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Abstract. In this paper we obtain the probability density function of
stock of perishable goods under constant production and hysteresis con-
trol of the selling price.
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1 Introduction

Mathematical models and methods of queueing theory [1,2] are widely used in
various fields and, in particular, can be used to analyze the problems of inventory
management with a limited shelf life, which have been intensively studied in
recent years. Several review articles on the topic appeared during that time, for
example S.K. Goyal, B.C. Giri [3], M. Bakker, J. Riezebos, R.H. Teunter [4].
Also worth noting are papers by V.K. Mishra, V.K. Mishra and L.S. Singh [5,6],
R. Begum, S.K. Sahu, R.R. Sahoo [7,8], R.P. Tripathi, D. Singh, T. Mishra
[9], where authors consider models of inventory management of continuously
deteriorating goods under the assumption of a known demand function. In V.
Sharma and R.R. Chaudhary [10] a model is considered where demand is known
function of time, while the deterioration process is random and follows Weibull
distribution. In K. Tripathy and U. Mishra [11] a model is considered in which
demand is a known function of price. To analyse the mathematical models one
can employ the methods of asymptotic analysis that are widely used in the
queuing theory, for example in the mentioned above works by A.A. Nazarov [1],
A.A. Nazarov and S.P. Moiseeva [2].

2 Mathematical Model of the Problem

We consider a single-line queueing system (Fig. 1) in the entrance of which appli-
cations (perishable goods) with arrival rate c come in. We assume that arrival
process can be approximated in such a way that c units arrives per unit time.

The goods continuously deteriorate as they are stored. Let S(t) be the amount
of goods at time t. Then during a small time interval Δt a total of kS(t)Δt
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Fig. 1. Mathematical model

is lost. The service, which in this work will be called sales, is provided by parties
with random size x, where the values of purchases x are independent random
variable with probability density function ϕ(x), mean M {x} = a and a second
moment M

{
x2

}
= a2. Selling times follow a Poisson process with intensity λ

that depend on selling price b. We consider the case when the intensity of sales λ
monotonically decreases as b grows. For a given price b and, hence, sales process
intensity λ the average amount of goods S̄(t) is defined as

S̄(t) = S(0)e−kt +
c − λa

k
(1 − e−kt).

Thus if c − λa > 0 and t � 1 we have a constant stock of unsold goods which is
undesirable. If c−λa ≤ 0 we have unsatisfied demand. Hence we need to control
either selling price b, or the pace of goods arrival c depending on current stock.

In this paper we assume that sales are controlled in the following way. First,
two boundary values for the stock of goods are set, S1 S2, such that S2 > S1.
For S < S1 a selling price b0 is established, for S > S2 a selling price b1 < b0
is established. For S1 ≤ S ≤ S2 the selling price will be either b = b0 or b = b1
depending on the trajectory which the process S(t) followed when it entered this
domain. If it crossed the lower bound S1 upwards then b = b0, while if it crossed
the upper bound S2 downwards, then b = b1 . Thus the selling price b = b1 is
set as soon as S(t) reaches S2 and lasts until the stock falls to S1. The domain
S1 ≤ S ≤ S2 is in fact what we call the domain of hysteresis stock control. In
accordance with this, the intensity of selling times flow at any given moment is
given by

λ(S) =

⎧⎨
⎩

λ0, S < S1,
λ0 or
λ1, S > S2

λ1, S1 ≤ S ≤ S2, (1)

It is natural to assume that C −λ0a > 0 and C −λ1a < 0. Finally, there may be
a situation when current demand cannot be fully satisfied by the current stock
of goods. In such case we assume that S(t) < 0. The orders are satisfied in the
order of arrival.

The main goal of this paper is to determine the probability density function
of the stock of goods in this model and several additional assumptions.

Denote

Pi(S, t) =
Pr {S ≤ S(t) < S + dS, λ(t) = λi}

dS
, i = 0, 1. (2)
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Theorem 1. If Pi(S, t) is differentiable in t and SPi(S, t) is differentiable in S
then functions Pi(S, t) satisfy the following system of equations Kolmogorov

∂P1(S, t)
∂t

= −λ1P1(S, t)− ∂

∂S
((c−kS)P1(S, t))+λ1

∞∫

0

P1(S + x)ϕ(x)dx, S ≥ S1,

(3)

∂P0(S,t)
∂t = −λ0P0(S, t) − ∂

∂S ((c − kS)P0(S, t))

+λ0

S2∫
S

P0(x, t)ϕ(x − S)dx , S1 < S < S2,
(4)

∂P0(S,t)
∂t = −λ0P0(S, t) − ∂

∂S ((c − kSI(S))P0(S, t))

+λ0

S2∫
S

P0(x, t)ϕ(x − S)dx + λ1

∞∫
S1

P1(x)ϕ(x − S)dx, S ≤ S1,
(5)

where I(x) is a step unit function.

Proof. Consider two close moments of time t and t + Δt, where Δt � 1. Under
given assumptions the conditional probabilities

P {S(t + Δt) < z, λ(t + Δt) = λ1 |S(t) = S, λ(t) = λ1 } =

(1 − λ1Δt)I(z − S − (c − kS)Δt) + λ1Δt
S−S1∫
0

I(z − S + x)ϕ(x)dx + o(Δt),

(6)
P {S(t + Δt) < z, λ(t + Δt) = λ1 |S(t) = S, λ(t) = λ0 } = 0. (7)

Thus for z ≥ S1 probability

P {S(t + Δt) < z, λ(t + Δt) = λ1} =

(1 − λ1Δt)
∞∫

S1

I(z − S − (c − kS)Δt)P1(S, t)dS

+λ1Δt
∞∫

S1

S−S1∫
0

I(z − S + x)ϕ(x)dxP1(S, t)dS + o(Δt).

(8)

For z ≥ S1 and a small Δt the integral

∞∫
S1

I(z − S − (c − kS)Δt)P1(S, t)dS =
z−(c−kz)Δt+o(Δt)∫

S1

P1(S, t)dS

=
z∫

S1

P1(S, t)dS − P1(z, t)(c − kz)Δt + o(Δt),

and the integral

∞∫

S1

S−S1∫

0

I(z − S + x)ϕ(x)dxP1(S, t)dt =

∞∫

0

ϕ(x)

z+x∫

S1+x

P1(S, t)dSdx.
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Substituting the expressions above into (8), differentiating with respect to z and
taking the limit Δt → 0 we arrive at Eq. (3).

Furthermore, the conditional probabilities

P {S(t + Δt) < z, λ(t + Δt) = λ0 |S(t) = S, λ(t) = λ0 } =

(1 − λ0Δt)I(z − S − (c − kS)Δt) + λ0Δt
∞∫
0

I(z − S + x)ϕ(x)dx + o(Δt), (9)

P {S(t + Δt) < z, λ(t + Δt) = λ0 |S(t) = S, λ(t) = λ1 } =

λ1Δt
∞∫

S−S1

I(x − S + x)ϕ(x)dx + o(Δt). (10)

From where in the domain z ≤ S2 probability

P {S(t + Δt) < z, λ(t + Δt) = λ0} =

(1 − λ0Δt)
S2∫

−∞
I(z − S − (c − kS)Δt)P0(S, t)dS

+λ0Δt
S2∫

−∞

∞∫
0

I(z − S + x)ϕ(x)dxP0(S, t)dS

+λ1Δt
∞∫

S1

∞∫
S−S1

I(z − S + x)ϕ(x)dxP1(S, t)dS+o(Δt).

(11)

For z ≤ S2 and a small Δt

S2∫
−∞

I(z − S − (c − kS)Δt)P0(S, t)dS =
z−(c−kz)Δt+o(Δt)∫

−∞
P0(S, t)dS =

z∫
−∞

P0(S, t)dS − (c − kz)P0(z, t)Δt + o(Δt),

and the integral

S2∫

−∞

∞∫

0

I(z − S + x)ϕ(x)dxP0(S, t)dS =

z∫

−∞
P0(S, t)ds +

S2∫

z

∞∫

S−z

ϕ(x)dxP0(S, t)dS.

Finally, for S1 < S < S2 the integral

∞∫

S1

∞∫

S−S1

I(z − S + x)ϕ(x)dxP1(S, t)dS =

∞∫

S1

∞∫

S−S1

ϕ(x)dxP1(S, t)dS,

while for z ≤ S1 the integral

∞∫

S1

∞∫

S−S1

I(z − S + x)ϕ(x)dxP1(S, t)dS =

∞∫

S1

∞∫

S−z

ϕ(x)dxP1(S, t)dS.

Substituting the expressions above into (11), differentiating with respect to z
and taking the limit Δt → 0 we arrive at Eqs. (4) and (5).
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The solution of the system (3)–(5) must, apparently, satisfy the following
normalising condition

∞∫

S1

P1(S, t)dS +

S2∫

−∞
P0(S, t)dS = 1 (12)

while function P0(S, t) must be continuous at point S1

P0(S1 + 0, t) = P0(S1 − 0, t). (13)

The unconditional probability density function P (S, t) of the stock of goods takes
the form

P (S, t) =

⎧⎨
⎩

P1(S, t), S > S2,
P1(S, t) + P0(S, t), S1 ≤ S ≤ S2,
P0(S, t), S < S1.

(14)

3 Exponential Distribution of the Sale Amount

Let us consider the simplest case when sales are distributed exponentially

ϕ(S) =
1
a

exp(−S

a
).

Denote
Pi(S) = lim

t→∞ Pi(S, t). (15)

In the steady state as t → ∞ Eqs. (3)–(5) take the form

λ1P1(S) +
d

dS
((c − kS)P1(S)) − λ1

a
e

S
a

∞∫

S

P1(x)e− x
a dx = 0, S > S1, (16)

λ0P0(S)+
d

dS
((c−kS)P0(S))− λ0

a
e

S
a

S2∫

S

P0(x)e− x
a dx = 0, S1 ≤ S ≤ S2, (17)

λ0P0(S) + d
dS ((c − kSI(S))P0(S)) − λ0

a e
S
a

S2∫
S

P0(x)e− x
a dx

−λ1
a e

S
a

∞∫
S1

P1(x)e− x
a dx = 0, S < S1.

(18)

Equation (18) can be differentiated and represented as the following differential
equation

d2

dS2
((c − kSI(S))P0(S)) − d

dS
(
c − kSI(S) − λ0a

a
P0(S)) = 0. (19)
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From here, taking into account boundary condition P0(−∞) = 0 in the domain
S ≤ 0

P0(S) = De
c−λ0a

ca S . (20)

In the domain 0 < S < S1 the solution of (19) takes the form

P0(S) =

⎡
⎣W1 + W2

S∫

0

e− x
a (c − kx)− λ0

k dx

⎤
⎦ e

S
a (c − kS)

λ0
k −1. (21)

The condition of continuity of the solution in S = 0 yields D = W1c
λ0
k −1. From

(18) it follows that in S = 0 a condition must holds:

cP ′
0(0 + 0) − kP0(0 + 0) = cP ′

0(0 − 0).

From where W2 = 0. Thus, for 0 < S < S1

P0(S) = De
S
a (1 − k

c
S)

λ0
k −1. (22)

Equation (17) can be differentiated and represented as the following differential
equation

d2

dS2
((c − kS)P0(S)) − d

dS
(
c − kS − λ0a

a
P0(S)) = 0. (23)

Its solution takes the form

P0(S) =

⎡
⎣W1 + W2

S∫

S1

e− x
a (1 − k

c
x)− λ0

k dx

⎤
⎦ e

S
a (1 − k

c
S)

λ0
k −1. (24)

The condition of continuity in the point S1 of (13) gives

W1 = D. (25)

Furthermore, solution (24) must satisfy the initial Eq. (17). Then

W2 = −D[ae− S2
a (1 − k

c
S2)− λ0

k +

S2∫

S1

e− x
a (1 − k

c
x)− λ0

k dx]−1. (26)

Finally, given that in the model considered the amount of goods is always S ≤ c
k ,

the solution of (16) takes the form

P1(S) = Ae
S
a (1 − k

c
S)

λ1
k −1. (27)

The relationship between constants A and D is obtained from the condition that
the set of found solutions must satisfy (18). Then

A = −ae− S1
a (1 − k

c
S1)− λ1

k W2, (28)
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where W2 is determined by the ratio (26). The last constant D is obtained from
the normalising condition (12).

To sum up, the probability density function of the stock of goods is deter-
mined by (20), (22), (24), (27), while constants in these expressions are obtained
from conditions (25), (26), (28) and (12).

For S2 = S1 we get the case of switch (threshold) control of the selling price
and the probability density function P (S) takes the form

P (S) =

⎧⎪⎨
⎪⎩

De
c−λ0a

ca S , S < 0,

D(1 − k
c S)

λ0
k −1e

S
a , 0 ≤ S ≤ S1,

D(1 − k
c S1)

λ0−λ1
k (1 − k

c S)
λ1
k −1e

S
a , S1 < S ≤ c

k ,

(29)

where D is determined by the normalising condition.

Fig. 2. Relationship between the probability density P (S) and the stock size S.

The relationship between the probability density function P (S) and the stock
size S is given on Fig. 1. Threshold S1 = 40, λ0 = 8, c = 10, k = 0.02, a = 1
(Fig. 2).

4 Diffusion Approximation of the Production/Sales
Process Under Switch Control of the Selling Price

In a general case the solution of the system (3)–(5) cannot be obtained even
in the stationary mode. Hence in the following we focus on constructing an
approximate solution. Consider the case of the switch control of the selling price
when thresholds S2 = S1. The system (3)–(5) can be rewritten to yield

∂P (S,t)
∂t = ∂

∂S [(kSI(S) − c)P (S, t)]

−λ(S)P (S, t) +
∞∫
0

λ(S + y)P (S + y, t)ϕ(y)dy,
(30)
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where

λ(S) =
{

λ0, S ≤ S1,
λ1, S > S1 .

(31)

Let us assume that the production speed c = CN , purchase process’ intensities
λ0 = Λ0N, λ1 = Λ1N , threshold S1 = S0N , where N � 1. Let us analyse the
behaviour of the solution of (30) as N → ∞. Denote ε2 = 1/N . Let us introduce
a function

F (S, t, ε) = P (
S

ε
, t). (32)

Consider first the domain S > S0. Equation (30) in this domain takes the form

ε2 ∂F (y,t,ε)
∂t + Λ1F (y, t, ε) =

ε ∂
∂y [(kεy − C)F (y, t, ε)] + Λ1

∞∫
0

F (y + εz, t, ε)ϕ(z)dz.
(33)

Taking Taylor expansion of F (y +εz, t, ε) with respect to the first argument and
focusing our analysis on the first three member of the sum we get

ε2
∂F (y, t, ε)

∂t
= ε

∂

∂y
[(kεy − C + Λ1a)F (y, t, ε)] + Λ1

a2

2
ε2

∂2F (y, t, ε)
∂y2

+ o(ε2).

(34)
Introduce new variables

t = t, u = y − 1
ε
x(t), (35)

where the function x(t) will be determined later on, and a function Q(u, t, ε)
such that

F (y, t, ε) = Q(y − 1
ε
x(t), t, ε). (36)

We impose an additional condition on x(t) to satisfy equation

ẋ(t) = −kx(t) + C − Λ1a. (37)

Then for Q(u, t, ε) we have

∂Q(u, t, ε)
∂t

=
∂

∂u
[kuQ(u, t, ε)] +

Λ1a2

2
Q(u, t, ε) +

o(ε2)
ε2

. (38)

Let
Q(u, t) = lim

ε→0
Q(u, t, ε). (39)

Then
∂Q(u, t)

∂t
=

∂

∂u
[kuQ(u, t)] +

Λ1a2

2
∂2Q(u, t)

∂u2
. (40)

The stochastic differential equation that satisfies (40) for the process u(t) is of
the form

du(t) = −ku(t)dt +
√

Λ1a2dW (t), (41)



Switch-Hysteresis Control of the Selling Times Flow 271

where W (t) – is a standard Wiener process.
From (37) and (41), accounting for the variable changes been made, we have

for the process ξ(t) = ε2S(t) when ε � 1 that

dξ(t) = −kξ(t)dt + (C − Λ1a)dt +
√

Λ1a2εdW (t). (42)

Let

h(z, t) =
∂ Pr {ξ(t) < z}

∂z
. (43)

According to (42) probability density function h(z, t) satisfies

∂h(z, t)
∂t

= − ∂

∂z
[(C − Λ1a − kz)h(z, t)] +

Λ1a2

2
ε2

∂2h(z, t)
∂z2

. (44)

In a steady state we get for probability density function

h(z) = lim
t→∞ h(z, t)

Λ1a2ε
2

2
d2h(z)

dz2
+

d

dz
[(Λ1a − C + kz)h(z)] = 0. (45)

From where accounting for the boundary condition h(∞) = 0 we obtain

h(z) = Be
− (Λ1a−C+kz)2

Λ1a2ε2k . (46)

Consider now the domain S < S0. Equation (30) with respect to function
F (S, t, ε) (32) now takes the form

ε2 ∂F (y,t,ε)
∂t + Λ0F (y, t, ε) =

ε ∂
∂y [(kεyI(y) − C)F (y, t, ε)] + Λ0

∞∫
0

F (y + εz, t, ε)ϕ(z)dz + R(y, ε)
, (47)

where

R(y, ε) = (Λ1 − Λ0)

∞∫

S0− y
ε

F (y + εz, t, ε)ϕ(z)dz = o(ε2),

since the function F (y, t, ε) is bounded and the second moment a2 exists. Hence
we do not account for the last member of the sum in (47). Taking Taylor expan-
sion of F (y + εz, t, ε) with respect to the first argument we get

ε2
∂F (y, t, ε)

∂t
= ε

∂

∂y
[(kεyI(y) − C + Λ0a)F (y, t, ε)] + Λ0

a2

2
ε2

∂2F (y, t, ε)

∂y2
+ o(ε2).

(48)
Considery < 0. Making substitutions (35) and (36) and assuming

ẋ(t) = C − Λ0a, (49)
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we have for ε → 0 for the function (13)

∂Q(u, t)
∂t

=
Λ0a2

2
∂2Q(u, t)

∂u2
. (50)

Let y > 0. Making substitutions (36) and (37) and assuming

ẋ(t) = −kx(t) + C − Λ0a, (51)

we have for ε → 0 for the function Q(u, t) (39)

∂Q(u, t)
∂t

=
∂

∂u
[kuQ(u, t)] +

Λ0a2

2
∂2Q(u, t)

∂u2
. (52)

It follows from (49)–(52) that for ε � 1 the process ξ(t) = ε2S(t) satisfies a
stochastic differential equation

dξ(t) = −kξ(t)I(ξ(t))dt + (C − Λ0a)dt +
√

Λ0a2εdW (t). (53)

Thus the probability density function (43) satisfies the following equation

∂h(z, t)
∂t

= − ∂

∂z
[(C − Λ0a − kzI(z))h(z, t)] +

Λ1a2

2
ε2

∂2h(z, t)
∂z2

,

whereas in a steady state for the probability density function h(z) we have

Λ0a2ε
2

2
d2h(z)

dz2
+

d

dz
[(Λ0a − C + kzI(z))h(z)] = 0. (54)

Taking in account boundary condition h(−∞) = 0 for z < 0 we obtain

h(z) = De
2(C−Λ0a)

Λ0a2ε2
z
. (55)

For 0 = z = s0 the solution of (54) takes the form

h(z) = (D1 + D2

z∫

0

e
− (kx+C−Λ0a)2

kΛ0a2ε2 dx)e
(kz+C−Λ0a)2

kΛ0a2ε2 . (56)

Inz = 0 the continuity conditions h(0 − 0) = h(0 + 0), h′(0 − 0) = h′(0 + 0)
must hold since function h(z) satisfies a second-order differential equation. Hence

D2 = 0 and D = D1e
(c−Λ0a)2

Λ0a2ε2 .
Thus the probability density function h(s) is determined by the following

expression

h(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ae
(C−Λ0a)2

Λ0a2ε2k e
2(C−Λ0a)

Λ0a2ε2
s
, s < 0,

Ae
(ks+C−Λ0a)2

Λ0a2ε2k , 0 ≤ s ≤ s0,

Be
− (ks+C−Λ1a)2

Λ1a2ε2k , s > s0 .

(57)
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The relationship between A and B follows, firstly, from the normalising condition

0∫

−∞
h(s)ds +

s0∫

0

h(s)ds +

∞∫

s0

h(s)ds = 1 ,

and, secondly, from Eq. (30) when S = S0 in a steady state, which under the
above takes the form

(kS0 − c)
∂P (S0,∞)

∂S
+ (k − λ0)P (S0,∞) + λ1

∞∫

0

P (S0 + y,∞)ϕ(y)dy = 0. (58)

Substituting the probability density P (S,∞) with its approximation (57) we
get the second equation that describes the relationship between A and B. To
obtain the final expressions one must, evidently, know the explicit form of the
probability density function ϕ(y).

5 Conclusion

In this paper we obtain expressions for the probability density function of the
stock of perishable goods under constant arrival speed and switch-hysteresis con-
trol of the purchase process intensity. We also obtain the explicit solutions for
the case of exponentially distributed purchase amounts and a diffusion approx-
imation of the goods production/selling process under switch control of selling
intensity. A similar approach can be used when considering other models of con-
trol for production and sales of perishable goods, in particular, a model with
switch-hysteresis control of the production speed.
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