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Abstract. In this paper, we study the retrial queueing system with two
arrival processes and two orbits with r-persistent exclusion of alternative
customers by method of asymptotic analysis under condition of long
delay. Stationary probability distribution of server states and values of
asymptotic means of the number of customers in the orbits are obtained.
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1 Introduction

Queueing systems, in which arriving customers who find all servers and wait-
ing positions (if any) occupied may retry for service after a period of time,
are called Retrial queues [1-3]. A review of the main results on this topic can
be found in [4]. Retrial queues have been widely used as mathematical models
of different communication systems: shared bus local area networks operating
under transmission protocols like CSMA/CD (Carrier Sense Multiple Access
with Collision Detection), cellular mobile networks, computer and communica-
tions networks, IP networks. Priority control is also wildely used in production
practice, transportation management, etc. Several authors including Choi, B.D.
[6-10], Rengnanathan, N. [11], Krishna Reedy, G.V. [12], Zhu, Y.J. [13] have
studied priority queues. These authors and several others have studied single
server or multi-server queues with two or more priority classes under preemp-
tive or non-preemptive priority rules. Choi, B.D. We analyzed a M/G/1 retrial
queueing systems with two types of calls and finite capacity, Moreno, P. consid-
ered an M/G/1 retrial queue with recurrent customers and general retrial times
[14]. In [15] retrial queue system M/G/1 with queue length r and the priority of
the primary customers is studied. In [16], generalization of [15] is implemented.
In this paper, we study the retrial queueing system M () /M @) /1 with
r-persistent exclusion of alternative customers.
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2 Problem Statement

We consider retrial queueing system with two arrival processes and two orbits
with r-persistent collision of alternative customers (Fig. 1).

We assume that two arrival processes to the system are described by the sta-
tionary Poisson process with intensity A1 and Ao, respectively. Customer, which
finds the free server, occupies it during a random time which is exponentially
distributed with intensity wp; and po, respectively. If, at the moment of arrival,
customer of the first type finds the server busy with a customer of the first type,
then it goes to the orbit 1 (the orbit for customer of the first type), where it
performs a random delay with duration determined by exponential distribution
with intensity o1. From the orbit 1, after the random delay, the customer tries to
occupy the server again. If at the time of arrival, customer of the first type finds
the server busy with a customer of the second type, then the arrived customer
with probability r; replaces the customer, which was in service, and occupies
the server, and with probability 1 — r; it goes to the orbit 1.

The same goes for the second type customer. If at the moment of arrival,
customer of the second type finds the server busy with a customer of the second
type, then it goes to the orbit 2 (the orbit for customer of the second type), where
it performs a random delay with duration determined by exponential distribution
with intensity oo. From the orbit 2, after the random delay, the customer tries
to occupy the server again. If, at the time of arrival, customer of the second type
finds the server busy with a customer of the first type, then an arrived customer

0,
Oy,

Fig. 1. Retrial queueing system M® /M3 /1,
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with probability ro replaces the customer, which was in service, and occupies
the server, and with probability 1 — r5 it goes to the orbit 2.

Let 1 (t) be the number of customers in the orbit 1 and i(¢) be the number
of customers in the orbit 2, and the process k(t) defines the server state at the
moment ¢ in the following way:

0, if server is free,
k(t) = < 1, if server is busy with a customer of the first type,

2, if server is busy with a customer of the second type.

We would like to solve a problem of computation of stationary probability dis-
tribution of the number of customers in the orbits 1 and 2 and server state.

3 System of Kolmogorov Differential Equations

We consider Markovian process {k(t),41(t),2(t)}, ¢ > 0.

Let us denote by P {k(t) = k,i1(t) = i1,92(t) = i2} = Pi(41,12,t) a probabil-
ity that, at the moment ¢ , the server in the state k£ and i; customers are in the
orbit 1, i customers are in the orbit 2.

We write system of differential Kolmogorovs equations for the probability
distribution {PO (’il, ig, t), P1 (il, ig, t)7 PQ (il, i2, t)}:

8Po(z'1, 12, t)
ot

OP; (i1,12,t)
ot

=— (A1 + A2 + 4101 + i202) Po(i1, iz, t) + pa Pr (i, i2,t) + paPa(in, 2, t),

=— (A1 + A2 + g1 + 12i202) Py (i1, 42, t) + (1 — ro) Ao Py (41,02 — 1,t)

+ M Po(in,i2,t) + (41 + 1)o1 Po(i1 + 1,42, t) + M Pi(i1 — 1,42, t)
+ 1M Pa(in, iz — 1,8) + 71 (i1 + 1o Pa(in + 1,40 — 1,¢), (1)
8P2(il,i2,t)

ot = (Al + A2 + M2 +T1i101)P2(i1,i2,t) + (1 — T1)A1P2(i1 - 1,i2,t)

+ )\on(il,ig,t) + (ig + 1)0’2P0(i1,i2 + l,t) + )\2P2(i1,i2 — l,t)
—+ Tz)\zpl(il — 1,12,t) —+ Tz(ig —+ 1)0’2P1(il — 1,172 + l,t).

4 Equations for Partial Characteristic Function

We introduce the partial characteristic function in the following form:
oo o0
Hy(ug,up,t) = 3 > elel2 Py (iy iy 1), k=0,1,2,
11=0i5=0

where j = v/—1 is imaginary unit. We rewrite the system (1) for partial charac-
teristic function.
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We can rewrite system (1) as:

OHo(u1,uz) 4 OHo(uy,us)

— (A Ao ) H, j 2
(A1 + X2)Ho(ur, uz) + jou 9, Jo2 D (2)
+ p Hy (u, uz) + p2Ha(ug, ug) = 0,

OH (uq, . iu OHo(u,
— (AL Ao+ 1) Hy (ug, us) +jgzrzw _joie jur OHo(u1, u2)
U2 Ouy

=+ (1 — TQ)AQBjUZHl(Ul,UQ) + )\1H0(U1, U2) + AlejulHl(ul,ug)
(u27ul)3H2(u1,u2)
8u1
aHg(ul,ug) —jo e_juz 8H0(u1,u2)
duq Oug
+ (1 — Tl)/\lejung(ul, UQ) + /\2H0(U1, U2) + AQ@jquQ(U1, UQ)
)8H1(U1,U2)
(9’U,2

+ e Hy(uy, ug) — jrioe? =0,

— (M + A2+ p2)Ha(ug, ug) + jorr

+7’2>\26ju1H1(U1,U2) 7j7‘20'26j(u17u2 = 0
We will solve system (2) using the method of asymptotic analysis under condition
of long delay (o — 0).

5 The First-Order Asymptotic Analysis

In system (2) we make substitutions:

Om = O%Ymi O = &y = EWm,m = 1,2; Hy(ur,uz) = Fr(wy,wa,€), k =
0,1,2.

We can rewrite system (2) in the following form:

8F0(w1,w2,s) . 8F0(w1,w2,s)
o i (3)

+ p1 Fi (w1, wa, €) + poFa(wi, we, ) = 0,

— (M + X2)Fo(wri, wa,€) + jm

OF (w1, wa,¢)

. L OF
— (M1 + A2 4 p1) Fr (w1, w2, €) e ——g "~ jme jewn OFo(w1, wz, €)
2

3w1
+ (1= r2) A2 2 Fy (w1, wa, €) + A Fo (w1, wa, €) + A &= Fy (w1, wo, €)

(w27w1) aFQ(wla 'LU2, E)

w1 =0

+rid e T Fy(wr, wa, €) — jriyie’®

OFo (w1, wo, €)

s OF
— (M1 + A2+ p2) Fo(wi, wa, €) Fimri g = — e jews OF0(W1, w3, €)
1

Ows
+ (1 = )M By (wr, wa, €) + A Fo(wy, wa, €) + Aoe? =™ Fy(wy, w2, €)

(w17w2) aFl (wla w2, 8)

B =0.

+ rodoe?® U Fy (w1, wa, €) — jroyee’®
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Theorem 1. Limiting values {Fy(wi,ws2)} of the solution {Fj(wy,ws,e)} of
the system (3) have the following form:

Fi(wy, wy) = Ryl 11t7waez
where values Ry, Ry, Ra, x1, x2 is the solution of the following system:
— (M1 + A2 + @1+ y222) Ro + By + paRo = 0, (4)
(M +mz1)Ro — (A2 + 1 +rayeze — (L —12)A2)R1 + (A1 +m17121)Re = 0,
(A2 +7222) Ro + (r2A2 + r2y222) R — (A1 + p2 + iz — (L —r1) A1) Re = 0

—mz1Ro + (A1 + r2A2 + royeze) Ri + (mimazn + (1 — 1) A1) Re = 0,
— ’)/QIL’QRO -+ (7’2")/21'2 + (]. — TQ))\Q)Rl + ()\1 -+ 7’1)\1 -+ Tl’)/lil’l)Rg = 0

6 The Second-Order Asymptotic Analysis

To find the asymptotic of the second order we must execute following substitute
at system (2):

U U
Hi.(uy,u) = Hi® (uy, up) exp {3;1561 +J;2$C2}

O = Yk0, 0= 527 U = EWg, Hk:(2)(u17u2) = Fk(’LU]_,U}Q,E)-

We can rewrite system (2) as:
8Fg(w1 w9 E) . 8F0(w1 w9 E)
) ) ) ) 5
owq + e Ows ( )
+ p1Fy(wr, wa, €) + paFa(wi, wa, €) — y121 Fo(wy, we, ) — y2z2Fo(wr, wa, ) = 0,

OF (w1, ws,€)
811)2

— (A1 + X)) Fo (w1, wa,€) + jvie

— (M + A2+ p1) Fr(wi, we, ) + jyarae — roy2xa F1 (w1, wa, €)
. OF 7 i
—Jme jswlsw +v1x1€ ]EwlFo(wl,wg,s)
w1
+ (1 = ro)Xoe’“™2 Fy (w1, w2, ) + A\ Fo(wi, wa, €)
+ A16j5w1F1(w1,w2,€) + Tlx\lejEwZFz(wl,wz, 6)

(w27w1) aFQ(wla U)Q, 8)

811)1 +rl’ylxlejs(w27w1)F2(w17w27E) = Oa

— jrimee’®

OFs (w1, wo, €)

— iz (wy, we, €
B v (w1, w2, €)

— (M 4 A2 + p2) Fo(wi, w2, ) + jy1r1e

L OF , W2, —iew:
—jae sz%% + yamae 72 Fy(wi, w2, €)
2

+ (1 = r1)A1e/" Py (w, wa, €) + Ao Fo (wy, wa, €)
+ )\26j6w2F2(7.U1, wa, 6) + T2A2€j€w1 F (wl, wy, 6)

o AF (e —
- jT2’Y2E€jE(w1 wg)l(#;zﬁ) + Tzfyga:gejs(wl w"’)Fl(wl,wQ,a) =0.
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Theorem 2. Limiting values {Fy(wi,w2)} of the solution {Fj(wy,ws,e)} of
the system (5) have the following form:

Fi(w,we) = Rp®(wy, ws),

where values Ry, Ry, Ro, x1, x2 is the solution of the system (4).
We write function ®(wy,ws) in the following form:

. 2 . 2
w w: . .
®(wy,ws) = exp {(J;)Qn + U 22) Q22 +]’LU1jw2Q12} ,

where values Q11, Q12, Qa2 is the solution of the following system:

Qui(mRoyo — 11 Royr — riviRoyr + riviRaye — 71 Ro — riviRa)
+ Q12(’YQRoy0 +revoRiyr — v2Roya — 7’2’72R1y2 + T‘Q’YQRl)
= MRiy1 — zimRoyr — rimziReyr + (1 — m) A Raya + roAoR1ys

1 1 1 1
+ rovoxe R1y2 — §W1$1R0 - 5)\131 - 57’2)\231 - 57"27233231

1 1
- 57"17133132 - 5(1 —r1)A1 Ry,

Q22(72Rodo — v2Rods — 1272 R1da + royaRidi — v2Ro — ray2Ry)
+ Qu2(m1Rodo + 171 R2d2 — v2Roda — 1171 Radi + rivi R2)
= /\2R2d2 — $272R0d2 — T272$2R1d2 + (1 — T2)>\2R1d1 + Tl)\lRle

1 1 1 1
+riyiziRady — 57237230 - 5/\232 - §T1>\2R2 - §T1’71$1R2
1 1
— ETQ’}/Ql‘QRl — 5(1 — TQ))\QRl,
0)

Qu(%RoZ(()O) — 71R02§0) - 7’171322‘% + 7‘17132250) +rmR2)

+ Q12(72R02(()0) + 7“272R1Z£0) — 72Rozéo) - TszRﬂéo) +rove Ry + WlRoZél)
(1)

— 1Rz’ — 7“171R22§1) + 7“171R22§1) +ri71Re — v1Ro — 72 Ro)

+ Q22(’Y2Roz(gl) - 7230251) - 7“27231251) + 7“2723129) +roy2Ry)

= )\1R1Z£0) — l‘l’leozio) — 7“1’)/1.T1R22’§0) + (1 — rl))\lezéo) + T2)\2R12§0)

+ 7“2’)/2$2R12§O) + )\2R2Z§1) — Z‘Q’YgRozél) — T‘Q’YngRlZél) + (1 — T'Q))\QRlZgl)

+ ’I“1)\1RQZ§1) + T171$1R22§1) + 7"1’71[131R2 + T'Q’YQZIJQRl,

Values yo, y1, y2; do, d1, ds; z(()o), zgo), Zéo); zél), z%l), zél) are the solutions
of the system (6)-(9), respectively.
— (a1 + a2)yo + a1y1 + azyz = A1 — a1, (6)

1Yo — (p1 + azr2)yr + raasys = A1 + raas,
payo + r1a1yr — (g2 + air1)ys = A\ — ra;g.
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— (a1 + a2)do + ardy + azds = Ao — as,
p1do — (1 + agre)dy + roasds = Ao — raag,
pado + r1a1dy — (ue + ar1ri)de = Ao + r1as.

(0) (0)

— (a1 +a2)zy + a1z + agzéo) = Ao — ag,
,UIZ((JO) - (,Ul + 0,27“2)2:%0) + Tgagzéo) = Ay — I'ado,
M2Zéo) + T16L1Z§0) — (2 + a1r1)z£0) = X\ +17101.

(1) (1) (1)

—(a1+a2)zy’ + a1z’ +azzy’ = A —aq,
NlZ(()l) — (1 + am)z%l) + Tzazzél) = A + roao,
Mzzél) + 7"1(11251) - (Mz + alrl)zél) =\ —Triaj.

7 Numerical Realization

For example, we take the parameters of arrival processes as:

A =3, =2

If the parameters of exponential law service are fixed as follow is:

H1 = 10,,11,2 = 20.

The parameters of a random delay with duration determined by exponential

distribution are fixed in following form:

o1 = 0.02, 05 = 0.03.

So as 01 = 710, 03 = Y20, then we will take v; = 2, 79 = 3. Probability
of displacement of the customer from the server by the customer of the first
type 1 = 1. Probability of displacement of the customer from the server by the

customer of the second type ro = 1.

We have values of asymptotic means of the number of customers in the orbits

with these values of parameters
Tr1 = 100,$2 =44

and variance

Q11 = 1.152,Q22 = 0.308

and correlation coefficient
r = 0.421.
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Conclusion

In the paper we study the retrial queueing system M) M@ 1 with
r-persistent exclusion of alternative customers by method of asymptotic analysis
under condition of long delay. Stationary probability distribution of server states
and values of asymptotic means of the number of customers in the orbits are
obtained. Two-demension marginal distribution of the number of customers in
the orbit 1, in the orbit 2 is asymptotically Gaussian. We obtain the numerical
realization for the condidered parameters.
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