 and Schwenke57 have reported
derivations of kinetic energy operators for treating rotations
and vibrations of polyatomic molecules using polyspherical
type coordinates. In these coordinates, the N nuclear position
vectors are transformed to N − 1 internal vectors and the nu-
clear center of mass vector, whereas the internal displacements
are parametrized by spherical polar coordinates: Ri, θi, ϕi,
I = 1, . . . ,N − 1, where (θ1 = 0,ϕ1 = 0,ϕ2 = 0). The symmet-
ric form of vibration KEOs is known.33,34,58 Instead of using
the torsion angles, the symmetric form uses additional angles
between molecular bonds. This form of KEO is more suitable
for the representation of basis functions, which we use in the
present work. The use of the symmetric form is particularly
interesting because this does not involve the sin(q)−2 singu-
larity which appears in the KEO of Ref. 55 in polar coordinates.
In some formulations of the theory, the vibration basis set con-
structed as a product of one dimensional functions depending
on the bending q and torsion t angles has to be constrained in
a way that fn(q) are vanishing at sin(q) = 0. From a physical
point of view, such a choice of fn(q) is not always relevant as
in certain vibrational displacements, a molecule could access
geometric configurations corresponding to the angle q = π
with rather high probability.

In this work, we use mass-dependent orthogonal coordi-
nates,55 which in case of AB4 molecules can be defined via four
vectors {r⃗i},

r⃗i = r⃗ABi
+ d

4
j=1

r⃗AB j
, where d = −1

4
+

1

4


1 − 4µc

with µc =
mH

4mH + mC
, (1)

where r⃗ABi
are the vectors linking the A atom with Bi atoms

(I = 1, 2, 3, 4). Using Eq. (1), one can define ten salar coor-
dinates including four vector lengths {r1,r2,r3,r4} and six an-
gles {q12,q13,q14,q23,q24,q34}, where qi j is the angle between
the vectors r⃗i and r⃗ j. It is well known that for a pentatomic
non-linear molecule, six angles are redundant (Ref. 59 and
references therein) since total number of vibrational degrees of
freedom should be nine. However, such redundant coordinates
represent certain advantage as they keep obvious permuta-
tion symmetry of identical Bi atoms and permit quite simple
symmetrized expression for the KEO.34,58

FIG. 1. Definition of torsional coordinates t23, t24 corresponding to “radial”
coordinates ri.

For this reason, we use a redundant basis set of six
angles hereafter, referred to as “6A-basis” in our algorithm
of variational calculations. Such basis set is non-orthogonal
and requires solving a generalised eigenvalue problem which
is implemented in standard mathematical libraries like LA-
PACK and MKL. A similar approach has been already used
for PH3 type molecules.20 Redundant vibrational coordinates
have been also considered in Refs. 60–62 (see also references
therein).

When calculating the matrix elements of PES whenever
possible, we try to keep advantage of the symmetrical form
with respect to six angles. At the final phase of the calcu-
lations, the angular matrix elements are expressed in terms
of five non-redundant “polar” angular coordinates involving
three bending coordinates {q12,q13,q14} and two torsion an-
gles {t23, t24} (Fig. 1) and thus resulting to five-dimensional
integrals. Similarly, when calculating the matrix elements of
the KEO in symmetric form, we first calculate the derivatives
with respect to angles using full permutational symmetry, and
only after this, we calculate the matrix element by using polar
coordinates.

The present paper comprises seven sections. Section II
describes an algorithm for constructing a contracted angular
basis set that uses six angles qi j between four radial vectors
pointing identical atoms, and the scalar product calculation for
this basis set. Sections III and IV are devoted to the algorithm
of calculations of the angular matrix elements of PES and KEO
in contracted angular basis set. Section V briefly outlines the
general tree-like coupling scheme for the PES and for basis
functions, a construction of the symmetry-adapted angular ba-
sis set, and the algorithm for calculation of vibrational matrix
elements for AB4 molecules. In Sec. VI, we report the basis
convergence tests for calculated vibrational CH4 levels in the
0-7660 cm−1 range. Section VII is devoted to discussion and
conclusions.

II. SYMMETRY ADAPTED ANGULAR FUNCTIONS

For the symmetrisation of the angular part, the follow-
ing concise notation will be used for the elementary terms:
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ϕ(q13)l1ϕ(q24)l2ϕ(q14)m1ϕ(q23)m2ϕ(q12)n1ϕ(q34)n2 = (l1,l2;m1,
m2;n1,n2), where ϕ is any smooth function. Because the trans-
formation properties induced by atoms permutations do not
depend on the explicit form of ϕ functions in this section,
for the sake of simplicity we set ϕ(x) = x. Six numbers,
l1, l2,m1,m2,n1,n2, are grouped into three couples of numbers
which are denoted as l,m,n. The 24 permutations of four
atoms H lead to permutations of l,m,n (6 permutations), and
to even number of permutations inside of every couple (4
permutations). Let us denote pl, pm, pn the permutation of
numbers (l1, l2), (m1, m2), (n1, n2). The full group could be rep-
resented as direct product of two sets of permutations {(lmn),
(lnm), (mln), (mnl), (nml), (nlm)} and {e,pl∗pm,pl∗pn,pn∗pm},
where e stands for identity operation. In general case, for six
unequal numbers l1, l2, m1, m2, n1, n2 there are two inde-
pendent 24-dimensional subsets corresponding to schemes
(l1, l2; m1,m2; n1,n2) and (l1, l2; m1,m2; n2,n1). Two couples
(l1, l2), (m1, m2) with l1 = m1 and l2 = m2 or l1 = m2 and l2
= m1 are considered as the “same” couples.

For tetrahedral AB4 molecules, the following projection
operators63 are used:

PA1 = (e + (13) + (14) + (23) + (24) + (13)(24))
× (e + (12))(e + (34)),

PA2 = (e − (13) − (14) − (23) − (24) + (13)(24))
× (e − (12))(e − (34)),

P1Eb
= ((13) − (14) − (23) + (24))(e + (12))(e + (34)),

P2Eb
= (2e + (13) + (14) + (23) + (24) + 2(13)(24))
× (e − (12))(e − (34)),

P1F1z = (e − (13)(24))(e − (12))(e − (34)),
P2F1z = ((13) − (14) + (23) − (24))(e − (12))(e + (34)),
P3F1z = ((13) + (14) − (23) − (24))(e + (12))(e − (34)),
P1F2z = (e − (13)(24))(e + (12))(e + (34)),
P2F2z = ((13) + (14) − (23) − (24))(e − (12))(e + (34)),
P3F2z = ((13) − (14) + (23) − (24))(e + (12))(e − (34)).

(2)

Here, the notation (ij) stands for the permutation of iden-
tical nuclei Bi and Bj. Using the projection operators (2),
the explicit form of angular basis function could be found
unambiguously for all cases except for the case where two
F2-symmetry functions occur. In the latter case, additional
orthogonalisation was necessary. The action of projection
operator P1F2z on elementary terms (n1 ≤ l1 ≤ m1 ≤ l2 ≤ m2
≤ n2) is always not zero. The action of projection operator
P2F2z or P3F2z could be zero, but one of four projection oper-
ators P2F2z, P2F2z + P1F2z, P3F2z, P3F2z + P1F2z is always not
zero and gives function orthogonal to P1F2z function. Other
way is to choose the second projection operator in the form
P2F2z + P3F2z. For example, in case of (0,1; 0,0; 0,1) there
are initially three linear dependent F2-symmetry functions: f1
= (q24q34 + q23q34 + q14q34 + q13q34 − q24q12 − q14q12 − q12q23
− q12q13), f2 = (−2q23q24 + 2q14q24 + 2q13q23 − 2q13q14 − f1),
f3 = (−2q23q24 + 2q14q24 + 2q13q23 − 2q13q14 + f1). Two
functions f1 and f2 + f3 (or f2 + f1) are independent and orthog-
onal.

TABLE I. Decomposition of an elementary term ϕ(q13)l1ϕ(q24)l2ϕ(q14)m1

ϕ(q23)m2ϕ(q12)n1ϕ(q34)n2= (l1, l2;m1,m2;n1,n2) in irreducible Td repre-
sentations.

Number of
equivalent
couples

Number of couples
(l1, l2), (m1, m2),

(n1, n2) with l1= l2,
m1=m2, n1= n2 A1 A2 E F1 F2

0 0,1 1 1 2 3 3
2 1 1 2 1 1
3 1 1 2 0 0

1 0, 1 1 0 1 1 2
2 1 0 1 0 1
3 1 0 1 0 0

2,3 0 1 0 0 0 1
3 1 0 0 0 0

The numbers of irreducible representations for every
scheme (l1, l2; m1,m2; n2,n1) are summarised in Table I.

Let us consider the matrix M composed of elements Mi j

= cos(qi j). The determinant of the matrix M is always zero59

and thus six interbond angles are redundant.

III. CONTRACTED ANGULAR WAVE FUNCTIONS
AND SCALAR PRODUCTS CALCULATION

Calculation of matrix elements for the molecules of the
type AB4 is similar to that of the type AB3. For one-dimen-
sional basis functions, the following representation was used:

fn(q) =
√

2π
LMax
l=s

cnlYl,s(q,0), where Y are spherical har-

monics written in the form of Ref. 64 that ensures Y0,0(q,0)
= 1√

4π
and 2π

π
0

Y 2
l,s
(q,0)d cos(q) = 1. Here, LMax is the max-

imum order of the expansion. The normalization condition
π

0
f 2
n(q)d cos(q) = 1 for the one-dimensional angular problem

can be used to normalize fn. Initial angular basis can be written
in the form

|n12n13n14n23n24n34⟩
= fn12(q12) fn13(q13) fn14(q14) fn23(q23) fn24(q24) fn34(q34).

(3)

Taking into account the expression64

fn(q23) =

k

cnk


4π

2k + 1


m

Yk,m(q12,0)Yk,m(q13, t23), (4)

the angular basis functions (3) could be written in terms of
two torsion angles t23, t24 (Fig. 1) and three bending angles
q12,q13,q14. The expression (3) contains powers of t23, t24 up
to 2 × LMax and powers of q12,q13,q14 up to 3 × LMax. The
scalar product of basis functions is calculated using the follow-
ing five-dimensional integral with volume element dcos(q12)
dcos(q13) dcos(q14)dt23dt24:
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⟨n12n13n14n23n24n34|k12k13k14k23k24k34⟩

=

π
0

π
0

π
0

2π
0

2π
0

fn12(q12) fk12(q12) . . . fn34(q34) fk34(q34)d cos(q12)d cos(q13)d cos(q14)dt23dt24. (5)

To calculate (5), the expression (4) was used for three couples of one dimensional functions depending on q23, q24, q34. The details
of the scalar product calculation are given in the Appendix. The final expression reads

⟨n12n13n14n23n24n34|k12k13k14k23k24k34⟩ = (2π)5


L23L24L34

8π3/2(2L23 + 1)(2L24 + 1)(2L34 + 1) Jn23,k23,L23,0Jn24,k24,L24,0Jn34,k34,L34,0

×
min(L23,L24,L34)

m=0

Jn12,k12,L23,L24,mJn13,k13,L23,L34,mJn14,k14,L24,L34,m × (2 − δm,0), (6)

where Jn1,k1,L1,0 =
√

4πJn1,k1,L1,0,0 and Jn1,k1,L1,L2,ν are one dimensional integrals,

Jn1,k1,L1,L2,ν =

π
0

fn1(q12) fk1(q12)YL1,ν(q12,0)YL2,ν(q12,0)d cos(q12)

= 2π

l1l2

cn1l1ck1l2

π
0

Yl10(q12,0)Yl20(q12,0)YL1,ν(q12,0)YL2,ν(q12,0)d cos(q12). (7)

The integral on the right hand side of Eq. (7) could be expressed as sum of Clebsch-Gordan coefficients of the rotation group (see
the Appendix)

2π

π
0

Yl10(q12,0)Yl20(q12,0)YL1,ν(q12,0)YL2,ν(q12,0)d cos(q12)

=

La


(2l1 + 1)(2L1 + 1)

4π(2La + 1)


(2l2 + 1)(2L2 + 1)

4π(2La + 1) C(l10,L10,La0)C(l10,L1v,Lav)C(l20,L20,La0)C(l20,L2v,Lav). (8)

Only even values l1 + L1 + La and l2 + L2 + La contribute to
the latter summation. Using Eqs. (7) and (8), Jn1,k1,L1,L2,ν can
be easily calculated. In this work, the 6-dimensional angular
wave function (3) is represented as a product of one dimen-
sional angular eigen functions fn(cos(qi j)) of partial bending
Hamiltonians

FIG. 2. The five one-dimensional angular basis functions f0, f1, f5, f10, f14.

h(qi j) = − 1
µr2

e

(
∂2

∂qi j2
+ ctg(qi j) ∂

∂qi j

)
+ V (qi j). (9)

This does not result in a singularity as ctg(q) (d/dq) = cos
(q) (d/dcos(q)) and spherical harmonics are expressed in terms
of cos(q) as well. The behaviour of five one-dimensional func-
tions f0, f1, f5, f10, f14 is shown in Fig. 2.

The expressions (6-8) are not only true for one dimen-
sional eigen functions fn(q), but could be applied to other
type of one dimensional functions. For LMax up to 20, it was
possible to calculate the norm and the matrix elements without
any contraction (cnl = δnl). In this particular case, if cnl = δnl,
one has J0,0,0,0,0 = J0,0,1,1,0 = J0,0,1,1,1 = 1/(4π), resulting to
⟨0,0,0,0,0,0|0,0,0,0,0,0⟩ = π2/2, ⟨1,0,0,0,0,0|1,0,0,0,0,0⟩
= π2/2,



1,1,0,0,0,0|1,1,0,0,0,0� = π2/2, ⟨1,1,1,0,0,0|1,1,

1,0,0,0⟩ = π2/2, ⟨2,0,0,0,0,0|2,0,0,0,0,0⟩ = π2/2,


0,0,0,

1,1,0|0,0,0,0,0,1� = π2
√

3/6.

IV. CALCULATION OF MATRIX ELEMENTS
FOR KINETIC AND POTENTIAL ENERGY TERMS

The replacement of the coefficient Jn1,k1,L1,L2,ν in Eq. (6)
by the coefficient JP

n1,k1,L1,L2,ν
results in formula for matrix

elements of the PES terms. This is similar to transformations
involving Eqs. (7) and (9) of Ref. 20 previously discussed for
AB3 molecules,
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JP
n1,k1,L1,L2,ν

=

l1l2l3

cn1l1ck1l2

π
0

f l1(q)


l30|cosP(q)|l20

�
f l3(q)YL1,ν(q,0)YL2,ν(q,0)d cos(q)

= 2π

l1l2l3

cn1l1ck1l2



l30|cosP(q)|l20

�
π

0

Yl10(q,0)Yl30(q,0)YL1,ν(q,0)YL2,ν(q,0)d cos(q). (10)



n12n13n14n23n24n34

�
cosP12(q12)cosP13(q13)cosP14(q14)cosP23(q23)cosP24(q24)cosP34(q34)� k12k13k14k23k24k34

�

= (2π)5


L23L24L34

64π3(2L23 + 1)(2L24 + 1)(2L34 + 1) JP23
n23,k23,L23,0,0

JP24
n24,k24,L24,0,0

JP34
n34,k34,L34,0,0

×
min(L23,L24,L34)

m=0

JP12
n12,k12,L23,L24,m

JP13
n13,k13,L23,L34,m

JP14
n14,k14,L24,L34,m

× (2 − δm,0). (11)

For example, in a particular case, if cnl = δnl, one obtains

0,0,0,0,0,0| cos(q12)2 |0,0,0,0,0,0� = π2/6, ⟨0,0,0,0,0,0|

cos(q12)2 |1,1,0,1,0,0⟩ = π2
√

3/10, ⟨0,0,0,0,0,0| cos(q12)2|
0,1,1,1,1,0⟩ = π2/10.

The calculation of large number of integrals (11, 10) is
the most demanding part for the computational resources in
our approach. The high permutational symmetry allows calcu-
lating only part of integrals (11). The integral (11) could be
calculated only once and stored in memory to be further
used iteratively in case of an empirical PES optimization.

The algorithm of calculation of KEO matrix elements for
AB4 is similar to that of AB3 molecules.20 In case of AB4
molecules, there are 6 diagonal and 12 off-diagonal terms in
orthogonal coordinates.58 These 18 terms could be represented
as sum of four terms T1, T2, T3, T4,

T1 =
1

m1r1
2
*
,
− ∂

2+

∂q2
12

− ∂2+

∂q2
13

− ∂2+

∂q2
14

+ cos(t23) ∂2

∂q12∂q13

+ cos(t24) ∂2

∂q12∂q14
+ cos(t34) ∂2

∂q13∂q14

)
, (12)

where ∂2+

∂q2 =
∂2

∂q2 + ctg(q) ∂
∂q

. Other terms Tk could be ob-

tained from T1 by permutations Tk = (1k)T1. The kinetic en-
ergy operator could be rewritten in a tensorial form as

T =
4

k=1

Tk = (T A1
R T A1

Q )A1 +
√

3(TF2
R TF2

Q )A1, (13)

where T A1
R ,TF2,x

R, ,TF2, y
R, ,TF2,x

R, are symmetrized forms for the
“radial” part 1

mkr
2
k

and T A1
Q , TF2,x

Q, ,TF2, y
Q, , TF2,z

Q, are symme-
trized forms for the angular part (expression in parenthesis
of Tk in Eq. (12)). The definition of the symmetrized form
is the same as that usually written in the standard symmetric

coordinates.65 For example, the F2,z component for the radial
coordinate reads SF2,z

R, = 1
2 (r1 + r2 − r3 − r4). Consequently,

we have the similar form for the F2,z component of the kinetic
radial and angular terms

TF2,z
R, =

1
2

(
1

m1r1
2 +

1
m2r2

2 −
1

m3r3
2 −

1
m4r4

2

)
,

TF2,z
Q
=

1
2
(T1 + T2 − T3 − T4) .

The details of matrix elements calculation could be found in the
Appendix. Due to symmetry properties, it is sufficient calcu-
lating only one diagonal and one off-diagonal matrix element.
The diagonal matrix element is similar to the scalar product
calculation where one of the coefficients J is replaced by the
coefficient JD2,

JD2
n1,k1,L1,L2,ν

=

π
0

fn1(q)
((

∂2

∂q2 + ctg(q) ∂
∂q

)
fk1(q)

)
×YL1,ν(q,0)YL2,ν(q,0)d cos(q)

= 2π

l1l2

cn1l1ck1l2(l2(l2 + 1))
π

0

Yl10(q,0)Yl20

× (q,0)YL1,ν(q,0)YL2,ν(q,0)d cos(q). (14)

In order to calculate the off-diagonal terms of KEO, the follow-
ing coefficients are necessary:

JD1
n1,k1,L1,L2,ν,± =


l1l2

cn1l1ck1l2

π
0

f l1(q)
(
∂

∂q
f l2(q)

)
×YL1,ν±1(q,0)YL2,ν(q,0)d cos(q). (15)

The positive and negative values of ν are possible in Eq. (15)
JD1
n1,k1,L1,L2,−v,±

= JD1
n1,k1,L1,L2, v,∓

. The JD1 coefficient could be
calculated (see Appendix) according to the formula

JD1
n1,k1,L1,L2,−v,± = ±


l1l2

cn1l1ck1l2


La


l2(l2 + 1)


(2l1 + 1)(2L1 + 1)

4π(2La + 1)


(2l2 + 1)(2L2 + 1)

4π(2La + 1)
×C(l10,L10,La0)C(l1,0,L1,−v ± 1,La,−v ± 1)C(l20,L20,La0)C(l2,±1,L2,−v,La,−v ± 1). (16)
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The final expression for the off-diagonal matrix elements can be written as follows:
n12n13n14n23n24n34

�����
cos(t23) ∂2

∂q12∂q13

�����
k12k13k14k23k24k34


= (2π)5


L23L24L34

4π3/2(2L23 + 1)(2L24 + 1)(2L34 + 1) Jn23,k23,L23,0Jn24,k24,L24,0Jn34,k34,L34,0

×
min(L23,L24,L34)

m=0

(
JD1
n12,k12,L23,L24,m,−JD1

n13,k13,L23,L34,m,− + JD1
n12,k12,L23,L24,m,+JD1

n13,k13,L23,L34,m,+

) (2 − δm,0)Jn14,k14,L24,L34,m.

In a particular case, if cnl = δnl this gives


000000

�
cos(t23)

∂2

∂q12∂q13

�
110011

�
=

(π)2
3 .

V. FULL SYMMETRY BASIS SET AND CALCULATION
OF VIBRATIONAL LEVELS

The initial angular basis (1) can be easily symmetrized
using the technique of projector operators (2) as described in
Sec. II.

|n12n13n14n23n24n34; kACAσA⟩ = P̂kCσ |n12n13n14n23n24n34⟩ ,
where C andσ are irreducible representation and row of Td(M)
point group, and k is the ranking number. The symmetrisa-
tion of the radial part can be done in terms of explicit rules
of Refs. 66 and 67. Another way is construction of radial
functions from symmetric coordinates.68–70 For the radial basis
functions, we apply in this work the symmetrisation procedure
using projection operators60 given by Eq. (2),

|m1m2m3m4; kRCRσR⟩ = P̂kCσ |m1m2m3m4⟩ ,
where mi are quantum numbers corresponding to primitive
eigen functions φmi

(ri) of radial equations. The full symmetry
vibrational basis set is obtained as direct product of both

|n12n13n14n23n24n34; kACAσA⟩ × |m1m2m3m4; kRCRσR⟩ .
The vibrational basis functions and the PES expansion

terms can be expressed via irreducible tensors.68,69 Each tensor
is associated to a binary tree,70 where every branch of the
tree is characterized by its symmetry. The PES and kinetic
energy operators are of A1 symmetry type. For AB4 (as for
AB3

20) molecules, it is necessary to consider only one coupling
of stretching basis functions and of bending basis functions.
For the direct product of irreducible tensors,68,69 the following
standard definition is used:

(TC′ × TC′′) C
σ =

[C]

σ′σ′′

F
(
C′C′′C
σ′σ′′σ

)
TC′

σ′TC′′
σ′′,

where C, C′, C′′ are irreducible representations, σ, σ′, σ′′ are
their rows, and F

(
C′C′′C
σ′σ′′σ

)
are 3G symbols corresponding to

Clebsch-Gordan coefficients of the Td symmetry group. Here,
[C] stands for the dimension of C irreducible representation.
The recoupling scheme used for calculations of matrix ele-
ments is similar to one described in Ref. 70. Using the standard

definition of the reduced matrix elements68,69


ψ ′(C

′)���
���V

(C)���
���ψ
′′(C′′) = 

ψ
′(C′)
σ′

���
���V

(C)
σ

���
���ψ
′′(C′′)
σ′′


F *
,

C ′ C C ′′

σ′ σ σ′′
+
-

(17)

and the recoupling matrix elements formula
(ψC′1

1 ψ
C′2
2 )C′����

���(V
Γ1

1 V Γ2
2 )Γ���

����(ψ
C′′1
1 ψ

C′′2
2 )C′′


=

[C ′][Γ][C ′′]
*...
,

C ′1 C ′2 C ′

Γ1 Γ2 Γ

C ′′1 C ′′2 C ′′

+///
-

×

ψ
C′1
1

����
���V
Γ1

1
���
����ψ

C′′1
1

 
ψ
C′2
2

����
���V
Γ2

2
���
����ψ

C′′2
2


, (18)

a multi-dimensional matrix element can be expressed as a sum
of products of two matrix elements. Here, the indices C and
Γ denote point group irreducible representations and all other
indices are omitted for the sake of simplicity.

The use of a non-orthogonal angular basis set20 does
not complicate the procedure for eigenvalues calculations. To
solve the symmetric-definite generalized eigenvalue problem,
standard computational programs, such as programs available
in LAPACK library can be applied. Note that this technique
does not consume too much computational resources because
the matrix N = [⟨n12n13n14n23n24n34|k12k13k14k23k24k34⟩] of
the scalar products does not depend on the PES parameters
and could be calculated only once during iterations of a PES
fit. The eigenvalues can be evaluated using the (T + V )N−1

matrix. As a rule, the use of the full symmetry properties allows
one to considerably decrease the dimension of the blocks in
the Hamiltonian matrix. The fast algorithm for 9G symbols71

was used for the matrix elements (17,18) calculations. Details
of calculations together with the application to the methane
molecule are given in Sec. VI .

VI. EXAMPLE OF APPLICATION TO THE CH4
MOLECULE: CONVERGENCE TESTS

Accurate knowledge of methane absorption is necessary
for the study of planetary systems because its spectral features
are used to determine the physical properties of these atmo-
spheres.72–74 This is particularly true for Titan (Saturn’s largest
satellite) whose atmosphere is composed of 98.6% nitrogen
with 1.4% of methane at temperatures ranging between 70 K
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and 200 K, the major part of the opacity in the infrared being
due to methane absorption. Improving the methane spectro-
scopic parameters is essential75–77 for full interpretation of
near infrared observations returned by the ground-based and
orbiting observatories. For this reason, methane is one of the
most important molecular species for several spectroscopic
databases.78–81 However, the methane data are far from be-
ing complete and most of experimental spectra at high en-
ergy range75,82–85 remain unassigned. Knowledge of methane
bands is crucially important for high-temperature astrophys-
ical applications, for interpretation of observed data for ex-
oplanets and brown dwarfs.86 Theoretical line lists for hot
methane have been recently generated: ExoMol linelist in UCL
London (Yurchenko et al.87) and Reims-Tomsk RNT linelist
(Rey et al.51), the latter one being calculated up to 2000 K.
Achieving an accurate basis set convergence is a great chal-
lenge for related variational methods.

The polyad structure of the methane molecule is essen-
tially governed by the quasi coincidence of the stretching
fundamental frequencies with the first overtones of the
bending frequencies ν1(A1) ≈ ν3(F2) ≈ 2ν2(E) ≈ 2ν4(F2).68,69

The polyads Pn are defined by an integer n expressed
in terms of the principal vibrational quantum numbers as
n = 2(v1 + v3) + v2 + v4. Lower polyads: Ground state (GS)
(from microwave to 1000 cm−1), Dyad (1000-2000 cm−1),
Pentad (2000-3400 cm−1), Octad (3400-4900 cm−1) have been
completely assigned, whereas Tetradecad (4900-6300 cm−1)
and Icosad (6300-7900 cm−1) have been partly assigned (Refs.
82, 88–90 and references therein). The similar polyad approach
was used for angular basis construction. It was possible because
of nearly harmonic behavior of one dimensional angular eigen
values EA = (nA + 1/2)ω0. The angular polyads are defined by
an integer nA expressed as the sum of six numbers ni j (3).

In this work, we check the full symmetry vibrational basis
convergence in orthogonal mass-dependent coordinates for
12CH4 molecule using new technique of calculations described
in Secs. III–V. For these convergence tests, we have used the
methane PES in the following form:

V (Si,Q) = V (Si) + ∆V. (19)

Here, Si ∈
�
SA1

1 ; SE
2a,S

E
2b; SF2

3a ,S
F2
3b ,S

F2
3c ; SF2

4a ,S
F2
4b ,S

F2
4c

	
are nine

symmetrized vibrational coordinates defined in Ref. 25 and
V (Si) is the six-order PES expansion described in our previous
work.25 In this study, we include a supplementary term,

∆V = F(2)(Si) · Q + const · Q2, (20)

depending on the redundant coordinate Q which is defined as
follows:

Q = (cos(q12) + cos(q13) + cos(q14) + cos(q23)
+ cos(q24) + cos(q34) + 2) /√6. (21)

This additional totally symmetric coordinate Q satisfies the
condition Q = 0 at the equilibrium nuclear configurations.
Some mathematical aspects related to the introduction of such
supplementary redundant coordinate have been discussed in
Refs. 33, 34, and 59 (and references therein). In this study, we
introduce Q containing terms because this allows obtaining
a similar quality of the PES fit to ab initio points as for the
V (Si) model, but with fewer number of adjusted parameters.
Indeed, using few supplementary terms (20) added to V (6)(Si)
of the order 6, it was possible obtaining somewhat smaller
root-mean-squares (rms) fit deviation than for V (8)(Si) of our
previous work25 developed at order 8. Here, F(2)(Si) is a second
order totally symmetric polynomial containing 10 parameters
only. For this purpose, we have taken exactly the same ab initio
points as described in our previous work,25 slightly extended
in energy with the same ab initio method. The focus of the
present work is the study of the basis convergence properties
with new method of vibrational calculations. To have reliable
conclusions, we have checked that the fitted PES did not
possess spurious minima at least up to 31 000 cm−1 that was
our energy cut-off. The details of the PES fit will be described
elsewhere.

Five calculations with increasing vibrational basis sets de-
noted below as X1,X2, . . . ,X5 were compared. The maximum
order o in angular functions for these basis sets was cho-
sen to be o = 10,o = 11,o = 12,o = 13, and o = 14, corre-
spondingly. The basis energy cut-off was fixed progressively
to 22 000, 23 500, 25 000, 27 000, and 31 000 cm−1. In order
to keep a reasonable size for X5 basis, only selected angular
functions in the range 27 000-31 000 cm−1 (corresponded to
the angular polyad 14) were added to the X4 basis set. We have
checked that including 6 radial functions per each ri bond is
sufficient for a good convergence of vibrational energy levels
up to the Icosad. The dimensions of these five basis sets are
given in Table II. The number of basis functions for set Xn+1 is
about two times bigger than that for the set Xn (except for the
highest basis set X5).

TABLE II. Dimensions of five basis sets which were used for the convergence tests.

Full dimension of the
space of wave functions

Basis sets A1 A2 E F1 F2
D(A1) + D(A2) + 2D(E)

Xn Emax/cm−1 Dimensions D(C) of symmetry blocks + 3D(F1) + 3D(F2)

X1 22 000 2 538 1 713 4 214 5 634 6 445 48 916
X2 23 500 4 120 2 916 6 985 9 518 10 706 81 678
X3 25 000 6 630 4 948 11 518 15 925 17 589 135 156
X4 27 000 13 273 10 549 23 748 33 519 36 221 280 538
X5 31 000a 13 365 10 618 23 909 33 727 36 451 282 335

aOnly selected pure angular functions in the range 27 000-31 000 cm−1 were added to the basis set X5 with respect to X4.
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TABLE III. Basis set convergence: RMS1 deviationa for band centers of six
lower polyads.

Polyad/basis sets X4–X5 X3–X5 X2–X5 X1–X5

P= 0, GS 4×10−6 0.000 26 0.000 738 0.002 80
P= 1, dyad 5.7×10−5 0.001 33 0.003 75 0.012 2
P= 2, pentad 0.000 56 0.006 06 0.022 7 0.070 5
P= 3, octad 0.004 3 0.033 0.12 0.37
P= 4, tetradecad 0.021 0.128 0.36 1.3
P= 5, icosad 0.071 0.497 2.18 5.9

aAll values are in cm−1.

As expected, in variational calculations the energy levels
went down with increasing the basis set size. The root-mean-
squares (RMS) deviations between energy levels computed
using lower basis sets with respect to the largest X5 basis set
are calculated for six lower methane polyads and are given in
Table III (denoted here as RMS1(Xn)). The deviations between
energy levels computed using successive basis sets Xn and Xn+1
are given in Table IV (denoted as RMS2 (X)).

By inspecting the behavior of the RMS1 with increasing
Xn in Table III, we derived an approximate formula RMS(P,N)
= exp(7.2 + 1.6 × P − 1.32 × NA) for the basis set conver-
gence. Here, P is the polyad number (with P = 0 for the GS,
P = 1 for the Dyad, P = 2 for the Pentad, . . . etc) and NA is
number of angular polyads (NA = 10, 11, 12, 13 for X1,X2, . . .)
taken into account.

As both RMS1 and RMS2 deviations have similar trends,
this formula could also be applied for an estimation of RMS2.
This resulted in the convergence precision estimation of
∼0.02 cm−1 for our best calculations (X5) in the tetradecad
region (4800-6300 cm−1). About 30% of the contribution
to the RMS deviation in the tetradecad region comes from
three energy levels of 4ν2. Without these three energy levels,
the RMS estimation for the basis convergence error in the
tetradecad region is about 0.007 cm−1. On the other hand, the
4ν2 sub-bands are very weak,89 an experimental determination
of the corresponding upper state levels being less accurate and
thus less useful for an empirical fit of PES parameters. In the
Octad range, the RMS estimation for the basis convergence
error is 0.005 cm−1 which is comparable with the accuracy of
“experimental” energy levels determination.88 For the Dyad
and Pentad band centres, the basis set convergence approaches
the experimental accuracy. In case of eight sub-bands of the
5ν4 Icosad band system, for which a sufficiently compete
analysis of experimental spectra is available,90 the RMS2
deviation between basis sets X5 and X4 is 0.034 cm−1 only.

TABLE IV. RMS2 deviationa for band centers of six lower polyads between
successive basis sets.

Polyad/basis sets X4–X5 X3–X4 X2–X3 X1–X2

P= 0, GS 4×10−6 2.58×10−4 4.76×10−4 0.002 07
P= 1, dyad 5.7×10−5 0.001 28 0.002 43 0.008 45
P= 2, pentad 5.63×10−04 0.005 58 0.016 74 0.047 86
P= 3, octad 0.0043 0.029 8 0.086 9 0.251 6
P= 4, tetradecad 0.021 0.128 0.361 1.290
P= 5, icosad 0.071 0.440 1.691 3.786
5v4 ∈ icosad 0.034 0.342 1.153 3.456

aAll values are in cm−1.

FIG. 3. Log scale convergence diagram presenting the RMS1 for various
polyads and basis sets. The cutoff Emax/cm−1 for various basis sets is given
in parentheses.

The RMS1 log-scale diagram of the vibration energy level
convergence with increasing basis set for six lower polyads is
given in Fig. 3. Fig. 4 shows the convergence up to the Icosad
for individual levels. The above tests concern the convergence
study with respect to increasing of number of basis functions.
The shape of primitive functions has also an impact on final
results, which was checked by comparing two rather closed
forms of one dimensional functions for pure angular basis.
The corresponding energy level variation was small for four
lower polyads, whereas for Tetradecad and Icosad the differ-
ence becomes more significant. The influence of LMax value
(see paragraph III) was also checked for the angular task with
a simple trial PES of the order 2. The energy levels were
calculated for three values LMax = 23, 25, 27 (basis sets with
cutoff similar to X2 of Table II) that gave smaller discrepancies
for lower polyads than those in Table V.

The important property of the presented algorithm is high
speed of calculation. A comparison of the convergence for
the eigenvalue calculations using the fully symmetrized 6q—
basis described above with our previous calculations that used
partial C3v symmetry for the basis set25 demonstrates that our
new method allows for much faster convergence. The central
processing unit (CPU) time of eigen functions and eigen values

FIG. 4. Convergence of energy levels up to the Icosad range. Basis set cutoff
Emax/cm−1 for various basis sets is given in parentheses.
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TABLE V. Predicted vibrational 12CH4 bands centers for the Icosad range:
Comparison with the results of CT method using independent algebraic
techniques.

This work CT, Ref. 47 CT-TWa Labelsb

6378.04 6379.72 1.68 F2 (0005)
6406.24 6407.55 1.31 A1 (0005)
6429.69 6430.64 0.96 F1 (0005)
6450.65 6451.50 0.85 F2 (0005)
6507.36 6507.77 0.41 E (0005)
6507.59 6508.01 0.43 F2 (0005)
6529.93 6530.34 0.41 F1 (0005)
6539.38 6539.90 0.53 F2 (0005)
6618.66 6620.46 1.81 E (0104)
6639.49 6641.17 1.69 F1 (0104)
6657.19 6658.36 1.18 A1 (0104)
6657.69 6659.14 1.45 F2 (0104)
6681.47 6682.57 1.10 E (0104)
6683.50 6684.68 1.19 A2 (0104)
6718.41 6719.23 0.83 F2 (0104)
6722.17 6722.93 0.77 F1 (0104)
6730.35 6731.07 0.72 E (0104)
6733.60 6734.37 0.78 F2 (0104)
6737.96 6738.59 0.64 A1 (0104)
6746.57 6747.31 0.75 A2 (0104)
6755.50 6756.16 0.67 F1 (0104)
6766.40 6767.13 0.73 E (0104)
6769.36 6769.78 0.42 F2 (1003)
6809.33 6809.68 0.35 A1 (1003)
6822.27 6822.75 0.48 F1 (1003)
6833.30 6833.95 0.66 F2 (1003)
6858.85 6859.85 1.01 F2 (0013)
6862.76 6863.62 0.87 E (0013)
6862.77 6863.52 0.76 F1 (0013)
6863.41 6864.36 0.96 A1 (0013)
6871.16 6872.58 1.42 F2 (0203)
6890.76 6892.14 1.38 F1 (0203)
6897.35 6898.22 0.87 F2 (0013)
6906.52 6907.72 1.20 F2 (0203)
6908.66 6909.33 0.67 E (0013)
6910.28 6910.95 0.67 F2 (0013)
6914.91 6915.81 0.91 F1 (0013)
6918.45 6919.30 0.86 A2 (0013)
6921.54 6922.40 0.86 F1 (0013)
6922.19 6923.22 1.04 A1 (0013)
6924.93 6925.79 0.86 F2 (0013)
6925.83 6926.79 0.96 E (0013)
6938.90 6939.83 0.94 E (0203)
6940.64 6941.78 1.14 A1 (0203)
6941.06 6941.96 0.91 F2 (0203)
6946.10 6946.93 0.83 F1 (0203)
6950.42 6951.20 0.79 F1 (0203)
6962.78 6963.59 0.82 F2 (0203)
6973.01 6973.68 0.67 F1 (0203)
6990.44 6990.94 0.51 E (1102)
6992.92 6993.71 0.79 F2 (0203)
7020.71 7021.27 0.56 F1 (1102)
7024.48 7025.09 0.62 A1 (1102)
7035.21 7035.82 0.61 F2 (1102)
7045.74 7046.47 0.74 E (1102)
7056.58 7057.37 0.80 A2 (1102)
7085.42 7086.10 0.68 F1 (0112)
7085.59 7086.05 0.46 F2 (2001)

TABLE V. (Continued.)

This work CT, Ref. 47 CT-TWa Labelsb

7098.05 7098.65 0.60 F2 (0112)
7107.57 7108.33 0.77 E (0112)
7114.94 7115.88 0.95 A2 (0112)
7116.51 7117.07 0.57 F2 (0112)
7117.94 7118.87 0.94 F1 (0112)
7119.77 7120.91 1.15 E (0302)
7121.52 7122.49 0.97 A1 (0302)
7121.85 7122.72 0.87 F2 (0112)
7131.04 7131.89 0.85 F1 (0112)
7131.25 7132.23 0.98 F2 (0112)
7133.05 7133.73 0.69 A1 (0112)
7134.02 7135.00 0.99 E (0112)
7134.88 7135.72 0.85 A2 (0302)
7139.34 7140.31 0.97 F1 (0112)
7141.68 7142.65 0.97 F2 (0112)
7151.05 7152.08 1.03 F1 (0112)
7155.02 7156.02 1.00 F1 (0302)
7156.96 7156.99 0.03 A1 (1011)
7158.03 7158.21 0.19 F2 (1011)
7164.84 7165.23 0.39 E (1011)
7166.31 7166.68 0.37 F1 (1011)
7169.22 7169.81 0.59 E (0302)
7169.36 7170.13 0.78 F2 (0302)
7177.42 7178.22 0.80 A1 (0302)
7180.93 7181.51 0.59 F1 (0302)
7192.08 7192.77 0.69 F2 (0302)
7192.72 7193.31 0.59 E (0302)
7218.13 7218.84 0.72 E (0302)
7221.91 7222.57 0.66 A2 (0302)
7225.94 7226.61 0.67 F2 (1201)
7246.30 7246.92 0.62 F1 (1201)
7250.55 7251.23 0.68 F2 (0021)
7269.57 7270.24 0.67 F2 (1201)
7294.82 7295.03 0.22 E (2100)
7295.89 7296.56 0.68 F1 (0021)
7296.55 7297.16 0.61 E (0021)
7299.47 7300.27 0.80 A1 (0021)
7299.52 7300.29 0.78 F2 (0021)
7326.57 7326.99 0.42 F1 (0211)
7331.42 7332.07 0.66 F2 (0211)
7337.75 7338.43 0.69 F2 (0021)
7338.27 7338.87 0.61 F1 (0021)
7342.51 7343.43 0.92 A1 (0211)
7342.78 7343.61 0.83 E (0211)
7346.29 7347.03 0.75 F2 (0211)
7346.76 7347.53 0.78 F1 (0211)
7349.33 7350.26 0.94 A2 (0211)
7352.65 7353.50 0.86 E (0211)
7361.20 7362.17 0.98 A1 (0211)
7362.11 7363.02 0.91 E (0211)
7365.73 7366.59 0.87 F2 (0211)
7369.18 7370.11 0.94 F1 (0211)
7373.34 7373.46 0.12 F1 (1110)
7374.80 7375.34 0.55 F2 (1110)
7385.16 7385.85 0.69 F2 (0401)
7395.71 7396.16 0.46 F1 (0401)
7409.60 7409.97 0.37 F2 (0401)
7423.64 7424.02 0.39 F1 (0401)
7437.82 7438.21 0.39 F2 (0401)
7448.24 7448.94 0.71 E (1300)
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TABLE V. (Continued.)

This work CT, Ref. 47 CT-TWa Labelsb

7468.58 7469.08 0.50 A2 (1300)
7468.88 7469.42 0.54 A1 (1300)
7483.93 7484.49 0.57 E (1300)
7510.53 7511.10 0.57 F2 (0120)
7512.53 7513.16 0.63 F1 (0120)
7546.54 7546.92 0.38 A2 (0120)
7552.47 7552.97 0.50 E (0120)
7559.29 7559.86 0.57 A1 (0120)
7570.23 7570.94 0.71 F1 (0310)
7576.52 7577.25 0.74 F2 (0310)
7581.57 7582.32 0.75 F1 (0310)
7585.38 7586.32 0.94 F2 (0310)
7641.52 7642.29 0.78 E (0500)
7644.80 7644.93 0.14 A2 (0500)
7645.69 7646.21 0.53 A1 (0500)
7652.57 7652.45 −0.12 E (0500)

aAll values in cm−1; TW= this work; CT= contact transformation order eight calcula-
tions.47

bVibration state labels include Td symmetry types and principal vibrational quantum
numbers: see Ref. 47 for more details.

calculation for our largest X5 basis was 11 h on one 16-kernels
Xeon node. This is to be compared with the time of previous
calculations,25 which took more than seven days on a compa-
rable node.

The convergence remains better than that of Ref. 25 even
for the basis set with similar number of non-symmetrized basis
functions. The basis set used in Ref. 25 contained 131 524 non-
symmetrized basis functions (see Ref. 25 for details). This is
comparable in size to the set of primitive functions used to build
the X3 basis of the present work. For all considered polyads, the
vibrational calculations using 6A-basis set X3 converge better
than those of Ref. 25. For four- and five-quanta band systems
4ν4 and 5ν4, the 6A-basis converged at least 20 times better
than the C3v basis.25 At the same time, the use of the full Td (M)
symmetry in the present method allows significantly increasing
the size of non-symmetrized set of primitive functions. Finally,
the convergence achieved for the angular 4ν4 and 5ν4 states
was more than 100 better than that with the previously used
C3v basis set.25

Converged variational predictions for methane vibrational
levels have been reported by Nikitin et al.25 up to the Tetra-
decad of 12CH4 and by Rey et al.32,40,51,91 for 12CH4, 12CD4,
and 12CH3D up to 5000 cm−1. Recently, Wang and Carring-
ton31 have published results of carefully converged variational
calculations for several methane isotopologues using an empir-
ically optimized Schwenke-Partridge PES8 with 40 experi-
mental vibrational levels included in the fit. For the Icosad
of 12CH4, Wang and Carrington31 extended the comparison to
10 experimentally analyzed sub-bands centers for which theo-
retical values have been also previously reported by Tyuterev
et al.47 using algebraic method of Contact Transformations
(CTs).

The full Icosad range of methane involving 134 Icosad
sub-bands47 covers the spectral interval up from 6300 to
7660 cm−1. Though first-principles spectra predictions recently
reported for this range for T = 80 K and for room temperature

TABLE VI. Comparison of 12CH4 Icosad band centers with available empir-
ical values.

This work Empa TW-emp Labels

6378.04 6377.53 0.51 F2 (0005)
6406.24 6405.97 0.27 A1 (0005)
6429.69 6429.24 0.45 F1 (0005)
6450.65 6450.06 0.59 F2 (0005)
6507.36 6507.39 −0.03 E (0005)
6507.59 6507.55 0.04 F2 (0005)
6529.93 6529.78 0.15 F1 (0005)
6539.38 6539.18 0.20 F2 (0005)
7158.03 7156.72b 1.31 F2 (1011)
7510.53 7510.97b −0.44 F2 (0120)

aEmpirically derived values from experimental spectra, first eight in Ref. 90, last two
from Refs. 92 and 93. All values are given in cm−1.
bThese values may not be accurate.

conditions T = 296 K are encouraging,40 a detailed analysis
of the complete Icosad range represents a challenge for the
theory. Indeed, the major part of nearly 30 000 experimentally
recorded rovibrational lines83 using laser cavity-ring-down
measurements still remains unassigned. The basis convergence
for the corresponding band centers is an important part of
this issue. Using the results of Tables III and IV, we estimate
the basis set convergence as ∼0.05–0.2 cm−1 for our best X5
calculations in the Icosad range. The corresponding results for
vibrational band centers are given in Table V.

The RMS deviation between our band centers and exper-
imentally known values (see Table VI) for 10 analysed bands
is only 0.53 cm−1. For the entire set of 134 band centers, the
RMS deviation between our variational predictions and the re-
sults obtained with algebraic contact transformation method47

using normal mode representation is 0.81 cm−1. As these two
methods are absolutely independent, this overall agreement
confirms a good convergence of our variational approach.

VII. DISCUSSION AND CONCLUSION

The primary motivation for this study was to prove a good
convergence of new 6A angular basis set and to develop the
corresponding algorithm for the matrix elements calculation.
To do this, we applied a solution of the generalized eigen-
values problem using orthogonal coordinates. The functional
form of the angular basis involves cos(qi j) products. The
symmetrization of this basis functions can be easily achieved
via the projector operators technique. The exact kinetic
energy operator in redundant coordinates33,58 was applied.
This approach permits avoiding the sin(q)−2 singularity (which
was present in polar coordinates55,56) in the vibrational kinetic
energy operator. Many of previously published methods for
nuclear motion calculation for methane-type molecules either
used some approximations for the KEO or did not employ
the full symmetry of the molecule. For example, in Refs. 24,
27, and 28, only 6 of 24 permutations in Td point group were
used that corresponded to a C3v symmetry, whereas 8 from
24 elements of Td point group were used in Ref. 8 In the
present work, full symmetry calculations with the exact KEO
were developed and the efficiency of the algorithm for the
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basis set convergence was demonstrated for vibrational levels
of CH4. With quite moderate dimensions of matrices, this
allowed achieving a good accuracy for the band centers in
the Icosad range (up to 7660 cm−1) that could be useful for
analyses of corresponding complex experimental spectra.83

Fast calculations of multi-dimensional angular integrals are
appropriate for further accuracy improvement via iterative

least-squares fits during empirical PES8,25,31,94 optimiza-
tions. Keeping reasonable dimensionality with converged
results is mandatory for an extension of accurate methane
calculations to higher energy ranges where experimentally
recorded spectra82,85,92 still remain unassigned. This issue
is of major importance for various atmospheric72,77,82 and
astrophysical50,51,84 applications.

APPENDIX: CALCULATION OF FIVE DIMENSIONAL INTEGRALS

In order to calculate the scalar products (5), the expression (4) was used for one-dimensional functions depending on
q23,q24,q34,

⟨n12n13n14n23n24n34|k12k13k14k23k24k34⟩
= (2π)3


l23l
∗
23l24l

∗
24l34l

∗
34

cn23l23ck23l
∗
23

cn24l24ck24l
∗
24

cn34l34ck34l
∗
34


L23L24L34

Kl23l
∗
23L23Kl24l

∗
24L24Kl34l

∗
34L34

×
π

0

π
0

π
0

fn12(q12) fk12(q12) fn13(q13) fk13(q13) fn14(q14) fk14(q14)SL23L24L34(q12,q13,q14)d cos(q12)d cos(q13)d cos(q14),

where Kl1l2L =

√
(2l1+1)(2l2+1)

2L+1 C(l10, l20,L0)2 and

SL23,L24,L34(q12,q13,q14)

=

2π
0

2π
0


m23,m24,m34

YL23m23(q12,0)YL23m23(q13, t23)YL24m24(q12,0)YL24m24(q14, t24)YL34m34(q13,0)YL34m34(q14, t34)dt23dt24.

(A1)

The integral over torsional angles t23 and t24 in right part of (5) results in the factors 2πδ(m23 − m34) and 2πδ(m24 − m34).
This simplifies Eq. (A1) to give

SL23,L24,L34(q12,q13,q14) = (2π)2

m

YL23m23(q12,0)YL23m(q13,0)YL24m(q12,0)YL24m(q14,0)YL34m(q13,0)YL34m(q14,0).

Using the expression (7). one can write the matrix element in the form

⟨n12n13n14n23n24n34|k12k13k14k23k24k34⟩ = (2π)5


l23l23
∗l24l24

∗l34l34
∗
cn23l23ck23l23

∗cn24l24ck24l24
∗cn34l34ck34l34

∗

×


L23L24L34=0

Kl23l23
∗L23Kl24l24

∗L24Kl34l34
∗L34

×
min(L23,L24,L34)

m=0

Jn12,k12,L23,L24,mJn13,k13,L23,L34,mJn14,k14,L24,L34,m. (A2)

Using Jn1,k1,L,0 =

l1l2

cn1l1ck1l2


(2l1+1)(2l2+1)

4π(2L+1) C(l10, l20,L0)2 = 1√
4π

(2L + 1) 
l1l2

cn1l1ck1l2Kl1,l2,L. Equation (6) can be obtained

from (A2).
Taking into account Jn1,k1,L1,0 =

√
4πJn1,k1,L1,0,0, another form for the scalar products (6) could be derived,

⟨n12n13n14n23n24n34|k12k13k14k23k24k34⟩ = (2π)5


L23L24L34

64π3(2L23 + 1)(2L24 + 1)(2L34 + 1)
× Jn23,k23,L23,0,0Jn24,k24,L24,0,0Jn34,k34,L34,0,0

×
min(L23,L24,L34)

m=0

Jn12,k12,L23,L24,mJn13,k13,L23,L34,mJn14,k14,L24,L34,m
∗(2 − δm,0).

Using successfully the relation

Yl1s1(q,0)Yl2s2(q,0) =

LM


(2l1 + 1)(2l2 + 1)

4π(2L + 1) C(l10, l20,L0)C(l1s1, l2s2,LM)YLM(q,0),

(s1 = 0,s2 = 1),64 and the orthogonality of spherical harmonics, we obtain the integrals (8) in right part of (7).
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In order to calculate the off-diagonal matrix elements of KEO, the coefficients (15) are necessary,

JD1
n1,k1,L1,L2, v,± = 2π


l1l2

cn1l1ck1l2

π
0

Yl10(q,0)
(
±


l2(l2 + 1)) Yl2±1(q,0)YL1,ν±1(q,0)YL2,ν(q,0)d cos(q)

= ±

l1l2

cn1l1ck1l2


La


l2(l2 + 1)


(2l1 + 1)(2L1 + 1)

4π(2La + 1)


(2l2 + 1)(2L2 + 1)

4π(2La + 1) C(l10,L10,La0)

×C(l1,0,L1, v ± 1,La, v ± 1)C(l20,L20,La0)C(l2,±1,L2, v,La, v ± 1). (A3)

Taking into account the relations for Clebsch-Gordan coefficient of Ref. 64 (page 210), one has

C(a,−α,b,−β; c,−γ) = (−1)a+b−cC(a,α,b, β; c, γ),
C(l1,0,L1, v ± 1,La, v ± 1) = (−1)l1+L1−LaC(l1,0,L1,−v ∓ 1,La,−v ∓ 1),

C(l2,±1,L2, v,La, v ± 1) = (−1)l2+L2−LaC(l2,∓1,L2,−v,La,−v ∓ 1).
The formula (16) for JD1

n1,k1,L1,L2,−v,±
was derived by taking in account that La was integer and that only even l1 + L1

+ La and l2 + L2 + La gave contributions to Eq. (A3). Using C
�
l1,0,L1,−v ± 1,La,−v ± 1

�
C
�
l2,±1,L2,−v,La,−v ± 1

�

= C (l1,0,L1, v ∓ 1,La, v ∓ 1)C (l2,∓1,L2, v,La, v ∓ 1), one obtains JD1
n1,k1,L1,L2,−v,±

= JD1
n1,k1,L1,L2, v,∓

. To calculate JD1
n1,k1,L1,L2,ν,+

,
it is convenient expressing the derivatives in terms of Ym,1, and in terms of Ym,−1 for JD1

n1,k1,L1,L2,ν,−
. In both cases, after recoupling,

the products Yk, v+1Ym, v+1 or Yk, v−1Ym, v−1 are orthogonal with respect to the first index. Taking into account the formula for first
derivatives of Ym,l

64 and Eq. (A3), one can write the matrix elements for the off-diagonal KEO terms as
n12n13n14n23n24n34

�����
cos(t23) ∂2

∂q12∂q13

�����
k12k13k14k23k24k34


= (2π)5


L23L24L34

4π3/2(2L23 + 1)(2L24 + 1)(2L34 + 1) Jn23,k23,L23,0Jn24,k24,L24,0Jn34,k34,L34,0

×
min(L23,L24,L34)

m=−min(L23,L24,L34)

(
JD1
n12,k12,L23,L24,m,−JD1

n13,k13,L23,L34,m,− + JD1
n12,k12,L23,L24,m,+JD1

n13,k13,L23,L34,m,+

)
Jn14,k14,L24,L34,m.
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