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Abstract

Statistical estimators of a linear functional of an unknown distribution are 
considering based on combined estimator in the form of weighted sum of non­
par ametric estimator and a prior guess about the value of this functional. The 
optimal (in terms of mean square error) weighting coefficient is subject of adap­
tive estimation itself. A series of ̂ -adaptive estimators are constructed by using 
the prior guess recursively к times. Examples of combined estimators and re­
sults of numerical calculations are provided, that illustrates how the difference 
between prior guess and unknown value of functional affects the limit distribu­
tions of estimators and their probabilistic characteristics.

Keywords: linear functional, prior guess, a priori information, combined 
estimator, nonparametric estimator, к -  adaptive combined estimator.

Introduction
The term ’prior guess’ has been probably first introduced by Ferguson [11] and used 
later in various contexts. There are many papers in the literature devoted to the 
estimation of the probability characteristics with using additional information (prior 
guess). Combined statistical estimators adapting a prior guess and their properties 
have been considered in [2], [8], [9], [10], [17]. Estimators of the mean were proposed 
in [1], [3], [13], [18]. Estimators of the variance of finite samples have been considered 
in [4] and [19]. Estimators of conditional quantile have been developed in [19]. In [16] 
this problem was considered for dependent data. A new class of M-estimators with 
auxiliary information has been introduced in [14]. Missing data case presented in [7], 
censored data case has been considered in [15]. Problems of adaptive classification 
and optimization are considered in [5].

In this paper we consider the case when there exists an assumption on the value 
of estimated functional. The assumed value we will refer to as a prior guess. We 
propose /с-adaptive combined estimators that use prior guess recursively к times. 
Asymptotic distributions of the estimators have been obtained, that allow to study 
the influence of a prior guess to the estimation accuracy.

The obtained asymptotic results extend the results presented in the paper [10].

1 Structure of estimator utilizing a prior guess
Let X i , ..., X n be independent observations of size n over a random variable X  with 
unknown distribution function F  on R 1. Following to [10], consider the problem of
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statistical estimation of a linear functional on a certain class of distributions T ,
/ 00

<p(x)dF(x), F e F ,  (1)
•00

using a prior guess Ja as a possible value of J{F), specified by researcher. The real 
function <p is known. Nonparametric estimator of the functional is

j = j(Fn) = п-'У]" v(*i),*..%---1

where Fn{x) =  n~l Y^l= 1 c{x ~ Xi) is empirical distribution function, c(t) =  {0  : t <  
0; l , t  >  0}. Following to [8], [9], [10], [IT], consider the combined estimator utilizing 
simultaneously J  and prior guess Ja in the form

J(Л) =  (1 -  A)J  +  XJa — J — A( J  -  Ja), (2)

where the weighting coefficient Л is selected from the minimum of mean square error 
(MSE) Sf{A) =  MF[J(A) — J]2. Optimal value of Л is given by

A* = A *(F) = (1 + п Д > 2)-1 =  (1 + bl(F))~\ (3)
where a2 =  a2(F ) =  Df (p (X ))  is the variance of (p(X), A  =  Д (F ) =  J{F ) — Ja is 
the value of displacement of the prior guess from the true value J{F ), and bn(F) =  

n A (F )/ a (F ) is the normalized displacement.
The minimal value of MSE is given by the expression nSpiA*) =  cr2(l  — Л*). 

The weighting factor A* varies between 0 < A* <  1, and shows contribution of each 
estimator to the combined estimator (2) and their influence to the optimal MSE. 
Particularly, if A F =  0, we have A* =  1, and prior guess Ja should be taken as 
the estimator of the functional J (F ). When A y ф 0, which usually happens in 
practice, A* < 1, and A* —>■ 0 with the growth of sample size (n —» 00), so the 
influence of a prior guess and the advantage in the estimation accuracy decrease. 
More conclusions can be obtained if we assume that A decreases simultaneously with 
growth of n such that for each fixed F  € F  there exists a limit limbn(T1) — 6. Then 
\imnSF(\*) =  <r2b2/(l +  b2).

Practical usage of the combined estimator (2) is complicated because optimal 
coefficient A* is not possible to calculate due to distribution function F  is unknown.

Construction of statistical estimators for A* leads to adaptive estimation of the 
functional (1). However, the weighting coefficient becomes non-optimal, and the 
question arises, under what conditions the adaptive estimator is more preferable by 
MSE as compared to the estimator J. We consider this issue in the following sections.

2 Adaptive estimators and their asymptotic 
properties

We construct adaptive estimators by the method of substitution and consequent use 
of a prior guess. Let substitute unknown F  with Fn in (3) and let use a prior guess
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аа instead of а . Then we do have the first estimator for A*:

а1 = (1 + пА2/ 0 _1 = (1 + %Г1.
where A =  J — Ja is estimator of displacement A, bn =  ^/nA/aa is estimator of nor­
malized displacement. By substitution A with Ai in (2), we obtain the first adaptive 
combined estimator J\ — J — \г{3 — JJ). Using J\ in estimation of displacement A, 
we obtain A i =  Ji — Ja and b\in =  yfnhi/<7a. Then the second estimator will be 
given by Аг — (1 +  and Л =  J — M (J — Ja)- After repeating this procedure
к times consecutively, we obtain the following expressions for the estimator

Jk =  J -  Ak(J -  Ja) =  Ja +  (1 -  Ak)(J -  Ja), (4)

Afc =  ( l  +  n b ^ _J  a fj  =  ( l  +  hfe_1>n)  i

where bkin — -̂ /niÂ ;/<7tt) A^—j — Jk—i Jai =  A — J Ja, Ьо,гг =  bn.
Let us refer to Jk as ^-adaptive estimator with parameter aa. We emphasize here 

that the prior guess Ja has been used at each step of estimation of A, but unknown 
value a is replaced by the specified value cra- Let us note that in [10] the sample 
estimate a1 was used instead of a2.

Consider asymptotic behavior of Jk. Let

y/n{Jk ~  J)
Qz =  ----------------- -<7

Denote

Then we can write

bn =  fan +  bn)r, bkiU =  qk(bn) =  qk{{rjn +  6n)r), 

Afc =  [1 +  ?fc_i(fan +  bn)r ) ] _1 ,

- b n +  ?fc(fan +  b „)r )/r ,

where qk(x) =  xq(qk_ i(x )), к € {1 ,2 ,3 , . . . } ,  q(x) =  x 2/(l +  ж2), g0fa) =  x.

Theorem 1. Let a2 <  oo for each F  E T  and sequence bn converges to non-random, 
value b as n —> oo. Then for each к the random sequence £k converges in distribution 
to the random variable

ik — —b +  <Zfc(fa +  b)r)/r if |b| <  oo, 0 <  r  <  oo.

P{£,k < x }  =  Ф(д^1((ж +  6 )r)r“ 1 — b), —oo <  x  <  oo,

where g is the standard normal random variable with distribution function Ф(ж), 
qkx{x) is inverse function.
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Proof. Since functions qk(x) are continuous and monotonically increasing, then the 
statement of the theorem follows from convergency of r}n to -q in distribution by the 
central limit theorem and the continuity theorem ([6], Chapter 6).

Corollary 1. Under the conditions of the theorem 1, the following statements hold 
true.

1. & =  T) if \b\ =  oo, 0 < т <  oo.
2. —» q in distribution as r  oo, |6| < oo.
3. I f т 0 and |b| <  oo then the distribution of converges to degenerate

distribution at point —b (formally, —> —b).

Proof. The first statement follows from the representation

c  __ ______ Vn +  bn______  . ч
S& Vn 1 . 2 ({ . » \ \i Wl

1 +  % -i ((Vn +  bn)T)

where the second term converges weakly to zero as |bn| —> oo due to the proposition 
5 from lemma 1 [10]. The second and third statements of the corollary follows from 
the limit form of representation (5), convergency of q f^ ix )  to infinity as x  -+ oo, 
and convergency of qk~i(x) to zero as x —> 0.

3 Examples of fc-adaptive combined estimators and 
numerical results

In this section we provide some examples of estimators, their asymptotic properties, 
and results of numeric calculations. Consider the ^-adaptive combined estimators
(4) Jk under к e  { 1 ,2 ,. . .} .

Л =  j - 1 +  bt (■J - J a ),

л A
J2 =  J - (J ~  Л ).

According to lemma 1 [10] where the expression for qoa(x) is derived, the limit esti­
mator (obtained after using the prior guess infinite number of times, к =  oo), can be 
written as

<

j - 1 +

1-------
<41i -1

( J  -  Ja), bn < -2,

= < Ja, Ibn| < 2,

J ~ 1 + (Sn + V̂ n-4) 
4

„1
( J  -  Ja), bn >  2.
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Figure 1: Dependence of the MSE *. on normalized displacement b and 
к £ {1 ,2 ,4 ,16, oo} for r  — 1.0 (left plot) and r  =  0.5 (right plot).

Using the theorem 1 we can compute moments of random variable Most 
interesting is the second moment, which due to (5) can be written in the form

M g  =  S£ic =  M
r)A-b 1 

1 + Qk-iiiv + Щт ).
Figures 1 and 2 present the plots of S£k m dependence of fe, b and r. At the left 
plot of figure 1 the case of r  — 1 is considered. It shows that there exist range of 
values of |b| where S£k < 1- Outside the range the combined estimators lose on MSE 
to regular empirical estimator represented by random variable £o with ££0 =  1. The 
mentioned intervals and maximal loss are presented in the table 1 in numbers.

Figure 2: Dependence of the MSE ££& on r  and k £ {1 ,2 ,4 ,1 6 ,00}  for normalized 
displacement 5 =  0 (left plot) and b =  2.33 (right plot).

When r  decreases, the maximum of S£k grows and minimum decreases down to 
zero (see for examples the right plot at the figure 1 and both plots at the figure 
2). The inverse behavior is observing when r  increases, in that case 5£* tends to
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Table 1: Extremal points of S£k under т =  1 and points of its intersection with 
level one are presented with accuracy ±0.07.

к 1 2 4 16 oo
max*, S£k 1.25 1.49 1.82 2.31 2.43
arg max;, S£k ±2 .6 6 ±2 .5 2 ±2 .3 8 ±2 .3 8 ±2 .2 4
b: S&  <  1 \b\ <  1.40 |6| <  1.26 |6[ <  1.12 |6| <  0.98 \b\ < 0.98

S£о =  1 for all b and r. In the case of b =  0 (left plot at the figure 2) the value of 
5&  < S£о =  1 for all 0 < r  < oo, and this advantage is increasing with growth of к.
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