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Abstract 

In this paper we describe software tool «FSMTest-
1.0» that was developed by group of authors from the 
department of Computer science of Tomsk State 
University. The tool contains implementations of well-
known and original test suites generation methods for 
different models with finite numbers of transitions. The 
main contribution of our tool is that it derives test 
suites with the guaranteed fault coverage.  

1. Introduction

It is well known that testing is an important stage
within the software and hardware development cycle. 
The main weak place of most testing tools is relying on 
heuristics, so such tools can’t guarantee fault coverage. 
However, if the system under test is discrete and can be 
described by the model with finite number of 
transitions, then we can pretend to derive finite test 
suites with guaranteed fault covering (w.r.t. the fault 
model). Our scientific group under the leadership of 
N.Yevtushenko works in the area of developing 
methods for generating exhaustive test suites for FSM 
(Finite State Machine) model, theirs modifications and 
compositions. The purpose of our investigation is to 
evaluate proposing methods. In order to do this we 
create the tool «FSMTest-1.0». In this work we 
describe our tool and the underlying methods and 
observe possible applications for researching and 
educational needs. 

2. Related works

Most works related to our work are, of course,
different tools for testing. The first tool we would like 
to mention is TorX [1] and its more recent 
implementation in Java jTorX [2]. This tool is very 
close to our tool. TorX uses a Labelled Transition 
System [3] as underlying model and strong theory for 
test generation [3]. It even can run test on a system 
under test whenever a tester provides an adaptor to 

connect TorX to the SUT, what is not available in our 
tool. But unfortunately TorX does not have notion of 
fault model and therefore can guarantee test to be 
exhaustive only for infinite test. Whenever test is finite 
(and of course it is every case one uses this tool) 
nothing about fault coverage is guaranteed. This issue 
can be overcome for some extent with notion of test 
purposes [4], but then one needs specify separate test 
purpose for each fault, which is not a simple job. 

Next tool is UniTESK [5]. It is group of tools for 
different languages and even systems (e.g. MicroTESK 
[6] is specially designed to test processors) which can 
not only generate tests but also execute them. All these 
sub-tools share same concepts: boundary analysis, flow 
graph coverage and test purposes. Tests provided by 
UniTESK tools are exhaustive according to the 
mentioned concepts, but might not be enough when 
testing real systems. 

Among commercial tools we would like to note 
bunch of tools provided by the company called 
Conformiq [7]. It is quit user friendly good looking set 
of tools, providing not only testing facilities, but 
accompanying functionality as well. Underlying model 
which is used in these tools is UML state-charts. 
Mechanisms for test derivation are: boundary analysis, 
state chart coverage and requirements (test purposes). 
And again, generated test are exhaustive according to 
these approaches but might not be enough to find an 
error. 

Of course this list far from being complete but the 
main weak place of most testing tools is relying on 
heuristics (most popular — boundary analysis and 
different coverages) rather than fault model. Such 
heuristics specify just some points where fault can be, 
and fault model specifies a whole class of faults. Our 
tool includes test suite generation methods for different 
models with finite number of transitions and so we 
derive exhaustive test suites for conformance and 
interoperability testing. 

3. Preliminaries
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In this paper we just mention some notions in a very 
informal manner.  

We are meaning under models with finite numbers 
of transitions well-known Finite State Machine (FSM) 
model [8] and the modifications of this model. We 
refresh that FSM is discrete model with the memory 
(finite number of states) and it produces output 
sequence in response to the given input sequence. If an 
FSM produces not more than one output sequence to 
the given input sequence, then FSM is called 
deterministic. Otherwise, FSM is called 
nondeterministic. Nondeterministic FSM is said to be 
observable if we always can determine the current state 
of FSM by knowing the initial state, input sequence 
and observed output sequence. 

Timed FSM in this work is FSM with time delays. 
In this model in addition to the ordinary transitions 
under inputs there are transitions under time-outs when 
no input is applying [9, 10]. 

Testing as a process can be rather different.  
An active testing is such a process when we apply 

input sequences, observe output sequences and make a 
conclusions based on our specification or on the 
criteria of the faulty-free system. Passive testing is 
such a process when we just can observe sequences (no 
applying at all). 

An active experiment (or testing process) is 
preset if input sequences are known before 
starting the experiment. An active experiment is 
adaptive if at each step of the experiment the next 
input is selected based on previously observed 
outputs. 

In order to derive a test suite with the guaranteed 
fault coverage we need a fault model.  

In conformance testing a traditional fault model is a 
triple <A, ∼ , ℜ>, where A is a specification FSM, ∼  is 
a conformance relation,  fault domain ℜ is the set of all 
possible (faulty and non-faulty) implementation FSMs 
with the same input and output alphabets as the 
specification FSM.  

A test case is a finite input sequence of the 
specification FSM. As usual, a test suite is a finite set 
of test cases. We say that an implementation FSM 
passes the test case if an output response is in the set of 
output responses of the specification FSM. Otherwise, 
the implementation FSM fails the test case. Given a 
test suite, an implementation passes the test suite if it 
passes each test case. If each faulty FSM from the fault 
domain fails the test suite, then test suite is said to be 
complete. If each faulty-free FSM from the fault 
domain passes the test suite, then test suite is said to be 
sound. If test suite is complete and sound then it is said 
to be exhaustive.  

In interoperability testing [11] the first aim is to 
assure that two or more implementations can work 

together without falling into deadlock or livelock 
(infinite internal or external dialog). In this case the 
fault model is a pair <ℜ,  DEC> where ℜ is the set of 
all possible implementation systems while DEC is the 
criterion of a faulty-free system. And in addition to 
check livelocks there is also a task of testing in context.  
 
4. FSMTest-1.0: modules for single FSMs 
 
4.1. Test suite generation for deterministic 
FSMs 
 

Deterministic finite state machine model is a 
classical model and the only conformance relation that 
can be checked in black-box testing is a so-called 
equivalence relation. Two FSMs are called equivalent 
if they have the same behavior, i.e. for a given input 
sequence they produce the same output sequence. 
Since 1973 [12] it is known how to derive an 
exhaustive test suites w.r.t. the fault model 
<A, ≅ , ℜm>, where A is a specification FSM, ≅ is an 
equivalence relation,  fault domain ℜ is the set of all 
possible (faulty and non-faulty) FSM implementations 
with the same input and output alphabets as the 
specification FSM and the number of state that is not 
more than known fixed integer number.  

Our tool (Figure 1) allows to derive the exhaustive 
test suites for the deterministic FSMs using the 
following methods: W [12], Wp, Hsi and H [8]. The 
input FSM (the specification) should be reduced, 
connected and deterministic. And the user can set the 
upper-bound m that is the number of states in FSM 
implementations. By setting m the user set the fault 
domain.  
 
4.2. Test suite generation for nondeterministic 
FSMs 
 

As we already mentioned, two FSMs are equivalent 
if they have the same input/output behavior. For 
nondeterministic FSMs we have more relations that 
can be checked by black-box testing.  

An FSM T is a reduction of FSM S (T ≤ S) if the 
input/output behavior of T is a subset of that of S [12].  

When deriving test suites with respect to the 
reduction and equivalence relations with the 
guaranteed fault coverage the so-called «all weather 
conditions» assumption is assumed to be satisfied (in 
the case of testing a nondeterministic implementation). 
In the case when this assumption cannot be satisfied 
the only relation that can be used for the preset test 
derivation with the guaranteed fault coverage is the 
separability relation. FSMs T and S are separable if 
there is an input sequence, called a separating 
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sequence, such that the sets of output responses of 
these FSMs to the sequence do not intersect, i.e., the 
sets are disjoint. If such a sequence does not exist then 
FSMs T and S are non-separable (T ≁ S) [12].  

Using our tool you can derive exhaustive test suites 
for the nondeterministic observable FSMs w.r.t. the 
reduction [13] and to the non-separability relation [12]. 

 

 
 

Figure 1. Screen of deriving an exhaustive test suites for 
deterministic FSMs 

  
4.3. Test suite generation for timed FSMs 
 

Our tool allows to derive test suites for 
deterministic timed FSMs and for observable 
nondeterministic timed FSMs. 

There are two ways for deriving test suites for 
deterministic timed FSMs in our tool: 

1) Test suite for the timed FSM is derived by 
conversion to classical FSM and then using one of the 
methods (W, Hsi or H) for test suite derivation [9].  

2) Test suite for the timed FSM is derived directly 
(without conversion to a classical FSM). In this case 
the fault domain is determined by explicitly 
enumerating of deterministic FSM implementations. 
Such a test suite consists of timed input sequences 
[10]. Each sequence is a distinguishing sequence for 
the specification and one of the FSMs from the given 
fault domain (i.e. a sequence for which the output 
sequences of these machines are different).  

For nondeterministic observable timed FSMs we 
consider r-distinguishability relation. Two complete 
(timed) machines can be distinguished by an 
adaptive experiment if they are r-distinguishable, 
i.e., if they have no common complete reduction. 
For the compact representation of the adaptive 
experiment we can use so-called r-distinguishing 
machine [10]. Using our tool you can derive an 

adaptive test suite for observable timed specification 
FSM and the fault domain that is determined by 
explicitly enumerating of observable timed FSM 
implementations.  

 
4.4. FSM generator 
 

In order to conduct an experiments we add into the 
tool an FSM generator that can generate one or more 
FSMs of specified type (classical or timed, 
deterministic or nondeterministic). If we generate 
deterministic FSM then we can choose an option 
«reduced». If we generate nondeterministic FSM then 
we can choose an option «observable».  

In any case generated FSM will be connected, it 
means it will not have an isolation states.  

In addition to FSM type you need to specify FSM’s 
size: the number of inputs, outputs, states. 

 
5. FSMTest-1.0: modules for FSM 
compositions 
 

As we’ve mentioned in the introduction, 
conformance testing is just the first stage of testing. 
Then we have a stage of interoperability testing. In this 
stage we are dealing with the communicating systems. 
And if the work of each system can be described as a 
finite state machine, then in interoperability testing we 
are dealing with the composition of FSMs.  

We assume, that a system at hand has at most one 
message to transit, it means that the next external input 
is submitted to the system only after it has produced an 
external output to the previous input. And a component 
machine accepting an input may produce either an 
internal or an external output. So we consider only 
binary parallel composition. 

 
5.1. Test suite derivation for live-lock checking 
 

A general fault model for interoperability testing is 
the pair <ℜ, DEC>, where the fault domain ℜ is the set 
of all possible implementation systems while DEC is 
the criterion of a faulty-free system [11]. For first 
phase of interoperability testing we define the fault 
model <ℜ, livelock- and deadlock-free>, where ℜ is 
the set of compositions of all possible component 
implementations. We say that a test suite is complete 
w.r.t. the fault model <ℜ, livelock- and deadlock-free> 
if the test suite detects each implementation system 
with livelocks and/or deadlocks, the method is 
described in [11]. 
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5.2. Deriving forbidden invariants for live-lock 
passive testing 
 

Our tool allows to derive the set of forbidden 
invariants (input-output sequences that indicates the 
possibility of livelocks/deadlocks in the system) based 
on the partial specification of one of the components of 
the FSM composition. This set of forbidden invariants 
we can use for the live-lock passive testing. 

 
5.3. Test derivation for component FSMs 
 

Sometimes we haven’t a possibility to test an 
implementation in isolation and we need in this case to 
test a whole system on the hypothesis that one of the 
communicating systems is working correct. In our tool 
one of the components is assumed to be faulty and the 
conformance relation between specification 
composition and system under testing is an 
equivalence relation. The test suite is derived using H-
method. 
 
5.4. Generator of component machines for the 
composition of two FSMs 
 

In order to conduct an experiments we also add into 
the tool an FSM generator of component machines for 
the binary parallel composition of two FSMs. Created 
generator allows to generate partial or complete 
deterministic FSMs that are describe the behavior of 
the component machines.  
 
6. Conclusions and acknowledges 
 

In this paper we describe software tool «FSMTest-
1.0» that was developed by group of authors from the 
department of Computer science of Tomsk State 
University. This tool have been developed for the 
researching and education use and allows to derive test 
suites with guaranteed fault coverage. Our University 
have got the certificate of registration of the tool. The 
practice value of our investigation is the created tool 
that is used in the current researches and the 
educational process in such courses as «Model based 
testing», «Automata theory» at our department. 

This work was supported by the basic part of the 
State Assignment of the Ministry of Education and 
Science of the Russian Federation (Project code No. 
1975). 
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