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Abstract

The properties of rank tests are discussed and it is shown that besides com­
putational convenience, in many cases they have advantages over their counter­
parts on observations.
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Introduction
Ranks often are preferred to actual observation values in processing experimental 
data. There are a few good reasons for that:

• Ranks are pure whole numbers and, hence, are very convenient to calculate. In 
contrast to this, observations often are continuous values that need rounding 
(with unpredictable consequences), and registered in various measuring scales 
(with each scale having different set of allowed operations over its values).

• Ranks are related to observations and, hence, contain some of the same (sought 
by observer) information as well as observations themselves.

• Relation between the sample value and its rank becomes even stronger with 
growth of a sample size; this promises the good asymptotic properties to pro­
cedures based on ranks.

• Last but not least: some distribution-free properties of ranks insure robustness 
to the rank procedures, -  much appreciated property in statistical practice.

Here follows a brief survey of old and a few new results on these issues.

1 Basic Distributions
Let X  =  (Xx, ...,X n) be a sample from p.d.f. Fx{x) with a density fx{x) ,  x  G R l . 
Let, then, X q  = (X(i),..., Х(те}) be the ordered statistics, and R  =  (R i,..., R„.) 
be a vector of ranks for the sampleX =  (Xx,...,X n). Between the sample X  and 
the pair |Х ( . ) , я |  there exists mutual one-to-one correspondence, which means that

—t-

the information contained in observations X  = (Xx, X n) maybe split into two 
parts. One part belongs to order statistics X(.) =  (X(X), ...,X(n)), the other -  to 
ranks R  =  (Ri,. .. ,Rn). Therefore, a seeking the same aim statistical procedures;
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may be built either on raw observations X  =  (Хь  ...,X n), or on order statistics 
X {.) =  (X(1), ...,X (n)), or on ranks R = (Ru ...,Rn).

The vector random variable of a “mixed” type (i.e. consisting of discrete and
continuous components [1]), which our pair belongs to, is characterized by
corresponding probability distributions:

C.d.f. for i.i.d.r.v. X  =  (X1} is equal to
n

— ,®n) =  FXl{Xl) • • ’Fxn{x n) = (1)
i—1

C.d.f. for r-th order statistics (1 < r < n, x  G R 1) is
n

FX(r) (x) = p { x (r) < x } = J 2 c y $ ( * ) (  1 -  Ы х ) Т ~ *  = I m ( r > n -  r + 1), (2)
i=r

where Ip(n , m) is the incomplete beta-function tabulated in [2]. Corresponding 
density is

f x ir)(x) =  nCTnz \ F r̂ 1{x)(l -  Fx{x))n~rfx(x).  (3)

The joined p.d.f. of random vector X q =  (Хщ, ...,X(n)) is

f x {.) 0̂ (1) j ■**» —

П
n ' - f x ( x m ’ ->x (n)) =  n!  П  fx(x(i)) ,X(!) <  ... <  ®(n)

г=1
О , otherwise

(4)

In case of symmetrical (invariant to permutations of arguments) distribution of 
X, order statistics and rank vector are independent:

1). -> *(n)i П, - ,» » )  = fx m...XM (X(1),.... X(»)) • P | л  = (5)

and their conditional and unconditional distributions coincide [3].
If the distribution gx1}...,xn(x i > •••» x n)  is non-invariant to permutations, the famous 

Hoeffding’s Theorem [4] holds:

Pg{R = f} =  Pg{R , =  n , Д„ =  r„} =  1 M (  9-f-
n - U x

# X )i • ■ ■) )
(6)

which in case of independence of variables takes the form of

Р А й  = ?} = ± м 1 1 1
V *=1

gXi(X(ri))
f x { X {ri)) J

The joint d.f* i^X iO ^ y) of random variables Ri and X{ is [5]

n 4.

^хД ж .г/) =  n _ iy ^ c ( x - j ) -  /  ( * Ij ) ^  :
.7 =  1 „

j=l

(7)

(8)
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and a formal expression for joint density of the mixed type random variable (X , Y)  
is

n

}x y {x , v) = ^ 2 p x ( x i ) f Y\x(y\xi)S(x -  Xi). (9)
i—1

2 Some Characteristics of Independence between 
Observations and Their Ranks

Suitableness of ranks for coming out as a proxy of the sample measurements in statis­
tical processing of experimental data, clearly depends on how tight is the connection 
between them. Most general presentation of interdependence between random vari­
ables is given by their joint distribution function (8). Its one-sided presentations are 
made by conditional distributions of each of them conditioned by value of the other 
one. Such conditional distributions may be obtained by corresponding integration of 
d.f. (8).

But there are several particular indicators characterizing different aspects of the 
statistical connectedness. Let us describe some of these quantitative indices for ob­
servations and their ranks.

2.1 R egression

The regression function determines the relationship between a random variable and 
corresponding values of dependent value. If both regression lines coincide, it means 
that the relationship between the two variables is strictly functional. The more they 
differ, the weaker is the relationship. In case of independency the lines are orthogonal 
to each other.

Let us denote a regression of the observation Xi  of its rank Ri as M(Xi  | R i — j ) t 
1 < h j  < ft, and regression of the rank R t of Xi  as M(Ri = j  \Xi =  x),  1 <  i , j  < n , 
x € R 1. It can be shown [5] that

M(Ri  =  j  \Xi = x)  = 1 -\- (n -  1 )Fx {x),x E R \  (10)

M(Xi  IR i = j ) =  M {x {j)), 1 < i , j  < n. (11)

Quantitative and qualitative analyses of these lines behavior for different distribu­
tions show [5] that the lines are crossing under a certain angle which is monotonously 
decreases with sample size increasing. It means that interdependence between rank 
and observation becomes only stronger under enlarging n.

2.2  C orrelation

The correlation coefficient is a measure of connexion, which is very popular among 
data analysis practitioners. Its calculation for observations and ranks gives a re­
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suit [5]:
Vs f  n -  1\ ' A(F) w . , n .

where A (F) is the Geeny’s average difference defined as
+oo

—oo

and S(F)  is standard deviation defined as

/  +oo \

S(F) =  U  /  / {x ~ vf&MdPto)

1/2

(12)

(13)

(14)

It turns out that correlation between observation and its rank is always positive, 
equal for any observation in a sample, fast approaches, with growing n , to a value 
typical for the length of tails p f the distribution. Here are values of pxn(F)  for some 
distributions:

F(x) Uniform Gaussian Logistic | Laplasian
Pxr{F) 1,00 0,98 0,95 0,92

The longer tails of a distribution are, the less correlated are ranks and obser­
vations. This explains, in a way, difference between effectiveness of the same rank 
procedure being applied to data from different distributions.

2.3 In form ation

Various “quantities of information” are used for estimating degree of connexion tight­
ness. In our case of considering ties inside a pair (Xi,Ri), the Shannon’s quantity of 
information +oo +oo

I(X,Y)  =  / /  fxY(x,y)ln
—OO —oo

after cumbersome calculations, appeared to be

fxy{x ,y )
J x (x ) fy (y )

dxdy (15)

I ( X , Y )  =  lnn
n—1
У ы к  +L—/
к- 1

71 — 1 
2

n—1
— у  k in k  
n 'k=1

(16)

or* asymptotically, with accuracy of AREp(U : t) = 3, is

I ( X , R) =  In л/пе/2тг. (17)

So, quantity of information in ranks about observations does not depend neither 
on index i of the observation, nor on its d.f. W i,..., W*, and increases, together with n, 
wuh velocity In yfn. This ensures, that qualities of the rank statistical procedures will 
asymptotically approximate merits of procedures based on observations themselves.
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3 On Some Advantages of Ranks over Observations
It was already mentioned that ranks have attracted interest from statisticians and 
data analysts due to their content (they share the information with observations) and 
to their form (they are integers, which are very convenient to work with). But it does 
not mean that the straightforward replacement of observations by their ranks in a 
statistical procedure will bring a desired effect. First, observations and their ranks 
usually belong to different measuring scales, with different permissible operations for 
their processing. This restricts usage of direct similarity of procedures to the case 
of their containing equivalent permissible operations only. Second, ranks of sample 
values contain the same kind of information as the values themselves if only this 
information is connected with own size of each value (when large-sized value receives 
higher rank). But if the information of interest is about other relations between ob­
servations, then another, the appropriate way of ordering values is required to map 
the information onto ranks. And the third, last but not least: the algorithms (se­
quences of operations) of statistical processing of data depend on a’priori knowledge 
of stochastic nature of the data. This is why the same sample must be treated much 
differently under conditions of parametric, non-parametric, and robust statistics. And 
here again an important role belongs to proper way of put observations in order to 
preserve useful information on ranks. But the most surprising and admiring feature 
of ranks manifests itself in complicated circumstances of robust statistics: rank test 
could be more effective than its counterpart based on observations.

Let us discuss briefly the abovementioned peculiarities of ranks and give some 
illustrative examples.

3.1 O rdering th a t  tran sfers ta rg et in form ation  from  
ob servation s on to  ranks

Usefulness of ranks as substitutes to observations is primarily based on their attach­
ment to the values of observations. But sometimes a statistical procedure is designed 
to extract from the sample such information that is indirectly defined by the values 
of observations but directly by their relevancy to other random events. In such a 
case, neither the sample alone, nor its rank vector are valid for achieving the purpose 
of data processing.

Typical example is homogeneity tests. The purpose is to reveal the identity or 
distinction between two distributions, judging by a comparison of the samples taken 
from them. The test is made by combining the two samples into one, and detecting 
a degree of their overlapping. If distributions are different then observations from 
one sample will dominate in number over another one in those regions where their 
probability is higher. For instance, if distributions are shifted (differ in location 
parameter) then observations from one of them will overwhelm the other in number 
at one side of the whole range of values; if distributions differ in scale parameter, then 
the observations from the wider one will outnumber those from narrower at both far 
ends of the range. The same will happen to the ranks of observations, if ordering
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was made on the whole joined sample but with retained information of belonging 
observations to their distributions.

3.2 C om parison  o f rank te s ts  w ith  th e ir  counterparts based  
on  observations

The general theory of rank tests is presented in books by Lehman [6], Hayek and 
Shidak [3], Ригу and Sen [4], Hettsmanspreger [7]. Here we give only a few examples 
revealing merits of rank tests in comparison with analogous tests based on observa­
tions.

The notion of the Pitman asymptotic relative efficiency (ARE) is widely used 
for comparison of two tests, Tn and Sn. AREp(Tn : Sn) characterizes the ratio of 
sample sizes n i and n2 under which Tn and Sn with equal levels of significance ensure 
equal ARE against the same sequence of contigual alternatives converging to zero 
hypothesis.

For the Wilcoxon sign rank test S + and Student's t-test

A R E f (S + : T(X))  =  12cr2 (18)

In Table 1 the numerical values of AREp  (S + : T(X))  are presented for some 
symmetric distributions.

Table 1

Distribution F(x) ARE f (S+ : T(X))
Uniform 1
Gaussian 3/?r =  0,955
Logistic тг2/9  =  1,097

Double exponential 1,5

For the Wilcoxon sign rank test S + and the sign test S

AREp  (S  : S +) =2f ( S ) /U S +)) =  4<t2/ 2(0)/3
/

~\ 2

f 2 (x)dx (19)

Its numerical values are given in Table 2.
Calculations of ARE for many other pairs of tests were made (e.g. in [7 -  12]). 

Some general conclusions follow from their consideration:
~ In most cases ARE does not depend on scale parameter and is connected to the 

distributions' family type only.
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Table 2

Distribution F(x) AREf (S : S +)
Uniform 1/3
Gaussian 2/тг =  0,637
Logistic тг2/12 =  0,822

Double exponential 2

-  AREs may take various values not limited from above, but have non-zero lower 
limits. For instance, AREF(U : t) > 0,864, which means that in two-sampled prob­
lem of shift we may loose in efficiency not more than 13,6% using Wilcoxon’s test 
instead of Student’s one. Under Gaussian distribution the loss is 5% only. The most 
favorable distribution (AREF(U : t) =  3) is gamma-distribution with p = 1. So, 
under these circumstances the Wilcoxon test is always preferable among other tests.

Robust statistics is an approach to designing statistical procedures at an inter­
mediate (between parametric and non-parametric) level of a priori knowledge about 
stochastic nature of observations. Underlining them distribution is considered as 
known approximately: it belongs to a “supermodel”, a certain vicinity of some para­
metric function. The procedures are designed that remain effective (“robust”) until 
actual distribution lies inside the vicinity; there are among those the rank procedures, 
too. And they demonstrate certain advantages.

For example, efficiency of H -test of Kruskall-Wallis against its Gaussian competi­
tor, Fisher’s F-test is [7]

AREf {H : F) = 12a)
lJ f ( F  1 (u)du) 

.0

2

(20)

and this formula is valid for several other counterparts of tests [8]. Numerical values 
of it for Gaussian model with a scale obstruction

F  в  а е,т(Ф) =  {F : F£iT(x) -  (1 е)Ф(а;) +£Ф(з;/г)},0 < e <  1/2, т > 1

are given in Table 3.

Table 3

£ 0.00 0.01 0.03 0.05 0 .08 0 .10 0.15 0 .20

AREFe t (H : F)
r =  3 0.955 1.009 1.108 1.196 1.309 1.373 1.497 1.575
r  =  5 0 .955 1.150 1.505 1 .814 2.201 2 .412 2.795 3 .006
т = 7 0 .955 1.369 2 .115 2 .759 3 .553 3 .977 4 .724 5 .099

It is seen that H-test looses in efficiency only 5% to the optimal F-test of Fisher 
in Gaussian case, but much overwhelms it under deviations from normality.
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