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Abstract. In the paper, the retrial queueing system of MMPP |M |1
type is studied by means of the second order asymptotic analysis method
under heavy load condition. During the investigation, the theorem about
the form of the asymptotic characteristic function of the number of calls
in the orbit is formulated and proved. The asymptotic distribution is
compared with the exact one obtained by means of numerical algorithm.
The conclusion about method application area is made.
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1 Introduction

In queueing theory, there are two classes of queueing systems: systems with
queue and loss systems. In real systems, there are situations when queue cannot
be explicitly identified, but also call is not lost if it comes when the service device
is unavailable. Often primary call does not refuse to be serviced and performs
repeated calls to get the service after random time intervals. Examples of these
situations are telecommunication systems, cellular networks, call-centres. Thus
a new class of queueing systems has been appeared: systems with repeated calls
or retrial queueing systems.

The first papers about retrial queues were published in the middle of 20th
century. The most of them were devoted to practical problems and influence of
repeated attempts on telephone traffic, communication systems etc. [1–4]. The
most comprehensive description and detailed comparison of classical queueing
systems and retrial queues are contained in books and papers authored by J.R.
Artalejo, A. Gomez-Corral, G.I. Falin and J.G.C. Templeton [5–7].

Today there are many papers devoted to these systems. Scientists from dif-
ferent countries study different types of retrial queues, develop methods of their
investigation, solve practical and theoretical problems in this area. But the major-
ity of studies of retrial queueing systems are performed numerically or via com-
puter simulation [8–10]. Belarusian researchers A.N. Dudin and V.I. Klimenok
[11] mainly use matrix methods in their works. Also matrix methods for retrial
queues analysis were used by M.F. Neuts, J.R. Artalejo, A. Gomez-Corral [12],

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 344–357, 2015.
DOI: 10.1007/978-3-319-25861-4 29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287479593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Second O rder Asymptotic Analysis Under Heavy L oad C ondition 3 4 5

J.E. Diamond, A.S. Alfa [13], etc. Asymptotic and approximate methods were
applied by G.I. Falin [14], V.V. Anisimov [15], T. Y ang [16 ], J.E. Diamond [17], B.
P ourbabai [18], etc. But analytical results were obtained only in cases of simple
input and service processes (e.g. stationary P oisson input process or the exponen-
tial distribution of service law) [6 ].

In this paper, we study the retrial queueing system MMPP |M |1 by means
of the second order asymptotic analysis method under heavy load condition.
Characteristics of performance of retrial queueing systems under heavy and light
loads were studied by G.I. Falin [14], V.V. Anisimov [15] and A. Aissani [19 ].
Also S.N. Stepanov’s work [20] is devoted to investigation under “ extreme” load
(the intensity of primary calls tends to infinity or zero).

In the paper we use the asymptotic analysis method developed by Tomsk
scientific group for investigation of all types of queueing system and networks
[21,22]. P rinciple of the method is derivation of asymptotic equations from the
systems of equations determined models states and then getting formulas for
asymptotic functions.

In a number of our previous papers (eg. [23]) devoted to the study of various
single-server retrial queueing system, we applied the asymptotic analysis method
for retrial queueing systems under a heavy load condition. W e obtained formu-
las for asymptotic characteristic functions of the probability distribution of the
number of calls in the orbit in systems with different input processes and services
laws: M |M |1, M |GI|1, MMPP |M |1, MMPP |GI|1. H owever, we have demon-
strated that the proposed method has a fairly narrow range of applicability:
for the load rate ρ > 0.9 5, Kolmogorov distance between exact and asymptotic
distributions has values ∆ ≤ 0.05. In this regard, we propose to increase the
accuracy of the approximation by getting the second order asymptotic formula.

The rest of the paper is organized as follows. In the Sect. 2, the description
of the mathematical model of retrial queue MMPP |M |1 is presented and the
process of the system states is analysed. In the Sect. 3, we introduce asymptotic
functions and determine the limit condition of heavy load, then the theorem
about the formula for the asymptotic characteristic function is formulated and
proved. The last Sect. 4 is devoted to the numerical comparison of the asymptotic
distribution with exact one.

2 Mathematical Model and the Process Under Study

In the paper, retrial queueing system of MMPP |M |1 type is analyzed. The
input process is Markov Modulated P oisson P rocess which is a particular case
of Markovian Arrival P rocess (MAP ) and it is defined by matrix D0 and D1

[24,25]. The underlying process n(t) is Markov chain with continuous time and
finite set of states n = 1, 2, . . . , W .

W e denote the generator of the underlying process n(t) by matrix Q = D0 +
D1. And the matrix Q has elements qmv where m, v = 1, 2, . . . , W .

D1 is a diagonal matrix with elements ρλn where n = 1, 2, . . . , W and ρ is
some parameter defined below. W e introduce a matrix Λ = diag{λn}. Then the
following equality holds: D1 = ρΛ.



3 4 6 E . F edorova

The vector-row θ is the stationary probability distribution of the underlying
process n(t). θ is defined as the unique solution of the system:

{

θQ = 0,
θe = 1

(1)

where e is unit column-vector, 0 is zero row-vector.
The service time of each call is distributed by exponential law with parame-

ter µ. If a call arrives when a service device (server) is free, the call occupies the
device for the service. If the server is busy, the call goes to the orbit (source of
repeated calls) where it is staying during a random time distributed exponen-
tially with parameter σ. After this random time, the call from the orbit makes an
attempt to reach the device. If the device is free, the call occupies it, otherwise
the call immediately returns to the orbit. Structure of the system is presented
in Fig. 1.

F ig . 1 . Retrial queueing system MMPP |M |1

The rate of MMP P is defined as λ = θ · ρΛ · e.
L et the system parameters be such that the following equation holds:

θ ·Λ · e = µ. (2)

So, the parameter ρ is calculated as ρ =
λ

θ ·Λ · e =
λ

µ
and it is called the

load of the system. Thus the stationary state of the system exists when ρ < 1.
And the heavy load condition is determined by limit condition ρ ↑ 1.

L et i(t) be the random process described the number of calls in the orbit and
by k(t) be the random process defined the server state as follows:

k(t) =

{

0, if device is free,
1, if device is busy at the moment t.

The problem is to find the probability distribution of the number of calls in
the orbit in this system.
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H owever, the process i(t) is not Markovian. So firstly we will consider the
multidimensional process {k(t), n(t), i(t)} which is a continuous time Markov
chain.

W e denote the probability that the device is in the state k, there are i calls
in the orbit and the underlying process in the state n at the time moment t by
P (k, n, i, t) = P{k(t) = k, n(t) = n, i(t) = i}. So the following direct system of
Kolmogorov differential equations for the system states probability distribution
P (k, n, i, t) can be written:



















































∂P (0, n, i, t)

∂t
= −(ρλn + iσ − qnn)P (0, n, i, t) + µP (1, n, i, t)

+
∑

v 6=n

P (0, v, i, t)qvn,

∂P (1, n, i, t)

∂t
= −(ρλn + µ− qnn)P (1, n, i, t)

+ρλnP (1, n, i− 1, t)(1− δi,0) + ρλnP (0, n, i, t)

+(i + 1)σP (0, n, i + 1, t) +
∑

v 6=n

P (1, v, i, t)qvn, for i ≥ 0, n = 1, N

(3)

where δi,0 is Kronecker symbol which is defined as δi,j =

{

0, if i 6= j,
1, if i = j.

W e denote row-vectors P(k, i) = {P (k, 1, i), P (k, 2, i), . . . , P (k, N , i)} where
P (k, n, i) = lim

t→ ∞
P (k, n, i, t). Then in stationary state, the system (3) has the

following matrix form:






P(0, i)(Q− ρΛ− iσI) + µP(1, i) = 0,
P(1, i)(Q− ρΛ− µI) + P(0, i)ρΛ + (1− δi,0)P(1, i− 1)ρΛ

+σ(i + 1)P(0, i + 1) = 0, for i ≥ 0
(4)

where I is the identity matrix.
So we have the system of matrix difference equations.

3 Asymptotic Analysis Method Under Heavy Load
Condition

W e introduce the partial characteristic functions:

H(k, u) =
∑

i

eju iP(k, i), for k = 0, 1

where j =
√
−1 is the imaginary unit.

Then the system (4) is rewritten as the following system:


















H(0, u)(Q− ρΛ) + jσ
∂H(0, u)

∂u
+ µH(1, u) = 0,

H(1, u)(Q− ρΛ− µI) + H(0, u)ρΛ + eju H(1, u)ρΛ

−jσe−ju ∂H(0, u)

∂u
= 0.

(5)
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W e will solve the system (5) by the method of asymptotic analysis under
heavy load condition. The heavy load condition is defined by the assumption
that ρ ↑ 1 or ε ↓ 0 where ε is an infinitesimal variable ε = 1− ρ > 0.

First of all, we introduce notations:

u = εw, H(0, u) = εG(w, ε), H(1, u) = F(w, ε).

Then the system (5) can be rewritten as:


















εG(w, ε)(Q− (1− ε)Λ) + jσ
∂G(w, ε)

∂w
+ µF(w, ε) = 0,

F(w, ε)(Q + (1− ε)(ejε w − 1)Λ− µI)

+(1− ε)εG(w, ε)Λ− jσe−jε w ∂G(w, ε)

∂w
= 0.

(6 )

For obtaining the second order asymptotic formula, it is necessary to consider
following expansions of functions:

G(w, ε) = G(w) + εg(w) + ε2g2(w) + O(ε3), (7)

F(w, ε) = F(w) + εf(w) + ε2f2(w) + O(ε3) (8)

where O(ε3) is an infinitesimal variable of order ε3.
The characteristic function of the number of calls in the orbit h(u) = Meju ·i(t)

can be presented by introduced notations in the following form:

h(u) = [H(0, u) + H(1, u)] e =
[

εG
(u

ε
, ε

)

+ F
(u

ε
, ε

)]

e.

U sing expansions (7) and (8), the characteristic function of the number of
calls in the orbit is presented as

h(u) = F
(u

ε

)

e + ε
[

G
(u

ε

)

+ εf
(u

ε

)]

e + O(ε2)

where functions F(w),G(w) and f(w) are defined in expansions (7) and (8), and
the parameter ε = 1− ρ.

Then we will call the function h1(u) = F
(u

ε

)

e as the first order asymptotic

characteristic function and the function

h2(u) = F
(u

ε

)

e +
[

εG
(u

ε

)

+ εf
(u

ε

)]

e (9 )

as the second order asymptotic characteristic function.
In the paper [23], we found that the first order asymptotic characteristic

function h1(u) has the form of the characteristic function of gamma distribution:

h1(u) = F

(

u

1− ρ

)

e =

(

1− ju

(1− ρ)β

)−α

where
α = 1 +

µ

σ
β, β =

µ

vΛe− µve + µ
, (10)
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and the vector v is a solution of the inhomogeneous system vQ = θ(µI−Λ).
The second order asymptotic characteristic function h2(u) is defined by the

following theorem.

T h eo rem 1 . The second-order asymptotic characteristic function has the fol-
lowing form

h2(u) =

(

1− ju

(1− ρ)β

)−α
{

1 + (1− ρ)

[

ju

(1− ρ)
ve− j

∫
ju

(1−ρ)

0

a(y)

(jy − β)
d y

] }

where function a(w) is presented as follows:

a(w) =
α

β

(

1− jw

β

)−1 [

−jw
2vΛe− µve

µ
+ (jw)

2 δ

µ

]

−2vΛe− µve

µ
+ 2jw

(

δ

µ
− µ

σ

)

− 2
(

1 +
µ

σ

)

(

1− jw

β

)

+ jwve
µ

σ
,

α and β are described by formula (1 0 ), the constant δ is defi ned as

δ = µve + v1(Λe− µe)− µ

2

and v1 is a solution of the inhomogeneous system

v1Q =
µ

β
θ − 1

2
(θΛ− µθ)− (vΛ− µv).

P roof. The proof will be carried out in several steps.

S tep 1 : D erivation of asymptotic equations.

Substituting expansions (7) and (8) into the system (6 ), performing some trans-
formations, and equating the coefficients under the same powers of ε, we obtain
the following system of equations for unknown functions F(w), G(w), f(w),
g(w), f2(w) and g2(w):



















































jσG′(w) + µF(w) = 0,
F(w)(Q− µI)− jσG′(w) = 0,
G(w)(Q−Λ) + jσg′(w) + µf(w) = 0,
jwF(w)Λ + f(w)(Q−Λ) + G(w)Λ + jσjw ·G′(w)− g′(w) = 0,
G(w)Λ + g(w)(Q−Λ) + f2(w)Λ + µf2(w) = 0,
(

−jw +
(jw)2

2

)

F(w)Λ + jwf(w)Λ + f2(w)(Q− µI)−G(w)Λ

+g(w)Λ− jσ
(jw)2

2
·G′(w) + jσjwg′(w)− jσg′2(w) = 0.

(11)

To get one more scalar equation, we sum equations of the system (6 ) and
multiply the result equation by the unit column-vector e. Taken into account
that Qe = 0, we obtain equation:

F(w, ε)(1− ε)Λe + jσe−jε w ∂G(w, ε)

∂w
e = 0.
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W e substitute expansions (7) and (8) into obtained equation and again equate
coefficients under the same powers of ε. As the result, we write the following
system:











F(w)Λe + jσG′(w)e = 0,
−F(w)Λe + f(w)Λe− jσjwG′(w)e + jσg′(w)e = 0,

−f(w)Λe + f2(w)Λe + jσ
(jw)2

2
G′(w)e− jσjwg′(w)e + jσg′2(w)e = 0.

The first two equations are linearly dependent on the first four equations of
the system (11), so we will use for further derivations only the last equation:

− f(w)Λe + f2(w)Λe + jσ
(jw)2

2
G′(w)e− jσjwg′(w)e + jσg′2(w)e = 0. (12)

Six matrix equations in the system (11) and one scalar equation (12) are
enough to find functions F(w),G(w) and f(w) which are necessary for obtaining
the second order asymptotic characteristic function h2(u).

S tep 2 : M ultiplicative form of functions F(w),G(w).

Obviously, summing the first and second equations of the system (11), we can
write:

F(w) = θΦ(w) (13)

where the unknown scalar function Φ(w) is defined as Φ(w) = F(w)e.
Then the first equation of the system (11) has the form:

G′(w) = j
µ

σ
F(w) = j

µ

σ
θΦ(w). (14)

S tep 3 : D etermination of functions G(w) and f(w).

Summing up the third and the fourth equations of the system (11), we obtain

{G(w) + f(w)}Q + jwF(w)Λ + jσjwG′(w) = 0.

Given the formula (14), it is easy to show that

{G(w) + f(w)}Q = −jwΦ(w)θ {Λ− µI} . (15)

L et the solution of the Eq. (14) with respect to the vector G(w) + f(w) has
the form:

G(w) + f(w) = jwΦ(w)v + ϕ(w)θ (16 )

where ϕ(w) is an arbitrary scalar function and vector v is a solution of the
following system:

vQ = θ(µI−Λ). (17)

For existence of the solution of the system (15), it is necessary that the rank
of the augmented matrix be equal to the rank of the matrix Q. Because the
determinant det(Q) = 0 the rank of the augmented matrix must be less than



The Second O rder Asymptotic Analysis Under Heavy L oad C ondition 3 5 1

the dimension of the system. Then it is sufficient that the following condition
should hold:

(µθ − θΛ)e = 0,

what is true due to the condition (2).
So from the Eq. (15), it follows that

f(w) = jwΦ(w)v + ϕ(w)θ −G(w). (18)

S tep 4 : O btaining of expression for the function g′(w).

From the third equation of the system (11), it follows that:

jσg′(w) = G(w)(Λ−Q)− µf(w).

By substituting the expression (17) into this formula, we get:

jσg′(w) = G(w)(Λ−Q + µI)− µjwΦ(w)v − µϕ(w)θ. (19 )

S tep 5 : D erivation of the explicit expression for the scalar function Φ(w) and
calculation of functions F(w) and G(w).

Summing up the fifth and the sixth equations of the system (11) and multiplying
the result by the vector e, we can write:

f(w)Λe + jσg′(w)e + jσ(1− jw)G′(w)e = 0.

W e substitute formulas (14) and (19 ) into the last expression and take into
account the expression (2). So, the following equation is derived:

jwΦ(w)(vΛe− µ) + jσ(1− jw)G′(w)e + µG(w)e = 0.

W e differentiate this equation:

j Φ (w)(v Λ e−µ)+ jwΦ ′(w)(v Λ e−µ)+σG
′(w)e+ j σ(1− jw)G′′(w)e+µG

′(w)e = 0 .

So the following equation can be obtained by performing some transforma-
tions:

Φ(w)

[

jvΛe− jµve + jµ + j
jµ2

σ

]

= Φ′(w) [−jwvΛe + jwµve + µ− jwµ] .
(20)

Denote β =
µ

vΛe− µve + µ
, α = 1 +

µ2

σ(vΛe− µve + µ)
. Then the formula

(20) can be rewritten as:

Φ(w)jα = Φ′(w)(β − jw).

The solution of this equation has the form:

Φ(w) = c(w + jβ)−α (21)
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where c is an arbitrary constant and it is equal to (jβ)α from the initial condition
Φ(0) = 1.

So, the formula (21) is rewritten as

Φ(w) =

(

1 +
jw

β

)−α

. (22)

Turning to expressions (13) and (14), we can obtain functions F(w), G(w):















F(w) = θ

(

1 +
jw

β

)−α

,

G(w) = θ

(

1 +
jw

β

)−α+ 1

.

(23)

S tep 6 : G etting of the expression for the function f2(w).

From the fifth equation of system (11), we obtain the following expression:

jσg′2(w) = g(w)(Λ + Q)−G(w)Λ− µf2(w). (24)

Substituting the expressions (18), (23) and (24) in the sixth equation of the
system (11), the following equation is obtained:

[g(w) + f2(w)]Q = jwΦ(w)(θΛ− µθ)

+(jw)
2
Φ(w)

[

µ

β
θ − 1

2
(θΛ + µθ)− (vΛ− µv)

]

− jwϕ(w)(θΛ− µθ).

L et the solution of this equation with respect to the vector g(w) + f2(w) has
the form:

g(w) + f2(w) = (jw)
2
Φ(w)v1 − jwΦ(w)v + jwϕ(w)v + ϕ2(w)θ (25)

where ϕ2(w) is an arbitrary scalar function, v is a solution of the system (16 )
and vector v1 is a solution of the following system:

v1Q =
µ

β
θ − 1

2
(θΛ + µθ)− (vΛ− µv).

For existence of a solution of the system (17), it is necessary that the rank
of the augmented matrix be equal to the rank of the matrix Q. Because the
determinant det(Q) = 0, the rank of the augmented matrix must be less than
the dimension of the system. Then it is sufficient that the following condition
should hold:

[

µ

β
θ − 1

2
(θΛ + µθ)− (vΛ− µv)

]

e = 0.

It is easy to show that this condition is satisfied.
Then from the Eq. (25), we have

f2(w) = (jw)
2
Φ(w) · v1 − jwΦ(w)v + jwϕ(w)v + ϕ2(w)θ − g(w). (26 )
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S tep 7 : D erivation of the explicit expression for the scalar function ϕ(w).

Substituting all found expressions in the Eq. (12), the following equation can be
obtain:

Φ(w)
[

−jw(2vΛe− µve) + (jw)
2
(

µve + v1(Λe− µe)− µ

2

)]

+ϕ(w) [−θΛe + jw(µ + vΛe− µve)]− jwG(w)(Λe + µe) + µg(w)e = 0.

W e denote δ = µve + v1(Λe− µe)− µ

2
.

Differentiating the equation, we obtain:

Φ′(w)
[

−jw(2vΛe− µve) + (jw)
2
δ
]

+ Φ(w)
[

−j(2vΛe− µve) + 2j2wδ
]

+ϕ′(w)

[

−θΛe + jw
µ

β

]

+ ϕ(w)j
µ

β
− jwG′(w)(Λe + µe)

−jG(w)(Λe + µe) + µg′(w)e = 0.

Taking into account formulas (2), (10), (18) and (19 ), the following differen-
tial equation is obtained:

ϕ′(w)

(

1− jw

β

)

− jϕ(w)
α

β
= jΦ(w)a(w) (27)

where

a(w) =
α

β

(

1− jw

β

)−1 [

−jw
2vΛe− µve

µ
+ (jw)

2 δ

µ

]

− 2vΛe− µve

µ

+2jw

(

δ

µ
− µ

σ

)

− 2
(

1 +
µ

σ

)

(

1− jw

β

)

+ jwve
µ

σ
.

The solution of the inhomogeneous differential equation (27) has form:

ϕ(w) = e
j
∫ w
0

α / β

1−

jx
β

d x
{

ϕ(0) + j

∫ w

0

e
−j
∫ y
0

α / β

1−

jx
β

d x Φ(y)a(y)

1− jy/ β
d y

}

. (28)

Given normalization condition for the function F(w): F(0)e = 1, from the
expression(16 ) we have ϕ(0) = 0.

It is easy to show that

∫ w

0

α/ β

1− jx
β

d x = jαln

(

1− jw

β

)

and
∫ w

0

(

1− jy

β

)α
Φ(y)a(y)

1− jy
β

d y =

∫ w

0

a(y)

1− jy
β

d y.



3 5 4 E . F edorova

So, the solution (28) has the following form:

ϕ(w) = j

(

1− jw

β

)−α ∫ w

0

a(y)

1− jy
β

d y = −jΦ(w)

∫ w

0

a(y)

jy − β
d y.

S tep 8 : O btaining of the fi nal formula for the function h2(u).

Turning to the formula (16 ), we have

{G(w) + f(w)}e = jwΦ(w)ve + ϕ(w)

=
(

1− jw
β

)−α {

jwve− j
∫ w

0
a(y)
jy−β

d y
}

.
(29 )

From the formula (9 ), the second order asymptotic characteristic function
for retrial queueing system MMPP |M |1 is represented as

h2(u) = F

(

u

1− ρ

)

e + (1− ρ)

[

G

(

u

1− ρ

)

e + f

(

u

1− ρ

)

e

]

.

Taking into account expressions (23) and (29 ), we obtain that the function
h2(u) has the following form:

h2(u) =

(

1− ju

(1− ρ)β

)−α
{

1 + (1− ρ)

[

ju

1− ρ
ve− j

∫ u
1−ρ

0

a(y)

jy − β
d y

] }

.

So the theorem is proved.

H aving the second order asymptotic characteristic function h2(u), we can
construct the asymptotic probability distribution P2(i) of the number of calls in
the orbit by means of the formula of inverse Fourier transform.

4 N umerical Analysis of the Results

To determine the applicability range of the proposed method, we compare the
obtained asymptotic distribution and the distribution obtained by numerical
solution of the system of linear algebraic equations (4) and calculate Kolmogorov
distance between distributions.

Consider an example. L et the system parameters be the following:

µ = 1, σ = 1,

Λ =





0.588 0 0
0 0.9 80 0
0 0 1.373



,Q =





−0.5 0.2 0.3
0.1 −0.3 0.2
0.3 0.2 −0.5



.

In Figs. 2 and 3, comparison of distributions are shown for different value of
the load ρ (Dn is exact distribution which is obtained numerically, P1n and P2n

are the first order and the second order asymptotic distributions, respectively).
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F ig . 2. C omparison of asymptotic and exact distributions for ρ = 0 .8

F ig . 3 . C omparison of asymptotic and exact distributions for ρ = 0 .95
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T able 1 . K olmogorov distance between asymptotic and exact distributions

V alues of the load rate F irst-order asymptotic Second-order asymptotic

distribution distribution

ρ = 0 .7 0 .3 5 0 0 .118

ρ = 0 .8 0 .2 3 5 0 .0 5 0

ρ = 0 .9 0 .114 0 .0 2 6

ρ = 0 .95 0 .0 5 0 0 .0 18

In the Table 1 we show the Kolmogorov distance between asymptotic and
exact distributions:

∆ = max
0≤i≤N

∣

∣

∣

∣

∣

i
∑

n=0

Dn −
i

∑

n=0

Pn

∣

∣

∣

∣

∣

for different values of the parameter of load ρ.
W e chose the condition ∆ ≤ 0.05 as the criteria of method application. So

the second order asymptotic analysis method is applied for ρ ≥ 0.8.

5 Conclusion

In the paper, we study the retrial queueing system MMPP |M |1 by means of the
second order asymptotic analysis method under heavy load condition. During
the investigation, the asymptotic characteristic function of the number of calls
in the orbit is obtained. Numerical comparison of asymptotic distributions (of
the 1st and the 2nd orders) with the exact one is performed. The comparison
shows that the application area of the second order asymptotic method increases
by 4 times than first order asymptotic results: for load rate ρ > 0.8 Kolmogorov
distance has values ∆ ≤ 0.05.

In this regard, there is the question about the increasing the accuracy of the
method by means of obtaining the third order asymptotic formula. H owever,
studies have shown that this approximation does not increase the range of the
method applicability. So for ρ ≤ 0.8 it need to develope other methods of system
studying.

Ack n owledg m en ts. This work is performed under the state order of the M inistry of
E ducation and Science of the Russian F ederation N o. 1.5 11.2 0 14 / K .
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