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Abstract. The problem of Markov-modulated Poisson process intensi-
ties estimating is studied. A new approach based on sequential change
point detection method is proposed to determine switching points of the
flow parameter. Both the intensities of the controlling Markovian chain
and the intensities of the flow of events are estimated. The results of
simulation are presented.
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1 Introduction

Markovian arrival processes form a powerful class of stochastic processes intro-
duced in [1,2] and thereafter they are widely used now as models for input flows
to queueing systems where the rate of the arrival of customers depends on some
external factors. MAP is a counting process whose arrival rate is governed by a
continuous-time Markov chain.

Queueing systems with jump intensity of customer arrivals is one of the exam-
ples of applying MAP. In such models the intensity is supposed to be piecewise
constant function depended on the state of random environment. Particulary,
this model can be used as a model of a call-center or http-server customers (see
[3,4]), healthcare systems (see [5]), etc. Usually the stationary probabilities of
system states, sojourn and waiting time distributions, mean length of the queue
and other parameters are investigated. To solve such problems there is a need
to estimate parameters of customer arrivals.
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The typical property of observing time series derived from a MAP is that only
the arrivals but not the states of the controlling Markovian chain can be seen.
The problem is to estimate both the controlling Markovian chain parameters
and parameters of the intensity of the arrival process. A survey of estimation
methods is given in [6 ]. Its emphasis is on maximum likelihood estimation and
its implementation via the E M (expectation-maximization) algorithm. The E M
iteration alternates between performing an expectation (E ) step, which creates
a function for the expectation of the log-likelihood evaluated using the current
estimator for the parameters, and a maximization (M) step, which computes
parameters maximiz ing the expected log-likelihood found on the E step. These
parameter estimators are then used to determine the distribution of the latent
variables in the next E step. This approach is developed for diff erent conditions
in [7 ,8], etc. The survey [9 ] with a huge bibliography is focused on matching
moment method which is also widely used for parameter estimation in MAP
because of its simplicity. This method is used, for example, in [10]. Bayesian
approach based on the a posteriori probability of the controlling chain state is
developed in [11]. It provides estimators with the minimum mean square error.

In this paper we propose a diff erent approach. W e use the sequential analysis
methods for parameter estimation in queueing system with jump intensity of
the arrival process. The key idea is to consider time intervals between arrivals
as a stochastic process which parameters change in random points. F irst we are
going to detect these points using sequential change point detection methods.
Then we are going to estimate the intensity parameters under the assumption
that the intensity is constant between detected change points.

The problem of sequential change point detection can be formulated as fol-
lows. A stochastic process is observed. Several parameters of the process change
in random point. The problem is to detect this change point when the process is
observed online. Sequential methods include a special stopping rule that deter-
mines a stopping time. At this instant a decision on change point can be made.
There are two types of errors typical for sequential change point detection pro-
cedures: false alarm, when one makes a decision that change is occurred before
a change point (type 1 error), and delay, when the change is not detected (type
2 error).

The C USUM (or cumulative sum control chart) algorithm was proposed by
E .S. Page in [12] and since then it is widely used for online detecting changes in
parameters for diff erent time series both with independent and with dependent
observations, even for autoregressive type processes. Usually the change in the
mean is considered. As far as a change of the state of the controlling Markovian
chain causes a jump of the mean length of an interval between arrivals hence
the lengths of intervals form a sequence of dependent random variables and it
is possible to apply the C USUM algorithm to this situation. G . L orden in [14]
established that the C USUM procedure is optimal in a sense that it provides
minimum mean time of delay in change detecting when mean time between false
alarms is fi xed. In this paper we use the C USUM procedure to determine intervals
of the constant intensity of the observed flow of events. After that parameter
estimators are constructed.
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2 Prob lem Statement

W e consider a Markov-modulated poisson process, i.e. a flow of events, controlled
by a Markovian chain with a continuous time. The chain has two states, transi-
tion between the states happens at random instants. The time of sojourn of the
chain in the i-th state is exponentially distributed with the parameter αi, where
i = 1, 2.

The flow of events has the exponential distribution with the intensity para-
meter λ1 or λ2 subject to the state of the Marcovian chain. The parameters of
the system λ1, λ2 and the instants of switching between the states are supposed
to be unknown. W e also suppose that λi � αi, i.e., changes of the controlling
chain states occur more rarely than observed events. Thus some events occur
between switchings of the controlling chain states. This situation is typical for
real processes such as call-center or http-server because one of the states can be
interpreted as a “ usual” state of the system and another state as a “ peak-time”
state and during each of these states several customers are supposed to arrive.
Besides processes having this property are often used for simulation study of
algorithms for processes with jump intensity of customer arrivals (for example,
see [8,13]).

The sequence of instants of arriving events is observed. The problem is to
estimate the parameters λ1, λ2, α1, α2.

3 Algorithm 1

L et the process {ti}i≥0 be the sequence of the instants when events of the
observed flow occur. C onsider the process {τi}i≥1, where τi = ti − ti−1 is the
length of the i-th interval between arriving events in the observed flow as it is
shown at the diagram (F ig. 1).

F ig . 1. Construction of the sequence {τi}.

If the controlling chain is in the l-th state then the mean length between
events is equal to 1/λl. So at the fi rst stage of our procedure we try to detect
the instants of the chain transition from one state to another as the instants of
change in the mean of the process {τi}i≥1 using C USUM procedures.

L et the parameters λ1, λ2 satisfy the condition

0 < λ2 < λ1;
1

λ2
−

1

λ1
> ∆,

(1)
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where ∆ is a certain known positive parameter. C hoose then an integer para-
meter k > 1 describing the memory depth. The idea is to compare the values
τi and τi−k. If there are no changes of the controlling chain state within the
interval [ti−k−1, ti] then the values τi and τi−k have the identical exponential
distribution with the mean 1/λ1 or 1/λ2. If the chain state changes within the
interval [ti−k, ti−1] then the expectations of the values τi and τi−k are diff erent.

O n one hand the parameter k should allow us to detect changes with minimal
delay, on the other hand it should not be too large to contain more than one
chain state change within the interval [ti−k, ti−1]. F urther we consider the choice
of the parameter k in detail.

As the initial state of the chain is unknown, we shall consider two C USUM
procedures simultaneously. The fi rst procedure is set up to detect increase in
the mean of the process and hence, decrease of the intensity, and the second
procedure is set up to detect decrease in the mean and hence, increase of the
intensity. F or the fi rst procedure we introduce the sequence of the statistics

z
(1)
i = τi − τi−k −∆, i > k. (2)

F or the second procedure we introduce the sequence of the statistics

z
(2)
i = τi−k − τi −∆, i > k. (3)

This statistics are calculated at the instant ti.
C onsider then four hypothesis concerning the state of the controlling chain:

– H1(ti−k−1, ti) – the intensity of the arrival process on the interval [ti−k−1, ti]
is constant and equal to λ1;

– H2(ti−k−1, ti) – the intensity of the arrival process on the interval [ti−k−1, ti]
is constant and equal to λ2;

– H1,2(ti−k, ti−1) – the intensity of the arrival process on the interval [ti−k, ti−1]
changed once from λ1 to λ2;

– H2,1(ti−k, ti−1) – the intensity of the arrival process on the interval [ti−k, ti−1]
changed once from λ2 to λ1.

Theorem 1. If the parameter ∆ satisfies condition (1) then the statistics z
(j)
i ,

j ∈ {1, 2} (2), (3) have the following properties:

E
[

z
(1)
i

∣

∣

∣
Hl(ti−k−1, ti)

]

< 0, l = 1, 2;

E
[

z
(1)
i

∣

∣

∣
H1,2(ti−k, ti−1)

]

> 0;

E
[

z
(2)
i

∣

∣

∣
Hl(ti−k−1, ti)

]

< 0, l = 1, 2;

E
[

z
(2)
i

∣

∣

∣
H2,1(ti−k, ti−1)

]

> 0.

(4)
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P roof. Using (1) one obtains

E
[

z
(1)
i

∣

∣

∣
Hl(ti−k−1, ti)

]

= E [τi − τi−k −∆|Hl(ti−k−1, ti)]

=
1

λl

−
1

λl

−∆ < 0;

E
[

z
(1)
i

∣

∣

∣
H1,2(ti−k, ti−1)

]

= E [τi − τi−k −∆|H1,2(ti−k, ti−1)]

=
1

λ2
−

1

λ1
−∆ > 0;

E
[

z
(2)
i

∣

∣

∣
Hl(ti−k−1, ti)

]

= E [τi−k − τi −∆|Hl(ti−k−1, ti)]

=
1

λl

−
1

λl

−∆ < 0;

E
[

z
(2)
i

∣

∣

∣
H2,1(ti−k, ti−1)

]

= E [τi−k − τi −∆|H2,1(ti−k, ti−1)]

=
1

λ2
−

1

λ1
−∆ > 0.

So the means of statistics (2), (3) change from negative value to positive when
the intensity of the process changes. These properties determine the construc-
tion of the procedures. W e introduce positive values h1 and h2 as the procedures

thresholds and construct the cumulative sums S
(1)
i and S

(2)
i which are recalcu-

lated at the instants ti. F or the fi rst procedure it is defi ned as follows

S
(1)
0 = ∆;

S
(1)
i = max{0, S

(1)
i−1 + z

(1)
i }, i > k;

S
(1)
i = 0, if S

(1)
i ≥ h1.

(5)

F or the second procedure the cumulative sum is defi ned as follows

S
(2)
0 = ∆;

S
(2)
i = max{0, S

(2)
i−1 + z

(2)
i }, i > k;

S
(2)
i = 0, if S

(2)
i ≥ h2.

(6 )

If the cumulative sum S
(1)
i reaches the threshold h1 then the decision is made that

the mean time between events increased and hence the intensity of the process

decreased, i.e., it changed from λ1 to λ2. If the cumulative sum S
(2)
i reaches

the threshold h2 then the decision is made that the mean time between events
decreased and hence the intensity of the process increased, i.e., it changed from
λ2 to λ1. O nce a sum reaches threshold it is reset to zero and the corresponding
procedure is restarted.

L et the sequence
{

σ
(l)
m

}

m≥0
be the sequence of the instants when the cumu-

lative sum in the l-th procedure reaches the threshold hl, i.e.

σ
(l)
0 = 0;

σ
(l)
m = min

{

tj > σ
(l)
m−1 : S

(l)
j ≥ hl

}

.
(7 )
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C onsider a sequence
{

n
(l)
i

}

i≥0
associated with the sequence

{

σ
(l)
m

}

m≥0
as follows

n
(l)
0 = 0;

n
(l)
m = max

{

tj ≤ σ
(l)
m : S

(l)
j > 0, S

(l)
j−1 = 0

}

.
(8)

Thus the instant n
(l)
m is the fi rst instant when the cumulative sum becomes posi-

tive to reach then the threshold. The construction of the sequences are illustrated
at F ig. 2. The instants of occurrences ti are marked by vertical dotted lines. At

the diagram above an example of the sum S
(1)
j behavior is presented and the

instants σ
(1)
m and n

(1)
m are marked out. At the diagram in the middle a similar

example for the sum S
(2)
j is shown.

W e consider the instants n
(1)
i as the estimators for the instants when the

mean length between the events increases. They are pointed by up arrows at the

diagram below. In turn the instants n
(2)
i are considered as the estimators for the

instants when the mean length between the events increases. They are pointed
by down arrows at the diagram below.

F ig . 2. Construction of the sequences
{

σ
(l)
m

}

,
{

n
(l)
m

}

.

In connection with sequential change point detection procedures two type of
errors are considered: the false alarm and the skip of the change. A false alarm
occurs when one of the cumulative sums reaches the corresponding threshold in



CUSUM Algorithms for Parameter E stimation 281

the case of the constant intensity of the arrival process. A skip of the change
occurs when the change of the parameter occurs but the corresponding cumula-
tive sum does not reach its threshold.

W hen implementing the procedure it is possible to encounter false alarm
situations. W e shall record all the exceeding the thresholds by either fi rst or the
second cumulative sum. If the same sum reaches threshold several times in a
row, we only record the fi rst occurrence.

Thus the procedure for estimation of instants of intensity switching is
described as follows. C alculate two cumulative sums given by E qs. (5), (6 ). Then

construct the sequences
{

σ
(l)
m

}

,
{

n
(l)
m

}

defi ned by E qs. (7 ), (8). L et n
(1)
1 < n

(2)
1 ,

then the initial value of the intensity is equal to λ1. D efi ne the sequence

q0 = 0;

q2l+ 1 = min
{

n
(1)
i : n

(1)
i > q2l

}

, l ≥ 0;

q2l+ 2 = min
{

n
(2)
i : n

(2)
i > q2l+ 1

}

, l ≥ 0.

(9 )

The values q1, q2, . . . are calculated using formula (9 ) while the set
{

n
(2)
i : n

(1)
i > q2l

}

6= ∅;
{

n
(1)
i : n

(2)
i > q2l+ 1

}

6= ∅.

If
{

n
(2)
i : n

(1)
i > q2l

}

= ∅
( {

n
(1)
i : n

(2)
i > q2l+ 1

}

= ∅
)

then we set q2l+ 1 = N (q2l+ 2 = N), where N is the instant of the last occurrence.
H ere the odd instants q2l+ 1 are the estimators of the instants when the intensity
changes from λ1 to λ2, and the even instants q2l+ 2 are the estimators of the
instants when the intensity changes from λ2 to λ1.

An example of the sequence construction is illustrated at F ig. 3. The
sequences nl

i are shown at the diagram above. The instants of switching the
controlling chain state from 1 to 2 are pointed by up arrows, the instants of
switching the controlling chain state from 2 to 1 are pointed by down arrows at
the diagram below. The intervals are marked by the numbers of the states of the
controlling chain.

D efi ne estimators for parameters λ1, λ2

λ̂1 =
N1

T1
, λ̂2 =

N2

T2
, (10)

where N1 is the total number of events occurred at the intervals [q2l, q2l+ 1],
q2l+ 1 ≤ N and T1 is the total length of these intervals; N2 is the total number
of events occurred at the intervals [q2l+ 1, q2l+ 2], q2l+ 2 ≤ N and T2 is the total
length of these intervals; l ≥ 0 (F ig. 3).

D efi ne estimators for parameters α1, α2

α̂1 =
L1

T1
, α̂2 =

L2

T2
, (11)
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F ig . 3 . Construction of the sequences {qm}.

where L1 is the total number of the switching points q2l+ 1 ≤ N , L2 is the total
number of the switching points q2l+ 2 ≤ N , l ≥ 0.

If n
(2)
1 < n

(1)
1 , then the initial value of the intensity is equal to λ2 the proce-

dure is similar. D efi ne the sequence

q0 = 0;

q2l+ 1 = min
{

n
(2)
i : n

(1)
i > q2l

}

, l ≥ 0;

q2l+ 2 = min
{

n
(1)
i : n

(2)
i > q2l+ 1

}

, l ≥ 0.

(12)

H ere the odd instants q2l+ 1 are the estimators of the instants when the intensity
changes from λ2 to λ1, and the even instants q2l+ 2 are the estimators of the
instants when the intensity changes from λ1 to λ2. E stimators for the parameters
λ1, λ2 are calculated using formula (10), where N1 is the total number of events
occurred at the intervals [q2l+ 1, q2l+ 2] and T1 is the total length of these intervals;
N2 is the total number of events occurred at the intervals [q2l, q2l+ 1] and T2 is
the total length of these intervals; l ≥ 0. E stimators for the parameters α1, α2

are calculated using formula (11), where L1 is the total number of the switching
points q2l+ 2 < N , L2 is the total number of the switching points q2l+ 1 < N ,
l ≥ 0.

4 Choice of the Algorithm Parameters

In this section the problem of choice of the parameters k, ∆ and hl is discussed.
W e suppose that changes of the controlling chain states occur more rarely

than observed events. F irst, we consider the memory depth parameter k. L et n be
a lower bound of the mean number of events between switchings of the controlling
chain states. F or the model under consideration it means that nαi ≤ λi. It
means that it is not eff ective to choose the memory depth k ≥ n or close to n
because in this case there can be many situations when more than one chain state

change occur within the interval [ti−k, ti−1]. O n the other hand, the sum S
(l)
i

should reach the corresponding threshold hi after switching of the controlling

chain state, i.e. some statistics z
(l)
i should be positive. It follows from these

considerations and numerical calculations that a good choice of the parameter
k is



CUSUM Algorithms for Parameter E stimation 283

k ≈
n

2
. (13)

Then, turn to the parameters ∆ and hl. C ondition (1) provides properties
(4). The properties make it possible to construct C USUM procedures. Thus the
parameter ∆ can be chosen from the interval (0, 1/λ2 − 1/λ1), i.e., it is positive
and does not exceed the diff erence between the mean lengths of the intervals τi

when the controlling chain is in diff erent states. L et this diff erence be not less
than some d > 0:

1

λ2
−

1

λ1
≥ d. (14)

The parameter ∆ and hl aff ects the characteristics of the C USUM procedure,
i.e., the mean delay and the mean time between false alarms (see [14]). If the
parameter hl is fi xed then increase of the parameter ∆ results in decrease of

the mean of the statistic z
(l)
i and hence the sum Si(l) reaches the threshold hl

more slowly and hence, a switching of the controlling chain state from the state
l can be skipped. C onsequently, the number of false detection of the controlling
chain state switchings decreases but on the other hand the number of skips of
the controlling chain state switchings increases. If the parameter ∆ is fi xed then
increase of the parameter hl results in the same eff ect. Vice versa, decrease of
the parameter ∆ or the parameter hl while the other parameter is fi xed result in
increase of the number of false detection of the controlling chain state switchings
and decrease of the number of skips of the controlling chain state switchings.

If there are no additional conditions then the procedure is considered to be
optimal when the probabilities of the false detection and the skip of the change
are equal. It can be guaranteed by the following conditions

E
[

z
(1)
i

∣

∣

∣
Hl(ti−k−1, ti)

]

= −E
[

z
(1)
i

∣

∣

∣
H1,2(ti−k, ti−1)

]

;

E
[

z
(2)
i

∣

∣

∣
Hl(ti−k−1, ti)

]

= −E
[

z
(2)
i

∣

∣

∣
H2,1(ti−k, ti−1)

]

.
(15)

It results in the equations (see Theorem 1)

−∆ = −
1

λ2
+

1

λ1
+ ∆.

H ence the best choice of the parameter ∆ is

∆ =
d

2
(16 )

where d is defi ned by the E q. (14), i.e., ∆ is the half of the diff erence between
the mean lengths of the intervals τi when the controlling chain is in diff erent
states. If the diff erence is unknown then one has to choose as d a lower bound
of the diff erence. In other words, one has to defi ne the minimal diff erence that
should be detected by the algorithm.

C onsider now the parameter hl. If the memory depth is equal to k then the

sum S
(l)
i to reach the threshold hl in not more then k steps (while Ez

(l)
i > 0).
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If the parameter ∆ satisfi es the condition (16 ) then using (14) and Theorem 1
one obtains

E
[

z
(1)
i

∣

∣

∣
H1,2(ti−k, ti−1)

]

=
1

λ2
−

1

λ1
−∆ ≥ d−

d

2
=

d

2
;

E
[

z
(2)
i

∣

∣

∣
H2,1(ti−k, ti−1)

]

=
1

λ2
−

1

λ1
−∆ ≥ d−

d

2
=

d

2
.

So if the sum S
(l)
i starts from zero it reaches the threshold hl on the average in

2hl/d steps. H ence it is supposed to choose the threshold hl from the condition
2hl/d < k, i.e.

hl <
kd

2
≈

nd

4
. (17 )

N ote that the parameter hl should not be signifi cantly than its upper bound
because it can increase the number of false alarms.

In general the choice of the C USUM parameters is a rather diffi cult problem
requiring further theoretical investigations. N evertheless, numerical simulations
demonstrated a good quality of the proposed algorithm with the parameters
(13), (16 ), (17 ).

5 Algorithm 2

The second algorithm is very similar to the fi rst except of the defi nition of the

statistics z
(l)
i .

L et we have a certain period of observation [0, T ] and N is the number of
occurrences at the interval. F irst, we calculate the mean of the length between
occurrences using the usual formula

τ̂ =
T

N
. (18)

The value τ̂ exceeds the mean length of the interval τi when the controlling chain
is in the fi rst state, and vice versa, the mean length of the interval τi exceeds
the value τ̂ when the controlling chain is in the second state, i.e.

1

λ1
< Eτ̂ <

1

λ2
. (19 )

Using this property we can construct statistics as follows. F or the fi rst procedure
we introduce the sequence of the statistics

z
(1)
i = τi − τ̂ . (20)

F or the second procedure we introduce the sequence of the statistics

z
(2)
i = −τi + τ̂ . (21)

C onsider then two hypothesis concerning the state of the controlling chain:
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– H1(ti−1, ti) – the intensity of the arrival process on the interval [ti−1, ti] is
constant and equal to λ1;

– H2(ti−1, ti) – the intensity of the arrival process on the interval [ti−1, ti] is
constant and equal to λ2;

Theorem 2 . T he statistics z
(j)
i , j ∈ {1, 2} (20 ), (21) have the following prop-

erties:

E
[

z
(1)
i

∣

∣

∣
H1(ti−1, ti)

]

< 0;

E
[

z
(1)
i

∣

∣

∣
H2(ti−1, ti)

]

> 0;

E
[

z
(2)
i

∣

∣

∣
H1(ti−1, ti)

]

> 0;

E
[

z
(2)
i

∣

∣

∣
H2(ti−1, ti)

]

< 0.

(22)

P roof. Using (19 ) one obtains

E
[

z
(1)
i

∣

∣

∣
H1(ti−1, ti)

]

= E [τi − τ̂ |H1(ti−1, ti)] =
1

λ1
− Eτ̂ < 0;

E
[

z
(1)
i

∣

∣

∣
H2(ti−1, ti)

]

= E [τi − τ̂ |H2(ti−1, ti)] =
1

λ2
− Eτ̂ > 0;

E
[

z
(2)
i

∣

∣

∣
H1(ti−1, ti)

]

= E [−τi + τ̂ |Hl(ti−1, ti)] = −
1

λ1
+ Eτ̂ > 0;

E
[

z
(2)
i

∣

∣

∣
H2(ti−1, ti)

]

= E [−τi + τ̂ |H2(ti−1, ti)] = −
1

λ2
+ Eτ̂ < 0.

So one can see that the statistics Z
(l)
i change their means when the intensity

of the arrival process changes. Using in Algorithm 1 statistics (20), (21) instead
of (2), (3) we obtain Algorithm 2.

C onsider now the choice of the parameters hl. If n is a lower bound of the
mean number of events between switchings of the controlling chain states then

the sum S
(l)
i should reach the threshold hl on the average less then in n steps,

for example, in n/2 steps. F or Algorithm 2 we can not estimate the mean of the

statistic E
[

z
(1)
i

∣

∣

∣
H2(ti−1, ti)

]

if the parameters αi are unknown because we can

not calculate Eτ̂ . H ence, we use a rather crude estimator

E
[

z
(1)
i

∣

∣

∣
H2(ti−1, ti)

]

≈
d

2
;

E
[

z
(2)
i

∣

∣

∣
H1(ti−1, ti)

]

≈
d

2
.

So we come to the inequality

hl <
nd

4
(23)

which is the same as in Algorithm 1.
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6 N umerical Simulation

The model for the considered flow and the suggested algorithms was implemented
with varying parameters. The results are presented in the tables below (Tables 1
and 2 ).

T able 1. The results of the simulation for Algorithm 1.

T λ1 λ2 α1 α2 h1 h2 k ∆ λ̂1 λ̂2 α̂1 α̂2

1000 5 1 0,4 0,2 1 1 5 0,2 4,27 50 1,09 51 0,2458 0,1641

1000 5 1 0,4 0,2 1,8 1,8 5 0,2 3,8424 1,0621 0,1687 0,1226

1000 5 1 0,4 0,2 1,8 1,8 8 0,2 4,3561 1,1852 0,1686 0,1180

H ere we use the following notations:

– T is the time of simulation;
– λ1 and λ2 are the intensities of the arrival process in the fi rst and the second

state, correspondingly;
– α1 and α2 are the switching intensities from the fi rst to the second state and

vise versa, correspondingly;
– h1 and h2 are the C USUM thresholds;
– k is the parameter of the algorithm, the diff erence between the numbers of

the compared intervals at the statistics (2), (3);
– ∆ is the parameter of the algorithm;
– λ̂1 and λ̂2 are the estimators of the parameters λ1 and λ2;
– α̂1 and α̂2 are the estimators of the parameters α1 and α2.

T able 2. The results of the simulation for Algorithm 2.

T λ1 λ2 α1 α2 h1 h2 τ̂ λ̂1 λ̂2 α̂1 α̂2

1000 5 1 0,3 0,2 0,5 0,5 0,3883 5,2336 1,227 6 0,322 0,17 32

1000 5 1 0,3 0,2 0,8 0,8 0,39 29 5,059 1 1,237 0 0,257 3 0,1322

1000 5 1 0,3 0,2 1 1 0,4355 4,7 47 5 1,19 7 2 0,2587 0,1144

1000 5 1 0,1 0,2 0,5 0,5 0,2668 5,6804 2,0053 0,29 12 0,2604

1000 5 1 0,1 0,2 0,8 0,8 0,29 24 5,1544 1,6825 0,1180 0,1880

1000 5 1 0,1 0,2 1 1 0,2501 5,249 8 2,6283 0,1207 0,129 7

1000 5 2 0,1 0,2 0,5 0,5 0,2351 6,1085 2,8854 0,3632 0,2656

1000 5 2 0,1 0,2 0,8 0,8 0,2564 5,17 85 2,809 2 0,1652 0,1289

1000 5 2 0,1 0,2 1 1 0,2486 5,19 49 2,8831 0,1219 0,1162

10000 5 1 0,3 0,2 0,8 0,8 0,3830 4,837 9 1,3439 0,2316 0,1318

10000 5 1 0,3 0,2 1 1 0,37 66 4,67 83 1,4326 0,19 17 0,1157
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H ere we use the same notations as above, τ̂ is the mean length of the interval
between occurrences calculated by (18).

F irst, the quality of the proposed algorithms on the threshold parameters hi

was studied. Increasing of hi leads to decreasing of probability for the cumulative
sums to reach the thresholds and hence an intensity change can be undetected.
It causes increasing of error of the estimators λ̂l because of not correct estimation
of the controlling chain current state.

O n the other hand, increasing of hi results in decreasing the total number
of false alarms. These theoretical conclusions are supported by the simulation
results. As the thresholds increase the estimators of the switching parameters
α̂l decrease because less switching points are detected on the fi rst stage of the
procedures. In Table 2 for h1 = h2 = 1 one can see that the estimators α̂i consid-
erably less the real values of the parameters αi. The best results are obtained for
h1 = h2 = 0, 8 for all intensity parameter values. It supports our considerations
concerning the parameter hl. According to (23) for λ1 = 5 and λ2 = 1 minimal
diff erence between the mean length of the intervals τi is d = 1/1 − 1/5 = 0.8
and the recommended choice of hl is hl < (0.8× 5)/4 = 1, but it should not be
signifi cantly less.

Increase of the simulation time from 1000 to 10000 does not influence sig-
nifi cantly the estimators quality. This result stresses the fact that the proposed
algorithms can be used for small sample size.

7 Conclusion

Markovian arrival processes serve as models for real processes, particularly, for
call-centers or http-server customers, healthcare systems, etc. Input flow inten-
sity estimation and pertinent model setup is necessary to develop dispatching
rule, to calculate optimal number of servers, etc. The suggested algorithms do
not use the distribution function of the observing flow and, hence, can be applied
to parameter estimation of other types of flows.
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