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ВЕРОЯТНОСТНЫЕ И ЭКОНОМЕТРИЧЕСКИЕ 
МЕТОДЫ И МОДЕЛИ 

 
CUSUM ALGORITHMS FOR PARAMETER ESTIMATION 

IN QUEUEING SYSTEMS WITH JUMP INTENSITY 
OF THE ARRIVAL PROCESS 

Yu. Burkatovskaya, T. Kabanova, S. Vorobeychikov  
National Research Tomsk Polytechnic University, Tomsk, Russia  

National Research Tomsk State University, Tomsk, Russia  
 

1. Introduction 

Markovian arrival processes form a powerful class of stochastic processes 
introduced in [1] and [2] and thereafter they are widely used now as models for 
input flows to queueing systems where the rate of the arrival of customers 
depends on some external factors. MAP is a counting process whose arrival rate 
is governed by a continuous-time Markov chain. One of the problems connected 
with MAP is the estimation of intensity parameters by observing flow of events. 
A survey of estimation methods is given in [3]. Its emphasis is on maximum li-
kelihood estimation and its implementation via the EM (expectation-
maximization) algorithm. This approach is developed for different conditions in 
[4, 5], etc. The survey [6] with a huge bibliography is focused on matching mo-
ment method which is also widely used for parameter estimation in MAP be-
cause of its simplicity. This method is used, for example, in [7]. Bayesian ap-
proach based on the a posteriori probability of the controlling chain state is de-
veloped in [8]. Quality of those methods is typically examined via simulation.  

In this paper we propose a different approach to MAP parameter estimation 
using the sequential analysis methods described in [9] and [10]. The key idea is 
to consider time intervals between arrivals as a stochastic process which 
parameters change in random instants. First we detect these points using 
sequential change point detection methods. Then we estimate the intensity 
parameters under the assumption that the intensity is constant between detected 
change points. 

2. Problem statement 
We consider a Markov-modulated poisson process, i.e. a flow of events, 

controlled by a Markovian chain with a continuous time. The chain has two 
states, transition between the states happens at random instants. The time of 
sojourn of the chain in the l -th state is exponentially distributed with the 
parameter l , 1,2=l . 

The flow of events has the exponential distribution with the intensity 
parameter 1  or 2  subject to the state of the Marcovian chain. The parameters 
of the system 1 , 2  and the instants of switching between the states are 
supposed to be unknown. We also suppose that ll  , i.e. changes of the 
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controlling chain states occur more rarely than observed events. The sequence of 
instants of arriving events is observed. The problem is to estimate the 
parameters 1 , 2 , 1 , 2 . 

3. Algorithm 1 
Consider the process 1}{  ii , where 1=  iii tt  is the length of the i -th 

interval between arriving events in the observed flow. If the controlling chain is 
in the l -th state then the mean length between events is equal to l1/ . So at the 
first stage of our procedure we try to detect the instants of the chain transition 
from one state to another as the instants of change in the mean of the process 

1}{  ii  using CUSUM procedures. 
Let the parameters 1 , 2  satisfy the condition  
 ;<<0 12      ,11 12 d  (1) 

where d  is a certain positive parameter. If the constant d  is unknown then it 
can be chosen as the minimal difference between the mean lengths of the 
intervals i  when the controlling chain is in different states that should be 
detected. Let n  be a lower bound of the mean number of events between 
switchings of the controlling chain states. For the model under consideration it 
means that lln  . We suppose that n is rather large (for example, n10), 
hence changes of the controlling chain states occur more rarely than observed 
events. This situation is typical for real processes such as call-center or http-
server because one of the states can be interpreted as a "usual" state of the 
system and another state as a "peak-time" state and during each of these states 
several customers are supposed to arrive. Besides processes having this property 
are often used for simulation study of algorithms for processes with jump 
intensity of customer arrivals (for example, see [5, 8]).  

Choose then an integer parameter 1k  describing the memory depth 
According to our analysis, a good choice of the parameter k  is 2nk  . The 
idea is to compare the values i  and ki , ki  . If there are no changes of the 
controlling chain state within the interval ],[ 1 iki tt   then the values i  and ki  
have the identical exponential distribution with the mean 11/  or 21/ . If the 
chain state changes within the interval ],[ 1 iki tt   then the expectations of the 
values i  and ki  are different. On one hand the parameter k  should allow us to 
detect changes with minimal delay, on the other hand it should not be too large 
to contain more than one chain state change within the interval ],[ 1 iki tt  . 

As the initial state of the chain is unknown, we shall consider two CUSUM 
procedures simultaneously. The first procedure is set up to detect increase in the 
mean of the process and hence, decrease of the intensity, and the second 
procedure is set up to detect decrease in the mean and hence, increase of the 
intensity. For the first procedure we choose the positive parameter d  and 
introduce the sequence of the statistics  
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 .,=(1) kiz kiii    (2) 
For the second procedure we introduce the sequence of the statistics  

 .,=(2) kiz ikii    (3) 
Consider then four hypothesis concerning the state of the controlling chain: 
– ),( 1 ikil ttH   – the intensity of the arrival process on the interval ],[ 1 iki tt   

is constant and equal to l , 1,2=l ; 
– ),( 1,  ikiml ttH  – the intensity of the arrival process on the interval 

],[ 1 iki tt  changed once from l  to m , 1=l , 2=m  or  2=l , 1=m ; 

The statistics )( j
iz , {1,2}j  (2), (3) have the following properties:   
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So the means of statistics (2), (3) change from negative to positive values 
when the intensity of the process changes. These properties determine the 
construction of the procedures. We introduce positive constants 1h  and 2h  as the 

procedures thresholds and construct the cumulative sums (1)
iS  and (2)

iS  which are 
recalculated at the instants it . It is defined as follows  
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Reaching the threshold lh  by the sum )(l
iS  results in a decision considering 

the parameters changes; 1l  indicates decision on increase of the mean length 
of the interval between the events and decrease of the process intensity, 2l  
indicates the opposite. 

Let the sequence   0
)(

 m
l

m  be the sequence of the instants when the 

cumulative sum in the l -th procedure reaches the threshold lh , i.e.  

 0;=)(
0
l     .:>min= )()(

1
)(

l
l

j
l

mj
l

m hSt    (6) 

Consider a sequence   0
)(

i
l

in  associated with the sequence   0
)(

 m
l

m  as 

follows  
 0;=)(

0
ln     .0=0,>:max= )(

1
)()()( l

j
l

j
l

mj
l

m SStn   (7) 

Thus the instant )(l
mn  is the first instant when the cumulative sum becomes 

positive to reach then the threshold. We consider the instants (1)
in  )( (2)

in  as the 
estimators for the instants when the mean length of the interval between the 
events increases (decreases).  

When implementing the procedure it is possible to encounter false alarm 
situations. We shall record all the exceeding the thresholds by either first or the 
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second cumulative sum. If the same sum reaches threshold several times in a 
row, we only record the first occurrence. 

Thus the procedure for estimation of instants of intensity switching is 
described as follows. Calculate two cumulative sums given by equations (5). 
Then construct the sequences  )(l

m ,  )(l
mn  defined by equations (6), (7). Let 

(2)
1

(1)
1 < nn , then the initial value of the intensity is equal to 1 . Define the 

sequence  
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The values ,, 21 qq  are calculated using formula (8) while it is possible. If  

       =>:=>: 12
(2)(1)

2
(1)(2)

liilii qnnqnn  
then we set Nq l =12   ( Nq l =22  ), where N  is the instant of the last occurrence. 
Here the odd instants 12 lq  are the estimators of the instants when the intensity 
changes from 1  to 2 , and the even instants 22 lq  are the estimators of the 
instants when the intensity changes from 2  to 1 . 

Define estimators for the parameters 1 , 2   

 ,=ˆ,=ˆ
222111 TNTN   (9) 

where 1N  is the total number of events occurred at the intervals ],[ 122 ll qq , 
Nq l 12  and 1T  is the total length of these intervals; 2N  is the total number of 

events occurred at the intervals ],[ 2212  ll qq , Nq l 22  and 2T  is the total length 
of these intervals; 0l . 

Define estimators for the parameters 1 , 2   
 ,=ˆ,=ˆ 222111 TLTL   (10) 
where 1L  is the total number of the switching points Nq l 12 , 2L  is the total 
number of the switching points Nq l 22 , 0l . 

The parameters   and ih  affect the characteristics of the CUSUM 
procedure, i.e., the mean delay and the mean time between false alarms (see 
[10]). If there are no additional conditions then the procedure is considered to be 
optimal when the probabilities of the false detection and the skip of the change 
are equal. It can be guaranteed by the choise of the parameter   as 2d . If 

the memory depth is equal to k then the sum )(l
iS  has to reach the threshold lh  in 

not more then k steps (while 0)1( lEz ). It can be provided by the choise of lh  as 
.4ndkhl   Note that the parameter lh  should not be significantly less than 

its upper bound because it can increase the number of false alarms. 
4. Algorithm 2 

Let we have a certain period of observation ][0,T  and N  is the number of 
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occurrences at the interval. First, we calculate the mean of the length between 
occurrences using the usual formula  
 .=ˆ NT  (11) 

The value ̂  exceeds the mean length of the interval i  when the 
controlling chain is in the first state, and vice versa, the mean length of the 
interval i  exceeds the value ̂  when the controlling chain is in the second state, 
i.e.  
 .1<ˆ<1 21  E  (12) 

We introduce the sequence of the statistics  
 .ˆ=(1)  iiz  .ˆ=(2)  iiz  (13) 

Using in Algorithm 1 statistics (13)  instead of (2), (3) we obtain 
Algorithm 2. The parameter lh  can be chosen as 4ndhl  , i.e. as at the first 
algorithm.  

5. Numerical simulation 
The model for the considered flow and the suggested algorithms was 

implemented with varying parameters. The results of the simulation for 
Algorithm 2 are presented in the table below.  
 

T 1  2  1  2  1h  2h  ̂  1̂  2̂  1̂  2̂  

1000 5 1 0,3 0,2 0,5 0,5 0,3883 5,2336 1,2276 0,3220 0,1732 
1000 5 1 0,3 0,2 0,8 0,8 0,3929 5,0591 1,2370 0,2573 0,1322 
1000 5 1 0,3 0,2 1 1 0,4355 4,7475 1,1972 0,2587 0,1144 
1000 5 1 0,1 0,2 0,5 0,5 0,2668 5,6804 2,0053 0,2912 0,2604 
1000 5 1 0,1 0,2 0,8 0,8 0,2924 5,1544 1,6825 0,1180 0,1880 
1000 5 1 0,1 0,2 1 1 0,2501 5,2498 2,6283 0,1207 0,1297 
1000 5 2 0,1 0,2 0,5 0,5 0,2351 6,1085 2,8854 0,3632 0,2656 
1000 5 2 0,1 0,2 0,8 0,8 0,2564 5,1785 2,8092 0,1652 0,1289 
1000 5 2 0,1 0,2 1 1 0,2486 5,1949 2,8831 0,1219 0,1162 
10000 5 1 0,3 0,2 0,8 0,8 0,3830 4,8379 1,3439 0,2316 0,1318 
10000 5 1 0,3 0,2 1 1 0,3766 4,6783 1,4326 0,1917 0,1157 

 
First, the quality of the proposed algorithms on the threshold parameters lh  

was studied. Increasing of lh  leads to decreasing of probability for the 
cumulative sums to reach the thresholds and hence an intensity change can be 
undetected. It causes increasing of error of the estimators i̂  because of not 
correct estimation of the controlling chain current state. On the other hand, 
increasing of lh  leads to decreasing the total number of false alarms. These 
theoretical conclusions are supported by the simulation results. As the thresholds 
increase the estimators of the switching parameters l̂  decrease because less 
switching points are detected on the first stage of the procedures. In the Table 
for 1== 21 hh  one can see that the estimators l̂  considerably less the real 
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values of the parameters l . The best results are obtained for 0,8== 21 hh  for 
all intensity parameter values. Thus, choice of the algorithm parameters is a 
rather difficult problem requiring further theoretical investigations. 

Increasing of the simulation time from 1000 to 10000 does not influence 
significantly the estimators quality. This result stress the fact that the proposed 
algorithms can be used for a small sample size. 

Conclusion 
МАРs are used as models for real processes, particularly, for call-centers or 

http-server customers (see [3], [4]), healthcare systems (see [5]), etc. Input flow 
intensity estimation and pertinent model setup is necessary to develop dispatch-
ing rule, to calculate optimal number of servers, etc. The suggested algorithms 
do not need the distribution function of the observing flow and, hence, can be 
applied to parameter estimation of other types of flows.  

 
This paper is supported by The National Research Tomsk State University Academic 

D.I. Mendeleev Fund Program (NU 8.1.55.2015 L) in 2014–2015. 
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