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Abstract

In early works we have proposed an 
approach to numerical modeling of 
elastoplastic deformation in crystals, 
taking into account plastic shear 
appearance near surface and interface and 
step-by-step propagation into the crystal 
volume. In this paper we continue to 
develop this approach as applied to 
simulation of both repeat generation of 
plastic shears by surface and interface 
sources and plasticity in polycrystal with 
slip planes.
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1. Introduction

In our early works [1-5], a new approach 
to the numerical simulation of the 
elastoplastic behavior of solids under load, 
which combines mathematical modeling 
and a simulation technique, was outlined. 
In order to take into account the processes 
occurring at the mesole’vel, use was made 
of a model including the effects of 
interfaces and those of the specimen’s free 
surface on initiation and propagation of 
bands of localized plastic deformation. 
The numerical procedure involves 
application of the finite-difference method
[6] from continuum mechanics and certain 
discrete-modeling techniques [7]. In the 
cited procedure, each of the cells of the 
finite-difference computational grid is 
considered to be a cellular automaton in an 
elastic or plastic state depending on the 
stress and strain experienced by this cell

and its nearest neighbors. A plasticity 
criterion for an individual cell is 
formulated on the basis of experimental 
evidence for the nucleation of plastic 
shears at the surface and interfaces. This 
technique allows plastic flow in different 
elastoplastic media to be adequately 
simulated [1-5].
In this work, the foregoing approach is 
further developed as applied to the 
simulation of meso and macroscale plastic 
deformation in crystals. We treat plastic 
deformation as a repeat process of plastic 
shear generation by internal boundaries 
and surface and plastic flow propagation 
into the volume in step-by-step mode. 
Another advance of the model is 
simulation of plastic deformation in the 
polycrystal with including into 
consideration slip planes.

2. Mathematical approach

A system of differential equations of 
continuum mechanics, including the 
conservation laws [6] and the constitutive 
equations in a relaxation form [2], 
completed by initial and boundary 
conditions is numerically solved by the 
finite-difference method [6]. According to 
this method, area under calculation is 
marked by a computational with 
rectangular cells, and the differential 
equations given for a continuous medium 
are substituted by the finite-difference 
analogs defined for cells and nodes of the 
computational grid.
A main feature of the approach we 
proposed in [1-5] is concerned with a 
formulation of yield criterion taking into 
account surface and interface effects.



Experimental data [8-11] indicate that 
dislocations initially existing in crystals 
are fixed and does not make a contribution 
to plastic deformation. Under continuous 
loading movable dislocations originate at 
the free surface and internal boundaries, 
fcxming bands of localized plastic 
deformation, which propagate as plastic 
fronts from sources into material volume. 
To describe these processes we developed 
a numerical procedure, according to 
which, each cell of the calculation grid is 
considered as a cellular automaton that can 
be either in elastic or plastic state. Plastic 
deformation initially developed on the 
surface and at interfaces is translated from 
cell to cell in a step-by-step fashion.

Figure 1; Polycrystalline testpiece marked 
by canputatifmal grid. Computational 
cells varied in color are o f  different 
mechanical characteristics; x-marked are 
the surface cells; dot-marked are the 
interface cells.

For the processes to be numerically 
described, every cell of the computational 
grid must “feel” not only what structure 
component it refers to, but its location in 
testpiece and state of nearest cells as well. 
For so doing, we developed an algorithm 
that controls elastoplastic behavior of any 
coгrфutational cell, taking into account 
stress-strain state and location of this cell 
and its neighbors as well. Among all the 
computational cells covering the structure 
component we marked those located at the 
surface and interfaces, fig. 1, and 
permitted for plastic shears to be nucleated 
there. Some critical values for the 
coгrфutational cell are the threshold stress 
triggering plastic deformation in it and the 
threshold built-up plastic strain 
responsible for translating the plastic shear 
from this cell to neighboring ones. The

computational cell placed inside the 
structure element can be involved into 
plastic deformation by flow coming from  
the surface or/and interface. Thus, plastic 
shears propagate progressively into the 
crystal from surface/interface nucleation 
sources.
It should be noted that the character of 
localized-deformation propagation is 
controlled by the criteria of the plastic- 
shear translation assumed in the model. By 
selecting material-specific criteria, one can 
simulate different modes of plastic 
deformation development.

3. Simulation of repeat generation of 
plastic shears by surface and interface 
sources

According to experimental evidence [8,9], 
first plastic shears nucleate in surface 
^ains under external stresses about 10  ̂
times lower than the theoretical strength. 
As loading continues, a portion of surface 
grains plastically deformed increases and 
at certain critical level of external stresses 
plastic deformation begins to translate into 
material volume. The dislocation flow, 
propagating from the surface source and 
involving elastically deformed regions into 
plastic yielding, results in local stress 
relaxation. As external loading continues, 
stress applied to surface sources increases 
and once it reaches the critical value, the 
next portion of dislocations starts to move 
as a front of localized plastic deformation 
from the source into the crystal volume. 
Under continuous loading this process 
periodically repeats.
To simulate numerically this process in [4] 
we have made an advance of the yield 
criterion developed in [1]. Let us consider 
an act of plastic shear translation by the 
example of i-th cell. It is assumed that 
plastic shears in the i-th cell build up until 
a critical value of plastic strain has been 
reached. Then plastic shears translate to 
the neighboring cell(s) and plastic 
deformation of the i-th cell stops to 
develcq) until the next plastic shears has 
come to it from a source. Experimental 
data [8-11] indicate that an important 
condition for plastic deformation to 
propagate is presence of stress and 
dislocation density gradients. In this 
connection we formulate a criterion of 
plastic yielding as following: a material 
local area (computational cell) is able to



become plastic, provided that stress and 
strain gradients between it and 
neighboring particle(s) have reached the 
critical values.
Together with the elastic constants, we 
introduce into consideration the limit of 
relaxation o„ up to which the stress can 
relax under the active load. We assumed 
for this value to be constant for all cells 
independently on their position in the 
calculation area. Parameters, which 
depend on the cell position in calculation 
area, are the stress of plastic shear 
generation Og the „excessive" plastic 
deformation e* and the effective stress 
gradient o*.
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Figure 2: Plastic deformation pattern (a) 
and time-dependent average stress (b) 
calculated from the model o f repeat 
generation (^plastic shears

Calculation results presented in this 
section were performed for a macroscopic 
testpiece subjected to tension at strain rate 
about 10 /s. Elastic modules, density and 
constants for barotropic equation of state 
correspond to the characteristics of 
aluminum alloy A16061-T6 [2]. Interfaces 
were not included into consideration and 
surfaces of the testpiece served as sources 
of plastic shears. Values of the critical 
parameters were preset as follows: 
E*=0.1%, Og=Or=30 MPa, o*=300 MPa. 
In this case the critical values of excessive 
strain and stress gradient are the basic 
parameters, which determine the nature of 
elastic-plastic behavior.
As boundary condition we set on the both 
opposite sides of test pieces particle 
velocities, which correspond to strain rate

of 10^/s (Fig. 2a). These sides could freely 
move in the direction perpendicular to the 
tension. Conditions on the other two 
boundaries imitated free surfaces. Such a 
formulation of boundary conditions 
excepts influence of the grips as 
macroscopic stress concentrators.
Plastic shears originated simultaneously 
on both opposite surfaces, approximately 
in the middle of the area under calculation. 
As external load increases, localized shear 
bands begin to prq)agate into the testpiece 
volume perpendicular to tension direction. 
The bands move in a pulse fashion 
controlled by both defect generation by 
surface sources and heterogeneous stress- 
strain state due to an interaction between 
elastically and plastically defcmied 
regions. Such a behavior results in 
serrations in time-dependent stress 
integrated over the computational area, 
fig. 2b. The first peak of highest amplitude 
corresponds to formation and propagation 
of the first band of localized plastic 
deformation. The high level of stresses is 
attributed to stress increasing in local 
regions elastically deformed. That, in turn, 
leads to increasing in both stress gradients 
through the shear band fronts and value of 
the excessive plastic strain. Thus, as 
plastic deformation propagates into the 
testpiece volume, the criterion of plastic 
shear translation more easily fulfills that 
leads to increasing in speed of shear band 
propagation. As a result there is an 
intensive stress relaxation on the time- 
dependant stress curve. Fig. 2b.
Under continuous loading, plastic 
deformation covers all the cross-section 
and then localizes (fig. 2a). However, 
generation and propagation of plastic 
shears continue to affect the shape of 
stress-strain curve. It is interesting to note 
that a curve, which could be circumscribed 
about peaks of the time-dependent stresses 
in fig. 2b, is the pulse-shaped either. 
Period of the pulses approximately 
corresponds to time of shear band 
propagation through the testpiece cross- 
section, starting from its generation by the 
surface source.

4. Simulation of plastic deformation in 
polycrystal with considering for slip 
planes
In this section we present another advance 
of the model [1-5] as applied to simulation 
of plastic deformation in polycrystalline



material with including into consideration 
slip planes. In this case the yield criterion 
controls not only plastic shear appearance 
and development in local areas but also 
their translation in certain direction. It is 
evident that in general case of 
polycrystalline material containing a reach 
variety of slip planes arbitrary oriented it 
is necessary to introduce into the model a 
tensor of critical parameters. That is the 
critical values of stresses and plastic 
strains will depend on slip plane 
orientation relative to direction of external 
loading.

Figure 3: PolyaystalUne testpiece with 
slip planes.

In this paper we simulate a simplest case 
of several grains (fig. 3), every of which 
has the only slip plane oriented at 0° (/ and 
У grains), 90°(// grain) and 45°(/// and 
to load direction. According to the basic 
model [1], plastic shears can nucleate at 
the intergrain boundaries and then 
translate from the boundary sources into 
the grains. Direction of plastic shear 
propagation is preset for each of grains by 
a special numerical procedure simulating 
slip planes.
Computational results presented in fig. 4 
as patterns of plastic strain rate, plastic 
deformation and velocity vectors 
demonstrate formation of mesoscale band 
of localized plastic deformation in the 
testpiece (fig. 3).
The patterns of plastic strain rates (fig. 4a) 
indicate that at the initial stage of loading 
plastic shears appear along all the 
intergrain boundaries, and this plastic 
deformation is localized in character. 
Local areas exhibiting intensive plastic 
deformation alternate with those, in which

plastic strain rate is equal to zero. The 
reason is that plastic shears appearing in 
local zones of grain boundary result in 
stress relaxation, which partially unload 
neighboring areas elastically deformed.

Under continuous loading the 
plastic shears begin to propagate from the 
boundary sources into grain volumes in 
directions preset (refer to fig. 3). Note that 
character of plastic shear development is 
mainly controlled by macroscopic loading 
conditions. Individual plastic shears 
propagating from different boundary 
sources in preset directions, form, as a 
result, a mesoscale band of localized 
plastic deformatiqp, orientation of which 
coincides with a vector of maximum 
tangential stresses.

Grain II, in which plastic shears 
could be only translated perpendicular to 
the vector of external force, remains 
elastically deformed. It is interesting to 
mark that other grains more favorably 
oriented to the load direction are not 
entirely involved into the plastic yielding. 
That is an evolution of individual plastic 
shears is mainly focused on generation of 
the mesoscopic band. Once the meso band 
of localized plastic deformation has 
formed, further plastic yielding localizes 
there.

A correlation between velocity 
fields (fig. 4c) and plastic deformation 
patterns (fig. 4b) has revealed some 
interesting phenomena relative to 
evolution of intergrain boundaries. Pay 
attention to the grain I located in top of the 
crystal, fig. 3. At the initial stage of 
loading plastic shears propagate from the 
upper boundary parallel to tension 
direction and form a narrow band of 
localized plastic deformation, separating 
the grain into two parts, which further 
behave themselves as individual grains. 
Similar pattern is observed as mesoscopic 
shear band forms and separates the grain 
III into two parts shearing each to other 
under continues loading. We believe that 
such processes are similar to appearance 
of new intergrain boundaries.
It is interesting to consider features of 
plastic yielding near interface between 
grains HI and V. Plastic shears generated 
by the boundary are translated from the 
interface sources as a front of plastic 
deformation. As the front propagates into 
the grain V, the intergrain boundary stops
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Figure 4. Evolution o f plastic strain rate (1ф) and plastic deformation (middle) patterns
arid velocity fields (right).



to generate plaistic shears and the front 
serves as a new source of intensive plastic 
deformation (see figs. 4a and -b). 
Referring to the last pictures in fig. 4, the 
old inteigrain boundary blurs and 
practically disappears and the plastic shear 
front plays a role of interface between two 
fragments newly formed, which move 
each to other as separate parts. This 
process is similar to migration of the 
intergrain boundary.

4. Conclusion

This paper continues a number of works 
[1-5] devoted to modeling of elastoplastic 
behavior, taking into account generation of 
plastic shears by surface/interface sources 
and step-by-step propagation of plastic 
deformation. The advantages of the model 
we have made are relative to simulation of 
both repeat generation of shears by 
sources and plasticity development in 
crystal with slip planes.
Cdculations have been performed for a 
model material, so that a quantitative 
comparison with experimental data is 
impossible to be done. It should be noted, 
however, that computational results have 
qualitatively described some phenomena 
experimentally observed. They are 
formation of mesocsale shear bands [8, 
10], serrations in the stress-strain curve
11, 12], and evolution of intergrain 
X)undaries [8-10].
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